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a b s t r a c t

The presence of antipatterns can have a negative impact on the quality of a program. Consequently, their
efficient detection has drawn the attention of both researchers and practitioners. However, most aspects
of antipatterns are loosely specified because quality assessment is ultimately a human-centric process
that requires contextual data. Consequently, there is always a degree of uncertainty on whether a class
in a program is an antipattern or not. None of the existing automatic detection approaches handle the
inherent uncertainty of the detection process. First, we present BDTEX (Bayesian Detection Expert), a Goal
Question Metric (GQM) based approach to build Bayesian Belief Networks (BBNs) from the definitions
ntipatterns
etection

of antipatterns. We discuss the advantages of BBNs over rule-based models and illustrate BDTEX on the
Blob antipattern. Second, we validate BDTEX with three antipatterns: Blob, Functional Decomposition,
and Spaghetti code, and two open-source programs: GanttProject v1.10.2 and Xerces v2.7.0. We also
compare the results of BDTEX with those of another approach, DECOR, in terms of precision, recall, and
utility. Finally, we also show the applicability of our approach in an industrial context using Eclipse JDT
and JHotDraw and introduce a novel classification of antipatterns depending on the effort needed to map

atic d
their definitions to autom

. Context and problem

Software quality is important because of the complexity and
ervasiveness of software systems. Moreover, the current trend

n outsourcing development and maintenance requires means
o measure quality with great details. Object-oriented quality is
dversely impacted by antipatterns (Brown et al., 1998); their early
etection and correction would ease development and mainte-
ance.

Antipatterns are “poor” solutions to recurring implementation
nd design problems that impede the maintenance and evolution
f programs. They are described using a template which describe
heir general forms, their symptoms, their consequences, and some
efactored solutions. The symptoms are often code smells (Fowler,
999). Even though a class in a program can present all symptoms
f a given antipattern, it is not necessarily an antipattern. Moreover,
hen discussing antipatterns, we do not exclude that, in a partic-
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

lar context, an antipattern could be the best way to implement or
esign a (part of a) program. For example, automatically generated
arsers present many symptoms of Spaghetti Code, i.e., very large
lasses with very long and complex methods. Only a quality analyst
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etection approaches.
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can evaluate the impact of antipatterns on their program in their
context.

All aspects of an antipattern are loosely specified because qual-
ity assessment is ultimately a human-centric process that requires
contextual data. Consequently, there is always a degree of uncer-
tainty on whether a class in a program is an antipattern or not.
Therefore, detection results should be reported with the degree of
uncertainty of the detection process. This uncertainty accounts for
the loose definitions and the similarity of classes with the antipat-
tern.

There exist many approaches to specify and detect antipatterns.
Some of these approaches are manual (Travassos et al., 1999),
others are based on rules (Marinescu, 2004). Manual detection
approaches avoid the problem of uncertainty, but do not scale up to
the inspection of large systems. To the best of our knowledge, none
of the existing automatic approaches provide a way to deal with
the uncertainty of the detection. They provide quality analysts with
an unsorted set of candidates classes with no indication of which
one(s) should be inspected first for confirmation and correction.

This paper builds on our previous work (Khomh et al., 2009) in
which we illustrated the use of a Bayesian Belief Network (BBN) to
specify the Blob antipattern and to detect its occurrences in pro-
ased Bayesian approach for the detection of antipatterns. J. Syst.

grams. A Blob, also called God class (Riel, 1996), is a class that
centralises functionality and has too many responsibilities. Brown
et al. (1998) characterise its structure as a large controller class that
depends on data stored in several surrounding data classes. Table 1

dx.doi.org/10.1016/j.jss.2010.11.921
dx.doi.org/10.1016/j.jss.2010.11.921
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
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Table 1
List of detected antipatterns.

The Blob (called also God class (Riel, 1996)) corresponds to a large controller class that depends on data stored in surrounded data classes. A large class declares many
fields and methods with a low cohesion. A controller class monopolises most of the processing done by a system, takes most of the decisions, and closely directs the
processing of other classes. We identify controller classes using suspicious names such as ‘Process’, ‘Control’, ‘Manage’, ‘System’, and so on. A data class contains only
data and performs no processing on these data. It is composed of highly cohesive fields and accessors

The Functional Decomposition antipattern may occur if experienced procedural developers with little knowledge of object-orientation implement an object-oriented
system. Brown describes this antipattern as “a ‘main’ routine that calls numerous subroutines”. The Functional Decomposition design defect consists of a main class,
i.e., a class with a procedural name, such as ‘Compute’ or ‘Display’, in which inheritance and polymorphism are scarcely used, that is associated with small classes,
which declare many private fields and implement only few methods
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The Spaghetti Code is an antipattern that is characteristic of procedural thinking in
declaring long methods with no parameters, and utilising global variables for p
Spaghetti Code does not exploit and prevents the use of object-orientation mec

ummarises its definition. The output of the BBN was a probability
hat a class is a Blob.

The BBN could handle uncertainty by evaluating the probability
hat an input, e.g., a large class, causes an observed output, e.g., a
lob. Consequently, such a BBN allowed quality analysts to priori-
ise the inspection of candidate classes. Furthermore, the Bayesian
heory that underlies BBNs could be used to calibrate a BBN using
ast detection results by learning the relations between different

nputs and their combined effects on the output. We could thus
mprove the performance of a BBN for a given context, e.g., organ-
sation or type of program. A quality analyst can also encode her
udgement into a BBN when data is unavailable.

Building on this previous work, this paper presents a Goal Ques-
ion Metric (GQM) based approach, BDTEX (Bayesian Detection
xpert), to systematically build BBNs to detect antipatterns from
heir definitions instead of an intermediate representation based
n rules. It also provides an extensive discussion on the chal-
enges, strengths, and weaknesses of a BBN-based approach with

systematic criteria-based comparison of the state-of-the-art. In
ddition to the Blob, we apply the approach to two additional
ntipatterns: the Functional Decomposition and the Spaghetti code,
hose definitions are presented in Table 1, and to two extra sys-

ems, Eclipse JDT and JHotDraw, to show that BBNs perform well
n “good” programs and scale up. This paper also shows that
ur approach provides BBNs whose results minimise the quality
nalysts’ effort when compared to the state-of-the-art rule-based
pproach, DECOR (Moha et al., 2010a).

Section 2 presents a systematic criteria-based review of pre-
ious work. Section 3 recalls the basics of BBNs and describes
he different steps of our GQM-based approach, BDTEX. Section 4
eports experiments on the use of BDTEX on two open source sys-
ems: GanttProject v1.10.2, Xerces v2.7.0 and three antipatterns:
lob, Functional Decomposition, and Spaghetti Code. It also com-
ares our approach with DECOR in terms of precision, recall, and
tility. Section 5 discusses the applicability of our approach in an

ndustrial context using Eclipse JDT v3.1.2 and JHotDraw v5.3, and
ropose a classification of antipatterns into three types depending
n the effort needed to map their definitions to automatic detection
pproaches in general, and BDTEX in particular. Section 6 concludes
ith future work.

. Related work

In this section, we first recall the first work on antipatterns, then
efine criteria to compare previous work. We perform a comparison
f previous work using these criteria and, finally, we discuss the
enefits of BBNs.
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

.1. The origin of antipatterns

The first book on “antipatterns” in object-oriented development
as written by Webster (1995); his contribution covers concep-
ct-oriented programming. Spaghetti Code is revealed by classes with no structure,
ing. Names of classes and methods may suggest procedural programming.
ms, polymorphism and inheritance

tual, political, coding, and quality-assurance problems. Later Riel
(1996), defined 61 heuristics characterising good object-oriented
programming to assess software quality manually and improve
design and implementation. Since then, antipatterns have been
the center topic of many books. Fowler (1999) defined 22 code
smells, symptoms of antipatterns, suggesting where developers
should apply refactorings. Mantyla (2003) and Wake (2003) pro-
posed classifications of code smells. Brown et al. (1998) described
40 antipatterns, including the well-known Blob, Functional Decom-
position, and Spaghetti Code. These books provide in-depth views
on heuristics, code smells, and antipatterns aimed at a wide aca-
demic and industrial audience. We build upon this previous work
to propose an approach to detect antipatterns while taking into
account their loose definitions and the inherent uncertainty of the
detection process.

2.2. Issues with detection approaches

Dhambri et al. (2008) report six issues from their experience
with industrial partners, which must be addressed to make effec-
tive an antipattern-detection process. These issues concern the
loose definitions of antipatterns, which use code structures, devel-
opers/designers’ intents, and evolution trends.

These issues also pertain to the effort required by the qual-
ity analysts to obtain, classify, and use the detected candidate
antipatterns. On the one hand, a completely manual approach is
not concerned by issues 1, 3, 4, and 6 but would require a great
amount of effort because the quality analysts would need to assess
manually each and every classes in a program every other classes,
issues 2 and 5. On the other hand, (semi-)automated approaches
face all these issues because they attempt to reduce the quality
analysts’ efforts by automating part of their decision process.

We now recall and discuss these issues before comparing pre-
vious work using them as criteria.

Issue 1: Difficulty of deciding when an antipattern candidate is
actually a real antipattern. Antipatterns are detected by
their symptoms, i.e., code smells. However, a class might
exhibit all symptoms of an antipattern without being one
of its instance. Therefore, human intervention is needed to
validate detection results because the detection process
is uncertain. Consequently, a detection approach should
report the uncertainty of the candidate classes.

Issue 2: Uselessness of long lists of candidates. The objective of a
detection process is to guide a manual review by a quality
analyst. Too many false positives in the result set can lead
to a rejection of the detection approach. Consequently, a
ased Bayesian approach for the detection of antipatterns. J. Syst.

detection approach should provide a list of its candidates
ranked by confidence and/or severity.

Issue 3: Difficulty of taking into account the quality analysts’
judgement. The quality analysts’ background and contex-
tual knowledge affect their understanding of what is a

dx.doi.org/10.1016/j.jss.2010.11.921
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“good” or a “poor” design, given a certain set of symptoms.
ssue 4: Necessity to take into account the context of the detection.

Classes that may be considered “good” by many quality
analysts in a given context may still violate some design
principles. The context can be related to an organisation
or application domain.

ssue 5: Necessity to use thresholds when dealing with quantita-
tive data. Many symptoms are defined using vague terms
like “few” and “too many”. Although there might be a
concensus on extreme values, given their different back-
grounds, quality analysts may interpret different values
differently.

ssue 6: Difficulty of recovering and using semantic data. The
key symptoms of some antipatterns, such as Functional
Decomposition, relate to semantic data, such as a class
implementing a single feature. An automated detection
approach should take into account semantic data.

.3. Review of previous detection approaches

We now revisit the literature on the detection of code smells
nd antipatterns using the six issues as criteria.

Manual approaches were defined, for example, by Travassos
t al. (1999), who introduced manual inspections and reading tech-
iques to identify antipatterns. By putting the analyst at the heart
f the detection process, they avoid issues 1, 3, 4, and 6 but face
ssues 2 and 5. However, as the authors note, their approach does
ot scale to larger systems. Ciupke (2010) proposed an approach

or analysing legacy code, specifying frequent design problems as
ueries and locating the occurrences of these problems in a model
erived from source code. The majority of the detected problems
ere simple ones, i.e., simple conditions with fixed threshold val-
es, such as “the depth of inheritance tree must not exceed six

evels”. He did not address complex antipatterns and thus avoided
ssues 3, 4, and 6. However, he used fixed thresholds and as such
id not address issues 1, 2, and 5.

Marinescu (2004) presented a metric-based approach to detect
ntipatterns with “detection strategies” that capture deviations
rom good design principles and combine metrics with set oper-
tors and compare their values against absolute and relative
hresholds. Similarly to Marinescu, Munro (2005) proposed metric-
ased heuristics to detect code smells; the detection heuristics are
erived from a template similar to the one used for design patterns.
e also performed an empirical study to justify the choice of met-

ics and thresholds for detecting code smells. This work addressed
nly the issues 5 and 6. It cannot handle uncertainty, issue 1. Their
etection approaches include neither the context of the programs,
or the quality analysts’ interpretations, issues 3 and 4. They return

ists of candidates without any ranking, issue 2.

Approaches Issue 1 Issu

Manual
Travassos et al. (1999)

√
Ciupke (2010)

Semi-
automated

Marinescu (2004)
Dhambri et al. (2008)
Munro (2005)
Alikacem and Sahraoui (2006)
Rao and Reddy (2008)

√
Moha et al. (2010b)
Simon et al. (2001)
Lanza and Marinescu (2006)
van Emden and Moonen (2002)
BDTEX

√ √
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

Alikacem and Sahraoui (2006) proposed an ad hoc domain-
pecific language (DSL) to detect violations of quality principles
n programs. This language allows the specification of fuzzy-logic
 PRESS
and Software xxx (2011) xxx–xxx 3

rules that include quantitative properties and relationships among
classes. The thresholds for quantitative properties are replaced by
fuzzy labels. The mapping between metric values and fuzzy labels
is performed through membership functions that are obtained
by fuzzy clustering. Although, fuzzy inference allows to explicitly
handle the uncertainty of the detection process and rank the candi-
dates, the author did not validate their approach on real programs
and only addressed issues 5.

Rao and Reddy (2008) proposed the use of design change-
propagation probability matrices (DCPP matrix) to detect the
Shotgun Surgery and Divergent Change antipatterns. They used the
change propagation between the design of artifacts to specify these
two antipatterns. A probability matrix does model the uncertainty
of the detection process, issue 1. Their detection approach takes into
account neither the quality analysts’ interpretations, nor the con-
text of systems, respectively issues 3 and 4. Moreover, it does not
use thresholds but compares candidates to fixed templates repre-
senting the antipatterns and thus cannot report ranked lists, issues
2 and 5. No semantic data is used, issue 6.

Moha et al. (2010a) proposed a DSL to specify antipatterns based
on a literature review of existing work. The specification of antipat-
terns takes the form a rule cards, which we used in our previous
work (Khomh et al., 2009). They also proposed algorithms and a
platform to automatically convert rule cards into detection algo-
rithms (Moha et al., 2010b). They were able to identify all existing
occurrences of four antipatterns: Blob, Functional Decomposition,
Spaghetti Code, and Swiss Army Knife, with 100% recall at the
expense of precision, between 41% and 88%, average 60%. Their
detection approach addressed issues 4, 5, 6 but does not handle the
uncertainty for the results, issue 1. It does not provide ranked list
of candidates, issue 2, and cannot learn from the quality analysts’
interpretations, issue 3.

Some visualisation techniques (Dhambri et al., 2008; Simon
et al., 2001) were used to find a compromise between fully auto-
matic detection approaches, which are efficient but which lose
track of the context, and manual inspections, which are slow
and subjective (Langelier et al., 2005). However, none of them
addressed issues 1 and 2. Other approaches perform fully automatic
detection and use visualisation techniques to present the detec-
tion results (Lanza and Marinescu, 2006; van Emden and Moonen,
2002). These approaches do not handle uncertainty and long lists,
issues 1 and 2. They also do not consider quality analysts’ interpre-
tations and thresholds, issues 3 and 4.

Most previous approaches are based on rules that make rigid
Boolean decisions as to whether or not a class is an antipattern.
These rules do not provide the uncertainty of their decisions,
e.g., a probability. Furthermore, they do not provide a way to
leverage past results to improve their detection performance in pre-
cision and recall. Regarding the six issues and previous approaches,
Table 2 summarises their strengths and weaknesses.

Issue 3 Issue 4 Issue 5 Issue 6
√ √ √
√ √ √

√ √
√ √ √

√ √
√

√ √ √
√ √ √

√
√
√ √ √
ased Bayesian approach for the detection of antipatterns. J. Syst.

2.4. Discussion

BBNs have been successfully used to model uncertainty in fields
as diverse as risk management (Cowell et al., 2007), medicine

dx.doi.org/10.1016/j.jss.2010.11.921
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Table 2
GQM applied to Spaghetti Code.

Goal: Identify Spaghetti Code
Definition: Code that does not use appropriate structural mechanisms
Q1 Does the class have long methods? M1 maximum LOCs in methods is high
Q2 Does the class have methods with M2 # methods with no parameters is high
no parameters?
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Q3 Does the class use global variables? M3 # globa
Q4 Does the class not use polymorphism? M4% of non
Q5 Are the names of the class M5 check n
indicative of procedural programming? Calculate, M

Szolovitz, 1995), and computer science (Fenton and Neil, 2007).
e now discuss the benefits of BBNs over previous (semi-

automated approaches for antipattern detection.
First, previous approaches do not handle the uncertainty of

he detection process and, therefore, miss borderline classes,
.e., classes similar to antipatterns but “surfacing” slightly above
r “sinking” slightly below the antipatterns-related thresholds
ecause of minor variations in the characteristics of these classes.
hus, quality analysts would not have any information about
lasses below the thresholds or too much information from classes
ust above the thresholds, which relate to issue 1. To help address
ssue 1, we propose the use of BBNs, whose outputs are the probabil-
ties that classes exhibiting the symptoms of some antipatterns are
eally such antipatterns. With such probabilities, a quality analyst
oes not need to take “binary” decisions about classes by ranking
lasses according to their probabilities; hence, BBNs also address
ssue 2.

Second, a BBN can be trained on past results, which have been
alidated by quality analysts and obtained in the context of a given
et of programs. They can also work with missing data and allow
uality analysts to specify explicitly their decision process. When
ata is unavailable or must be adapted to a different context, an
nalyst can encode her judgement into the BBN. In the context of
ntipattern detection, this encoding is important because there are
sually only a few antipattern instances in a program; hence, a
atabase of instances would be generally too small for other tech-
iques to learn automatically while the literature contains many
uality analysts’ judgements on antipatterns. Consequently, BBNs
ddress issues 3, 4, and 5.

Although BBNs address most of the issues of previous
pproaches, there are other techniques capable of modelling
ncertainty: machine learning techniques and statistical models.
owever, these techniques and models must be trained on large
mounts of tagged data to be effective (each datum describing the
nputs and a correct output). This reliance on tagged data limits the
pplicability of these approaches in an industrial context because
1) organisations rarely keep track of previously detected antipat-
erns, (2) there are no large public databases containing instances of
ntipatterns, and (3) antipatterns are relatively infrequent in pro-
rams, thus constituting a corpus is costly. Consequently, these
echniques and models are not easily and directly applicable to
ntipattern detection. Furthermore, these types of techniques and
odels use black-box processes unsuitable for quality analysts who
ant to encode their knowledge in the process.

BBNs, by their very construction, also embed the uncertainty of
he quality analysts that provided the instances of antipatterns on
hich to train the BBNs. Thus, as previous approaches, they depend

n the quality analysts’ understanding of the antipatterns and on
he agreement of the analysts over a set of instances of the antipat-
erns. On the one hand, BBNs thus encode the peculiarities of a
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

evelopment context and provide occurrences that are more rel-
vant to some analysts than a “generic” approach. On the other
and, the quality analysts could encode their particular knowledge
hat would lead the BBNs to report occurrences that would look
rroneous to a third party. We carefully craft oracles in our experi-
ble access is high
morphic method calls is high
Process, Init, Exec, Handle,
. (terms used in Moha et al. (2010a))

ments, as explained in Section 4.5, and make these oracles available
on-line for further validation and reuse.

3. BDTEX

This section details what are BBNs and introduces BDTEX to
build BBNs for antipattern detection without the support of rules
from DECOR. It is illustrated using the example of the Blob.

3.1. Bayesian Belief Networks

A BBN is a directed, acyclic graph that represents a probability
distribution (Pearl, 1988). In this graph, each random variable Xi is
denoted by a node. A directed edge between two nodes indicates a
probabilistic dependency from the variable denoted by the parent
node to that of the child. Therefore, the structure of the network
denotes the assumption that the values of each node Xi in the net-
work are only conditionally dependent on its parents. Each node
Xi in the network is associated with a conditional-probability table
that specifies the probability distribution of all of its possible values,
for every possible combination of values of its parent nodes.

A BBN is a classification function (classifier) f : Rd �→ C that
assign a label from a finite set of classes C ={c1, . . ., cq} to
observations a ∈ Rd. Antipattern detection can be viewed as a classi-
fication problem where there are two possible outputs for a given
object-oriented class:C={antipattern, not an antipattern} given an
observation (a1, . . ., ad), a vector of inputs describing a class.

For each classification, there is a probability that the detection
result is correct, which corresponds to its degree of uncertainty. It
classifies a d-dimensional observation ai by determining its most
probable class c:

c = argmaxckp(ck|a1, . . . , ad)

where ck ranges over C and the observations ai are written as a
vector of dimension d. By using the rule of Bayes, the probability
p(ck|a1, . . ., ad), called a posteriori probability, is rewritten as:

p(a1, . . . , ad|ck)∑q
h=1p(a1, . . . , ad|ch)p(ch)

p(ck).

When assuming that, given a ck, all observations are condition-
ally independent, the BBN structure is drastically simplified. The
BBN is then a naive Bayes classifier and its common form of a
posteriori probability is:

p(ck|a1, . . . , ad) =
∏d

j=1p(aj|ck)
∑q

h=1

∏d
j=1p(aj|ch)p(ch)

p(ck). (1)

The p(ck) marginal probability (Fenton and Neil, 1999) is the
ased Bayesian approach for the detection of antipatterns. J. Syst.

probability that an object-oriented class be a ck ∈ C. The p(aj|ck)
prior-conditional probability is the probability that the jth obser-
vation assumes a particular value mj given ck. These two prior
probabilities determine the structure of the BBN. They are learned,
i.e., estimated, on a training set when building the classifier.

dx.doi.org/10.1016/j.jss.2010.11.921
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The resulting BBN is thus a simple structure (Duda and Hart,
973) that has (1) the classification node as the output node, to
hich is associated a distribution of marginal probabilities, and (2)

he input nodes as leaves, each of them associated with q distribu-
ions of prior-conditional probabilities.

A quality analyst needs two pieces of information to build such
BBN: the structure of the network, in the form of nodes and arcs

causal relations), and the conditional-probability tables describ-
ng the decision processes between each node. By structuring the
etwork, the quality analyst ensures that the decision process is
alid. The conditional probabilities can be learned using historical
ata or entered directly by the quality analysts when data is miss-

ng. The structure ensures the qualitative validity of the approach
hile appropriate conditional tables ensure that the BBN is well-

alibrated and is quantitatively valid. The structuring can be done
ystematically using our GQM methodology.

.2. GQM methodology

In our previous work (Khomh et al., 2009), we depended on
he rule cards provided by the DECOR approach to obtain BBNs to
etect antipatterns. This approach had two limitations: the limited
xpressiveness of the rules cards (in particular the available oper-
tors) and the composition of sub-rules into rules, which led to too
any intermediate nodes in the BBNs. These intermediate nodes

ut additional constraints on the corpus to calibrate the BBN. These
wo limitations impeded the practical applicability of the approach.

Consequently, we propose the use of the Goal Question Met-
ic (GQM) methodology introduced by Basili and Weiss (1984) to
xtract information from the antipattern definitions and build BBNs
or their systematic detection, without relying on rule cards. The
QM is a good fit for this problem because it is relatively simple to
ap different parts of antipatterns to goals, questions and metrics.

urthermore, it is the most widespread methodology and does not
ave a steep learning curve.

The GQM defines a measurement model on three levels:

Conceptual level/goal: A goal is defined for an object for some
reasons, with respect to some quality
models, from different points of view,
and in a given context. In this paper,
our goal is to retrieve occurrences of
some antipattern (one per BBN) in
some programs, developed within a
given context.

erational level/question: A set of questions is used to define
models of the object and then charac-
terise the assessment or achievement
of a specific goal. In this paper, our
questions relate to the symptoms of
the antipatterns to be detected, i.e.,
code smells.

uantitative level/metric: A set of metrics is associated and
used to answer every question in
a measurable way. We derive from
our questions the metrics necessary
to answer them. In this paper, we
focus on the metrics and combinations
thereof required to detect classes with
the symptoms identified in the ques-
tions.
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

After completing these three first steps for an antipattern, we
btain a BBN for that antipattern. The input nodes of this BBN cor-
espond to the symptoms obtained at the operational level while
he output node is the probability of a class being an antipat-
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tern (goal). Metric extraction is done independently from the
BBN.

The context of a program can have an effect on how an
antipattern will manifest itself. Therefore, BDTEX introduces two
additional steps to adapt a BBN to a given context. First, some ques-
tions might be useless for a given context; they can be identified
manually by a quality analyst or by applying a statistical test. This
step is discussed in Section 4. Second, a BBN can be calibrated using
past data when available using Bayes’ theorem.

3.3. Running example

The application of BDTEX to build a BBN to detect occurrences of
the Blob antipattern is illustrated in Fig. 1. Following BDTEX, we first
identified the measurement goal at the conceptual level: our goal
is to recover occurrences of the Blob antipattern. To operationalise
this goal, we asked questions that could characterise the design of
the program analysed and identify symptoms of the Blob like “Is
the class a large controller?”. Finally, at the quantitative level, we
identified metrics that can provide answers to the questions. For
example, large classes are measured using the NMD and NAD met-
rics (Number of Methods Declared and Attributes, respectively).
Following Riel’s heuristic, controller classes are detected by their
names or those of their methods, which must contain terms indica-
tive of procedural programming, e.g., Process or Control. BDTEX led
naturally to a hierarchical tree structure for the BBN to maintain the
relations among goals, questions, and metrics, as shown in Fig. 2.
Once the structure of the BBN and the metrics are obtained, we can
compute the probability distributions of each node.

Input nodes: To compute the probability distributions of the
input nodes (symptoms), we first discretised metrics values into
three different levels: “low”, “medium”, and “high”. We used a
box-plot to perform the discretisation. A box-plot, also known as
a box-and-whisker plot, is used to single out the statistical partic-
ularities of a distribution and allows for a simple identification of
abnormally high or low values. Fig. 3 illustrates the box-plot and
the thresholds that it defines: LQ and UQ correspond respectively
to the lower and upper quartiles that define thresholds for outliers.

For each class in a system, and each symptom, the probability
that the class presents the symptom is computed as follows:

• For symptoms captured by metric values, the probabilities are
calculated as follows: we use three groups (“low”, “medium”,
“high”) and estimate the probability that a quality analyst would
consider the metric values as belonging to each group. Limiting
the number of groups to three simplifies the interpretation of the
detection results. For each metric value, the probability is derived
by calculating the relative distance between the value and its sur-
rounding thresholds. The probability is interpolated linearly as
presented in Fig. 3.

• For symptoms characterised by lexical properties describing class
names, probabilities are either 0 or 1, whether the name con-
tains a term or not. For method names, we treated the number of
methods containing the term as a metric and used the box-plot
to interpolate a probability.

• For symptoms that determine the strength of relations, the prob-
abilities are calculated using the numbers of such relations, (e.g.,
the number of data classes with which a class is associated). The
more a class is associated to data classes, the more likely it is
a Blob. Data classes are identified using the 90% accessor ratio.
To convert this count to a probability distribution, its value is
ased Bayesian approach for the detection of antipatterns. J. Syst.

interpolated between 0 and N where N is the upper outlier value
observed in the program.

Output nodes: The probability of the output node is inferred
from the probabilities of input nodes using Bayes’ theorem. Every

dx.doi.org/10.1016/j.jss.2010.11.921
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Goal

Q1 Q2 Q3 Q4

1-Conceptual level
Goal: recover Blob antipattern

2-Operational level
Q1: is the class a large class?
Q2: is the class a controller class?
Q3: does the class have too many 
responsibilities?
Q4: does the class depends on data
classes?

M1 M2 M3 M4

3- Quantitative level
M1: NMD + NAD is very high.
M2: class name or it's method 
names contain terms indicative 
of  procedural programming.
M3: LCOM5 is very high.
M4: class contains more than 90%
of  accessor methods.

                 GQM

4- Refinement of the obtained BBN
Correlation and regression analysis to select interesting nodes.
Inclusion of  quality analysts knowledges and interpretation.

5-Training of the BBN
Training the model on manually-validated data.

Fig. 1. BDTEX applied to the detection of the Blob antipattern.

Fig. 2. Bayesian Belief Network for the detection of the Blob antipattern.

Fig. 3. Probability interpolation for metrics.

dx.doi.org/10.1016/j.jss.2010.11.921
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Table 3
GQM applied to Functional Decomposition.

Goal: Identify Functional Decomposition
Definition: Object-oriented code that is structured as function calls
Q1 Does the class use functional names? M1 same as Q5, in Table 2
Q2 Does the class use object-oriented mechanisms M2 NMO > 0 or DIT > 1
no parameters?

3% of i
th fun
4 NMD
5% of p

o
d
o
M
t
P
P
n
C

4

f

R

R

4

i
a
u
v
m
a
l
p
m

4

n
a
d
s
e
u
t
p
B
m

4

t
d
b
t

iments: GanttProject v1.10.2, Xerces v2.7.0, presented in Table 4.
GanttProject1 is a tool for creating project schedules by means
Q3 Does the class use classes with M
functional names? wi
Q4 Does the class declare a single method? M
Q5 Are all the class attributes private? M

utput node has a conditional probability table to describe the
ecision given a set of inputs. In our example, the probability
f a class being a Blob depends directly on the two symptoms:
ainClass and DataClass. We can use previously tagged data to fill

he conditional probability table with P(Blob|MainClass, DataClass),
(Blob|MainClass, ¬ DataClass), P(Blob| ¬ MainClass, DataClass), and
(Blob| ¬ MainClass, ¬ DataClass). The node MainClass is an output
ode depending on three input nodes: LowCohesion, LClass, and
ontrollerClass.

. Experiments

We now perform experiments to validate some BBNs obtained
rom BDTEX and to answer the two following research questions:

Q1: To what extent a BBN built using our approach is able detect
antipatterns in a program?

Q2: Are the results of a BBN built using our approach better than
those of a state-of-the-art approach, DECOR?

.1. Preliminary

The goal of our experiments (Basili and Weiss, 1984) is to
mprove the quality of programs by improving the detection of
ntipatterns. Our purpose is to provide an approach to support
ncertainty in antipattern detection. The quality focus is to pro-
ide a sorted set of occurrences of antipatterns that prioritise the
ost probable candidate classes. The perspective is that of quality

nalysts, who perform evaluation activities and are interested in
ocating parts of a program that need improvements with the least
ossible efforts. The context of our study is both development and
aintenance.

.2. Answering the research questions

To answer RQ1, we studied the accuracy of our BBNs in two sce-
arios. First, we assumed that there is historical data available for
given program (e.g., manually validated instances of Blob). This
ata was used to calibrate a BBN, which was then applied on the
ame program and the returned occurrences compared with the
xpected instances. Second, we studied the accuracy of our BBNs
sing heterogeneous data: we calibrated the BBNs using antipat-
ern instances from one program and applied them on another
rogram. This setup was used to answer RQ2, we show that our
BNs produced equivalent or better results than DECOR while being
ore flexible.

.3. Building the BBNs
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

We focus on three antipatterns: Blob, Functional Decomposi-
ion, and Spaghetti Code to answer our research questions, whose
efinitions are recalled in Table 1. We chose these antipatterns
ecause they are well-known and have been used in the litera-
ure to perform other experiments, in particular in the previous
nvocations to classes/methods
ctional names (like Q1)
= 1
rivate attributes = 100%

work by Moha et al. (2010a) against which we will compare our
approach. We also choose them because it is possible to detect their
occurrences using structural data, unlike other antipatterns, such
as Poltergiest, which describes short-lived objects in the execu-
tion of programs. Finally, we select only three antipatterns because
building oracles for all structural antipatterns would require a
tremendous amount of manual work and is, therefore, future work.

We now present the BBNs corresponding to the chosen antipat-
terns obtained by applying BDTEX. We detail the Blob as our
running example:

• Conceptual level (goal): Identify occurrences of the Blob antipat-
tern, defined as classes that do or know too much.

• Operational level (question): Following the definition of the Blob
in the literature (Brown et al., 1998), the symptoms to look for
when identifying Blobs are: large, controller classes, with too
many responsibilities and depending on data stored in surround-
ing data classes. These symptoms yield the following questions:
Q1 Is the class a large class? Q2 Is the class a controller class? Q3
Does the class have too many responsibilities? Q4 Does the class
depend on data classes?

• Quantitative level (metric): To answer Q1, we consider that a
large class is a class that declares a very large number of fields
and methods; structural property captured by the NMD and NAD
metrics (Number of Methods/Attributes Declared). To identify a
controller class, Q2, we look for a class that monopolises most of
the processing done by a (part of a) program, takes most of the
decisions, and directs the processing of other classes (Wirfs-Brock
and McKean, 2002). We also use Riel’s heuristic to identify con-
troller classes using names of classes or methods, such as Process,
Control, Manage, System. We use weak cohesion measured using
the LCOM5 metric to answer Q3. To answer Q4, we count the
number of associations to data classes as identified by the detec-
tion strategy defined in DECOR (Moha et al., 2010a) and include
this count in the form of a dedicated metric, NoDC.

We summarise in Tables 2 and 3 the application of BDTEX to
the Functional Decomposition and Spaghetti Code antipatterns. The
questions describe the symptoms presented in Brown et al. (1998).
Symptoms that were not detectable directly from the code were
omitted. In the tables, NMD, NMO, and DIT respectively stand for
the numbers of methods declared, of methods overridden, and the
depth of the inheritance tree.

4.4. Choosing the programs

We used two open-source Java programs to perform our exper-
ased Bayesian approach for the detection of antipatterns. J. Syst.

of Gantt charts and resource-load charts. GanttProject enables
breaking down projects into tasks and establishing dependencies

1 AAA http://ganttproject.biz/index.php.

dx.doi.org/10.1016/j.jss.2010.11.921
http://ganttproject.biz/index.php


ARTICLE ING Model
JSS-8619; No. of Pages 14

8 F. Khomh et al. / The Journal of Systems

Table 4
Program statistics.

Programs #Classes KLOCs

GanttProject v1.10.2 188 31
Xerces v2.7.0 589 240
Total 777 271

Table 5
Manual identification of instances of the antipatterns: # of classes per vote count.

Programs # Blobs # S.C. # F.D.
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3–4 votes 5 votes 3–4 votes 5 votes 3–4 votes 5 votes

GanttProject v1.10.2 4 4 7 4 13 5
Xerces v2.7.0 29 15 23 18 15 0

etween these tasks. Xerces2 is a family of software packages for
arsing and manipulating XML. It implements a number of stan-
ard API for XML parsing, including DOM, SAX, and SAX2. Other

mplementations are available for C++, and Perl.
We chose GanttProject and Xerces because they are of medium

ize, yet are small enough to manually locate antipatterns. Instance
f the three antipatterns were manually detected to form an ora-
le of known antipatterns. This manual process is described in the
ollowing section. All metrics and properties required to detect
ntipatterns are extracted using the framework (Gueheneuc et al.,
004).

.5. Building the oracles

Before applying the BBNs to answer the research questions, we
uilt oracles of manually validated instances of the three antipat-
erns on the two programs to serve as oracles in the experiments. To
he best of our knowledge, these oracles are among the few exist-
ng and we make them available on-line3 to help other researchers
nterested in antipattern detection.

To build the oracles, we asked four undergraduate students
nd three graduate students to identify occurrences of the three
ntipatterns in the two programs. Undergraduate students per-
ormed the task in pairs to follow previous results (Ricca et al.,
008) hinting that the performance of a pair of undergraduate stu-
ents is about the same as that of one graduate student, which gave
s confidence on the instances of the antipatterns reported by the
ndergraduate students and, thus, freed us from redoing their work
o confirm their findings.

The students were presented with examples of several antipat-
erns. Then, each student/pair analysed every class of the programs
ystematically to answer the boolean question: “Is this class a Blob
Functional Decomposition or Spaghetti Code, respectively)?”. We
ndependently combined their votes such that if at least three of
he five students/pair considered a class an antipattern, then we
agged it as a true occurrence, i.e., an instance of the antipattern. The
umber of identified instances is reported in Table 5. In both pro-
rams, there is often conflicting opinions on what is an occurrence
f an antipattern. These conflicts are most apparent for Functional
ecomposition because the developers’ intent is more important

or that antipattern than for either the Blob or the Spaghetti Code.
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

.6. Calibrating the BBNs

In our experiments, we divided the oracles in two groups:
ne was used to calibrate the BBNs and the other to assess their

2 AAA http://xerces.apache.org/.
3 AAA http://www.ptidej.net/downloads/experiments/jss10/.
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results. The calibration of a BBN is the evaluation of the conditional-
probability tables that describe the probabilities of having an
occurrence of an antipattern given a combination of input values.

Using the known instances of the three antipatterns, we com-
puted the conditional probabilities using the Weka machine
learning framework (Witten and Frank, 1999). The framework
found, for every combination of inputs, the probabilities of a given
output. To calibrate a BBN, Weka needs nominal inputs. We consid-
ered any input with a probability of 1 as “high” whereas any other
value is “low” to obtain the nominal training dataset.

Given the relatively large number of inputs (symptoms) in our
oracles and the small number of instances, we applied “boot-
strapping” to improve the calibration. We counted every tagged
antipattern proportionally to the number of votes in its favour.
For a class considered as an antipattern by four out of five stu-
dents/pairs, we duplicated the structure of this class four times
in the corresponding oracle. Thus, a class from an oracle is con-
sidered three, four, and five times respectively according to the
number of votes it received. This bootstrapping has the advan-
tage of increasing the weight of classes with high consensus
and also the size of positive data with which our BBNs are cali-
brated. Moreover, this increase in the weight of the structure of
classes with higher numbers of votes should improve the likeli-
hood that our BBNs return classes with a structure similar to the
antipatterns with high probabilities. We completed the calibra-
tion using randomly selected classes without the corresponding
antipatterns, a number of classes equal to the number of classes
with the antipatterns. Having a balanced data set helps us avoid
the negative effect skewed data has on predictive models (Provost,
2000).

4.7. Performing the experiments

Our experiments were divided in two scenarios, each cor-
responding to a research question. In different programs and
scenarios, different symptoms might be more important than oth-
ers. Therefore, for each scenario, we used the available data to adapt
the BBNs. The adaptation will consist of identifying the symptoms
that are not discriminating between classes that are antipatterns
and those that are.

4.7.1. Scenario 1: using local data to calibrate a BBN
In this first scenario, we studied how instances of antipatterns in

a program can be used to identify occurrences of these antipatterns
in the same program. To avoid overfitting the BBNs, we performed a
3-fold cross-validation, which required a BBN to be executed three
times using different parts of the oracles. The oracles are split into
three equal-sized groups and every execution uses two groups for
calibrating and one for testing.

For every input, we tested if the proportion of antipatterns con-
taining the symptom was the same as that of non-antipatterns.
When the symptom was discriminant and positively related to
the antipattern, it was retained; otherwise, it was eliminated. The
different symptoms with their respective p-values are presented
in Table 6. Symptoms that are statistically but negatively related
have their p-value struck through. Table 6 shows that only a few
symptoms are relevant for every antipattern.

To determine whether or not a class is a Blob, we can rely only
on its size (Q1) and on its use of data classes (Q4). We cannot rely on
names as they seem to be context-specific and anecdotal. Finally,
the Blobs were always relatively cohesive. The identification of the
ased Bayesian approach for the detection of antipatterns. J. Syst.

Functional Decomposition and Spaghetti Code antipatterns can rely
only on a few symptoms. The influence of method size is useful for
the Spaghetti Code as is naming and the use object-oriented mecha-
nisms for Functional Decomposition. The importance of most other
symptoms depends on the program. This dependence shows that a

dx.doi.org/10.1016/j.jss.2010.11.921
http://xerces.apache.org/
http://www.ptidej.net/downloads/experiments/jss10/
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Table 6
Intra project validation, salient symptom identification.

Antipatterns Symptoms % in
GanttProject

p-Values % in Xerces p-Values

AP Not AP AP Not AP

Blob

Q1 100% 4% 0* 94% 3% 0*

Q2 0% 7% 5% 1% 53%
Q3 0% 26% 0% 19%
Q4 72% 8% 0* 63% 48% 0.01*

S.C.

Q1 100% 6% 0* 89% 6% 0*

Q2 49% 3% 0* 19% 10% 0.70
Q3 38% 4% 0.01* 12% 2% 0.19
Q4 0% 44% 27% 49%
Q5 0% 2% 36% 18% 0.01*

F.D.

Q1 75% 47% 0* 87% 18% 0*

Q2 70% 39% 0* 60% 19% 0*

Q3 6% 8% 0.93 67% 26% 0*

Q4 63% 17% 0* 7% 8% 0.92
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Q5 6% 4% 87% 0 3%
Q6 75% 35% 0* 33% 57% 0.07

* p-values < 0.05.

eneral BBN could take into account the main symptoms and then
e enhanced using context-specific symptoms.

All the results for the intra-project validation are presented in
ig. 4. Each sub-figure shows the average precision/recall curves
or each combination of antipattern/program. The identification of
lob and Spaghetti Code is accurate with few false positives. We
ssume that this accuracy is due to the notions of size, which are
ery important symptoms. Size is one of the few concepts that
an be measured precisely unlike the indirect symptoms used to
dentify the developers’ intent, like object-oriented mechanisms,
or Functional Decomposition.

.7.2. Scenario 2: inter program validation
In this second scenario, we assumed that a quality analyst has

ccess to historical data from another program. She would therefore
alibrate the BBNs using this data and apply the BBNs on her other
rogram.

As shown in Table 7, the usefulness of most symptoms does not
ross program boundaries, we therefore used the intersection of
alid symptoms. For the Spaghetti Code, this intersection is limited
o one symptom, thus we also included the use of global variable
o identify its occurrences.

The results of the BBNs are presented in Fig. 5. Unlike the intra-
roject validation were we computed precision and recall for all the
orpus (3+ votes), we chose here to present results for unambigu-
us instances of antipatterns (5 votes) as these are the results that
ould most likely satisfy any quality analyst. The exception is for

unctional Decomposition on Xerces because it had no instances
ith 5 votes. For that program, we computed the precision and

ecall for instances with 3+ votes.
The BBN of the Blob identified all the instances of this antipat-

ern requiring the inspection of a candidate set half the size of
hat of DECOR. For Spaghetti Code, the inclusion of global variables
dversely affected the BBN ability to identify occurrences of that
ntipattern in Xerces, but for GanttProject in which the instances
ound were the same. Finally, the Functional Decomposition BBN
roduced mixed results: good precision and recall for Xerces; the
ve top occurrences correctly for GanttProject.

These are promising results because they suggest that even in
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

he absence of historical data on a specific program, a quality ana-
yst can use a BBN calibrated on different programs and obtain
cceptable precision and recall. These results also show that a BBN
ould be built using data external to a company and then be adapted
nd applied in this company successfully. These BBNs could also be
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enriched with locally salient symptoms to further improve their
accuracy.

4.8. Comparing with DECOR

The results of rule-based detection approach is a set of candidate
classes suggested to quality analysts for correction or improve-
ment. A quality analyst would have to either validate the whole
candidate set or choose to inspect a subset without any indication
on which classes to review first, because there is no order in the
results. BBNs provide probabilities that candidate classes are occur-
rences of some antipatterns, which can help prioritise inspections.

Therefore, we used the Rank-Biased Precision (RBP) metric
introduced by Moffat and Zobel (2008) to measure and compare the
effectiveness of our BBNs DECOR. RBP has been demonstrated to be
a better measurement tool than precision or recall-based metrics
(Moffat and Zobel, 2008). Moreover, this metric reflects the satis-
faction of a quality analyst in absolute terms. RBP assumes that a
quality analyst always starts by examining the top-ranked classes
of a list of candidates classes, progressing from one class to the
next with a probability p, and, conversely, end her examination
of the ranking at a point with probability 1 − p. Each termination is
decided independently of the current depth reached in the ranking,
of previous decisions, and of whether or not the class just examined
was relevant or not.

RBP also assumes that, as a quality analyst skims through candi-
date classes, they are willing to pay $1 for each true positive found,
but nothing for false positives. This assumption leads to a notion of
income for detection approaches, based on the utility gained by the
quality analysts. As the quality analysts progress down the ranked
lists of candidate classes, they are thus running up an account with
the detection technique, or, equivalently, increasing their total util-
ity every time they find a true positive. The total expected utility
derived by the quality analyst (RBP), and the income payable to the
detection technique, are given by:

RBP(p) = (1 − p)
d∑

i=1

rip
(i−1)

where ri ∈{0, 1} is the relevance judgement of the ith ranked class
(which is 1 if the class is a true positive and 0 otherwise), d is the
length of the list, and the (1 − p) factor is used to scale the RBP
within the range [0,1].

Table 7 presents the results of the comparison of our BBNs
with DECOR. For all the three antipatterns: Blob, Spaghetti Code
and Functional Decomposition, and for three categories of qual-
ity analysts: impatient (p = 0.5), patient (p = 0.8), and very patient
(p = 0.95), the satisfaction of quality analysts appeared to be always
higher for BBNs than for DECOR except for the Spaghetti Code on
Xerces. The exception of the Spaghetti Code is caused by the adverse
impact of global variables on the precision of the corresponding
BBN, as discussed previously in Section 4.7.2.

5. Discussion

We now discuss the experiments and the use of BDTEX by qual-
ity analysts based on the results of the experiments.

5.1. Using BBNs in an industrial context
ased Bayesian approach for the detection of antipatterns. J. Syst.

We showed that our BBNs are able to efficiently prioritise candi-
date classes that should be inspected by a quality analyst, using the
RBP metric. The BBNs, built using BDTEX and calibrated using exter-
nal data, can successfully identify occurrences of antipatterns. The
programs were of different nature (a parser library vs. a full-fledged

dx.doi.org/10.1016/j.jss.2010.11.921
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Fig. 4. Intra-project calibration: average precision and recall.

Table 7
Comparison of the utility of BBN vs. DECOR.

Programs Antipatterns p = 0.5 p = 0.8 p = 0.95

BBN DECOR BBN DECOR BBN DECOR

GanttProject
Blob 0.36 0.18 0.4 0.26 0.17 0.15
S.C. 0.38 0.1 0.34 0.16 0.13 0.1
F.D. 0.48 0.12 0.55 0.2 0.26 0.13

Xerces
Blob 0.2 0.17 0.41 0.27 0.39 0.29
S.C. 0.12 0.29* 0.18 0.47* 0.2 0.54*
F.D. 0.23 0.21 0.44 0.33 0.33 0.29

dx.doi.org/10.1016/j.jss.2010.11.921
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Fig. 5. Intra-

UI) and developed by different development teams. Therefore,
uality analysts in their industrial contexts could build a repository
f antipatterns on a set of programs and use this data to calibrate
BNs and identify antipatterns in other programs. The customisa-
ion that we performed in the experiments was minimal, but in an
ndustrial context, it could be much more important.

.2. Estimating the number of occurrences of antipatterns
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

Estimating the number of occurrences of some antipatterns in
program is important to stop investigating spurious candidate

lasses. A well-calibrated BBN should be able to estimate this num-
er in a program.
Number of candidates

(f) F.D. – Xerces (calibration: Gantt)

t validation.

In practice, when quality analysts are confronted with long
ranked lists of candidates classes, they employ ad hoc methods to
reduce their efforts while improving their utility:

• They limit the manual validation to the top 20% of candidate
classes because Pareto’s law states that defects (in general) are
ased Bayesian approach for the detection of antipatterns. J. Syst.

located in only 20% of the code.
• They count the distance between every two true positive

and stop inspecting candidate classes as soon as this dis-
tance is greater than the average distance of all previous two
candidates.

dx.doi.org/10.1016/j.jss.2010.11.921
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Table 8
EclipseJDT: inspection sizes.

Antipatterns DECOR BDTEX

Blob 4% 0.2%
S.C. 14% 1.5%
F.D. 3% 2%

Table 9
JHotDraw: inspection size.

Antipatterns # Inspected classes

are precisely defined and can be easily quantified using met-
rics. Antipatterns like the Spaghetti Code, in the contrary, involve
abstract concepts in their definition and require to understand the
ARTICLEG Model
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We contribute to these effort-reduction methods by proposing
variant of RBP to compute a stop point at which the utility of a
uality analyst is maximal. In the previous section, we choose to
ssign $1 for each true positive and $0 for false positives. We now
ssign a cost c for false positives and, thus, RBP is now defined as:

BP(p) = (1 − p)
d∑

i=1

(ri�i + (1 − �i)(−c))p(i−1)

here ri ∈{0, 1} is the relevance judgement of the ith ranked class,
i is the probability provided by the BBN that the ith ranked class

s a true positive, d is the length of the list, and the (1 − p) factor is
sed to scale the RBP within the range [0,1].

The optimum of this new definition of RBP is reached as soon as
i ≤ (c/c + 1) at a rank i. Therefore, if a quality analyst values the cost
f her reviewing a false candidate to −$1, she should stop reviewing
andidate classes as soon as the probability of the candidates is
nder 0.5, because her maximal utility would then be reached.

The value of the RBP metric depends on the precision of the
BN. Therefore, we suggest that quality analysts apply this effort-
eduction method more than once. After reaching the stop point,
uality analysts should re-calibrate the BBN to improve its preci-
ion as well as the estimation of the stop point.

.3. Improving antipattern detection

There are different means with which a BBN could be adapted
o a context to further improved its accuracy. The first means is by
electing a different interpolation technique for metric values. In
ur experiments, we found that a significant number of classes have
quivalent probabilities of being an antipattern because p(high) = 1
s soon as a metric value is over the corresponding upper outlier
alue. In future work, we will investigate the use of higher thresh-
lds and perform a more complex interpolation to ensure that any
utlier value is flagged with a probability capturing its magnitude.

Another means would be to reconsider the method used to cal-
brate the BBNs. Weka required nominal data and, consequently,
he BBNs were less accurate than if they could take as input contin-
ous values. Building up a repository of instances of antipatterns
ill also help improve the size of the oracles and, thus, the precision

f the BBNs. In future work, we also plan to investigate the use of
egative rules as they could help improving the precision through
heir specification of false candidates to avoid.

.4. Applying BDTEX to other antipatterns

BDTEX is general and can be applied to detect other antipatterns
roviding that (1) the characteristics of classes with these antipat-
erns can be measured using metrics and (2) oracles of known
nstances of these antipatterns are available. Any structural antipat-
ern potentially satisfies the first condition. The second condition
s more difficult to satisfy because, to the best of our knowledge,
ur oracles of instances of Blob, Functional Decomposition, and
paghetti Code are the first of such freely available oracles.

.5. Scaling up to industrial programs

An issue with other detection approaches concern their appli-
ation to large programs. DECOR reports that it detects on Eclipse
significant part of its classes as antipattern candidates. Because
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

ECOR results are not ranked, this approach does not scale up: a
uality analyst would not know which are the worst of the hun-
reds of returned classes.

BDTEX produces ranked results and, at least in theory, should
ot be affected by such issues. We wanted to confirm this by apply-
Blob 1
S.C. 2
F.D. 0

ing our approach on the Eclipse JDT (over 3200 classes) and by
comparing the number of top ranked candidate classes with the
result set returned by DECOR. Eclipse JDT4 is a Java plug-in to Eclipse
providing a rich integrated development environment for Java.

There are significant differences in the number of returned
classes by our BBNs and by DECOR, as shown in Table 8. Following
our running example, we manually inspected the nine top-ranked
Blobs and found that 5/9 classes were antipatterns. For 2/9 of the
candidate classes, we could not reach a consensus as to whether
or not these classes were Blobs. The other 2/9 candidate classes
were clearly not Blobs. BDTEX is thus able to return only a limited
number of candidate classes with a high-level of precision: 55% for
unanimously classified Blob.

5.6. Dealing with good programs

Another issue with detection approach concerns their appli-
cation to “good” programs and the number of false positives.
Therefore, we applied the BBNs obtained from BDTEX on JHotDraw.
JHotDraw5 is a GUI framework for structured graphics (176 classes).
It was designed as a design exercise by object-oriented experts. It
is a good reference of a program that most likely does not contain
any occurrence of antipatterns.

Table 9 presents the numbers of classes that present all symp-
toms of the three antipatterns. These numbers indicate that only a
few candidate classes need to be inspected by quality analysts.

The reason why the BBNs return these false positives is the rela-
tive nature of our symptoms. For the detection of Blob and Spaghetti
Code, size is an important symptom. Even in a program with gener-
ally small classes (like JHotDraw), the BBNs identify those that are
relatively large.

It is possible for an organisation to impose global thresholds in
the detection process. In fact, if we had used the relative thresholds
values measured on Xerces and GanttProject to identify occur-
rences of the antipatterns in JHotDraw, there would have been no
candidate classes corresponding to the highest level of probability.

5.7. Classifying antipatterns

From the results presented in Section 4 and our experience
calibrating BBNs to detect antipatterns, we observed that their pre-
cision depends on the definition of the antipatterns. The BBNs yield
better precision for antipatterns like the Blob, of which symptoms
ased Bayesian approach for the detection of antipatterns. J. Syst.

developers’ intent. Automatically generated parsers for example

4 AAA http://www.eclipse.org.
5 AAA http://www.jhotdraw.org.

dx.doi.org/10.1016/j.jss.2010.11.921
http://www.eclipse.org/
http://www.jhotdraw.org/
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Mantyla, M., 2003. Bad smells in software—a taxonomy and an empirical study, Ph.D.
Thesis, Helsinki University of Technology.

Marinescu, R., 2004. Detection strategies: metrics-based rules for detecting design
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resent many symptoms of Spaghetti Code, i.e., large classes with
ong and complex methods but only a quality analyst can accurately
valuate them in the context of her program.

Consequently, we propose a classification of antipatterns into
hree types depending on the effort to map their definitions to auto-

atic detection approaches in general, and BDTEX in particular:

Type 1 antipatterns includes antipatterns which definitions are
precise enough to be expressed directly in terms of characteristics
of the source code. Most all the data required to identify occur-
rences of that type of antipatterns can be found in the code. Blob
and MisplacedClass are two examples of Type 1 Antipatterns.
Type 2 antipatterns are antipatterns which definitions include
the developers’ intent. This intent cannot be found by analysing
automatically the source code. Spaghetti Code and Functional
Decomposition are examples of antipatterns belonging to this
category. When considering if a class is an occurrence of Spaghetti
Code, in addition to finding the antipattern symptoms (long
methods with no parameters, use of global variables, etc.), the
quality analysts’ judgement is required to confirm potential can-
didates by separating those introduced by choice because they
are the best solution to a particular problem.
Type 3 antipatterns include antipatterns which presence can
only be confirmed when considering the evolution of the pro-
gram. This category stems from our experience specifying and
detecting antipatterns, no antipattern studied in this paper is
concerned by this category. ShotgunSurgery is such a Type 3
Antipattern: it requires analysing whether a change to a part of a
program required many other changes elsewhere.

. Conclusion

In this paper, we presented a GQM-based approach, BDTEX, to
ystematically build BBNs to detect occurrences of antipatterns
n programs. BDTEX provides a theoretically sound approach to
perationalise an abstract definition of an antipattern into a BBN
or its detection. Symptoms specifying antipatterns are selected
y a quality analyst, thus ensuring that the BBN is qualitatively
ound. Calibration is done automatically using Bayes’ theorem.
onsequently, BBNs have two main benefits with respect to pre-
ious approaches: they work with missing data and can be tuned
sing quality analysts’ knowledge. In addition, candidate classes,

.e., potential antipatterns, are associated with probabilities, which
ndicate the degree of uncertainty that a class is indeed an occur-
ence of some antipattern. These probabilities can help focus
anual inspection by ranking the candidate classes.
To validate BDTEX, we built the BBNs of the Blob, Func-

ional Decomposition, and Spaghetti Code, which are complex
ntipatterns requiring the evaluation of different sets of classes.
e performed a population test to retain only the most useful

ymptoms characterising their instances. The resulting BBNs were
alibrated and evaluated on two programs, GanttProject v1.10.2
nd Xerces v2.7.0, showing high precision and recall; these BBNs
uccessfully assigned high probabilities to candidate classes that
ere indeed occurrences of antipatterns. Finally, we also showed

hat, with one exception, the results of the BBNs obtained from
DTEX are superior to these of the state-of-the-art approach DECOR

n terms of precision, recall, and quality analysts’ utility.
We also provided an extensive discussion on the challenges,

trengths, and weaknesses of a BBN-based approach with a sys-
Please cite this article in press as: Khomh, F., et al., BDTEX: A GQM-b
Software (2011), doi:10.1016/j.jss.2010.11.921

ematic criteria-based comparison of the state-of-the-art. We also
iscussed the applicability and utility of BDTEX in an industrial con-
ext and proposed a classification of antipatterns into three types
epending on the effort needed to map their definitions to auto-
atic detection approaches.
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In future work, we plan to extend the validation of BDTEX to
other antipatterns from the literature. We will also improve the
computation of the probability distributions of the input nodes
by using continuous distributions and improving the interpola-
tion. We also plan to investigate the use of negative rules and
study other machine learning techniques, such as support vec-
tor machine. Finally, we will integrate in our quality Web portal,
SQUANER,6 a tool to support the usage of the proposed approach
so that it can be applied on any program to obtain antipattern
probabilities. This integration would also be useful to study the
classification of antipatterns by different quality analysts, depend-
ing on their agreement on the definitions of antipatterns and on
sets of reported occurrences.
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