
Analyzing Software Evolution and Quality by

Extracting Asynchrony Change patterns

Fehmi Jaafar1, Angela Lozanob, Yann-Gaël Guéhéneucc, Kim Mens1

aPolytechnique Montreal, Canada
bThe Software Languages Lab. Vrije Universiteit Brussel, Belgium

cPtidej Lab. Polytechnique Montreal, Canada
dThe RELEASeD group, Université catholique de Louvain, Belgium

Abstract

Change patterns describe two or more files were often changed together
during the development or the maintenance of software systems. Several
studies have been presented to detect change patterns and to analyze their
types and their impact on software quality. In this context, we introduced
the Asynchrony change pattern to describes a set of files that always change
together in the same change periods, regardless developers who maintained
them. In this paper, we investigate the impact of Asynchrony change pattern
on design and code smells such as anti-patterns and code clones.

Concretely, we conduct an empirical study by detecting Asynchrony change
patterns, anti-patterns and code clones occurrences on 22 versions of four
software systems and analysing their fault-proneness. Results show that
cloned files that follow the same Asynchrony change patterns have signifi-
cantly increased fault-proneness with respect to other clones, and that anti-
patterns following the same Asynchrony change pattern can be up to five
times more risky in terms of fault-proneness as compared to other anti-
patterns. Asynchrony change patterns thus seem to be strong indicators
of fault-proneness for clones and anti-patterns.

Key words: Change Patterns, Anti-patterns, Clones, Fault-proneness,
Software Quality

1. Introduction

A major concern of practitioners and researchers in software engineering
is extracting knowledge from software repositories. Such repositories enclose

Preprint submitted to Journal of Systems and Software February 6, 2017

a large amount of data on files and changes applied on these files. This
data includes the source code, comments about bugs and failures, modifica-
tions made to the different source code files, times of changes, developers’
identities, etc.

Such software repositories present a rich resource of data to discover mod-
els of software evolution and to quantify or predict the quality of a software
system. More specifically, they contain relevant data to spot co-changing
files, or to discover files that present a lower quality. Indeed, using data
extracted from software repositories, we can detect anti-patterns, i.e., pat-
terns that indicate weaknesses in software design and may affect the software
quality and maintainability [1], as well as clones, i.e., duplicated code that
may specify a poor or lazy programming style and may increase the risk of
unintentional incomplete changes and bugs [2]. In addition, we can detetct
change patterns, i.e., that highlight co-changing group of files [3]. Our previ-
ous studies analyzed independently the impact of anti-patterns [4, 5], clones
[6], and change patterns [7] on fault-proneness. In this study, we build on
these papers and we continue to investigate the impact of such patterns on
software evolution and quality.

Previous work [4, 5, 8, 9] has shown that such patterns could be related
to each other. In addition, we have described [7] the Asynchrony change
pattern to define co-change relations between related files in the source code.
We reported that the detection and analysis of such relations may allow us
to detect critical fragments of software systems that represent sets of more
risky files in terms of fault-proneness. Special attention must thus be given
to these co-change relations to keep the design in good shape.

Therefore, the aim of this paper is threefold: first, we investigate whether
co-occurrences of anti-patterns and Asynchrony change pattern may increase
the fault-proneness of files. Second, we investigate whether clones following
Asynchrony change pattern are more fault-prone than others. Third, we
analyze the intersection between anti-patterns and clones.

Using occurrences of Asynchrony change patterns, anti-patterns, and
clones extracted from two open-source systems, we answer the following re-
search questions:

• RQ1: What is the impact on fault-proneness when a file participates
both in anti-pattern occurrences and Asynchrony change pattern occur-
rences?

2

• RQ2: What is the impact on fault-proneness when a file participates
both in clones and Asynchrony change pattern occurrences?

• RQ3: What is the fault-proneness of files that participate in anti-
patterns and clones?

We observed that, in four open source systems analysed in this study,
files participated in Asynchrony change patterns are more fault-prone if they
belong to clones or anti-pattern occurrences. In addition, we found that
classes presenting co-occurrence of anti-patterns and clones are at least six
times more risky to occur faults than the rest of classes.

The remainder of this paper is organized as follows. Section 3 presents our
methodology. Section 4 describes the empirical study. Section 5 presents the
results of the study, while Section 6 discuss the threats to validity. Section 2
relates our study with previous work. Finally, Section 7 concludes the paper
and outlines several avenues for future work.

2. Related Work

During the past years, different approaches have been developed to ana-
lyze the evolution of the quality of software systems, in particular, specifying
change patterns, detecting anti-patterns, spotting code clones, and analyzing
their impact on fault proneness. This section discusses some of the literature
that aims at investigating these problems.

2.1. Change patterns

Ying et al. [10] and Zimmermann et al. [11] applied Association Rules to
identify co-changing files. An association-rule algorithm extracts frequently
co-changing files of a commit into sets that are regarded as change patterns to
guide future changes. Such an algorithm uses co-change history in a version
control system and avoids a source code dependent parsing process.

Ceccarelli et al. [12] and Canfora et al. [13] proposed the use of a vector-
based auto-regression model, a generalisation of univariate auto-regression
models, to capture the evolution and the inter-dependencies between multi-
ple time series representing changes to files. They used the bivariate Granger
causality test to identify if the changes to some files are useful for forecast-
ing changes to other files. They concluded that the Granger test is a viable
approach to change impact analysis and that it complements existing ap-
proaches like Association Rules to capture co-changes.

3

Bouktif et al. [3] defined the general concept of change patterns and
described one such pattern, Synchrony, that highlights co-changing groups
of artefacts. Their approach used a Sliding Window algorithm as in [11] to
build Synchrony change pattern occurrences.
Discussion:

In our previous work [7], we showed that several approaches could find
files having very similar maintenance evolution history, but they could not
detect co-changed files maintained by different developers or in separated
periods of time, which could lead to missed co-changing files and change
propagation scenarios. Indeed, using Macocha, we are able to detect the
Asynchrony change pattern occurrences that provide an in-depth information
about co-changing files to developers that help in explaining bugs, managing
development teams, and performing traceability analysis. In this paper, we
study the impact of being of part of an the Asynchrony change pattern
occurrence for clones and anti-patterns.

2.2. Anti-patterns Definition and Detection

Code and design smells are poor solutions to recurring implementation
and design problems. Indeed, several previous works [14][15] have been writ-
ten to specify them. Actually, code smells are indicators or symptoms of the
possible presence of design smells. In the following, we will present a set a
papers that relate the detection of code and design smells with the evaluation
of the quality of software systems.

Webster [14] reported that an anti-pattern describes a frequently used
solution to a problem that generates ineffective or decidedly negative con-
sequences. Brown et al. [16] presented 40 anti-patterns, which are often
described in terms of lower-level code smells. These books provide in-depth
views on heuristics, code smells, and anti-patterns aimed at a wide academic
and practitioners audience. They are the basis of all the approaches to detect
anti-patterns.

Van Emden et al. [17] developed the JCosmo tool, which parses source
code into an abstract model (similar to the Famix meta-model). JCosmo
uses primitive and rules to detect the presence of smells and anti-patterns.
It could visualize the code layout and display anti-patterns locations to help
developers assess code quality and perform refactorings.

Marinescu et al. developed a set of detection strategies to detect anti-
patterns based on metrics [18]. They defined history measurements which
summarize the evolution of the suspects parts of code. Then, they showed

4

that the detection of God Classes and Data Classes can become more accurate
using using historical information of the suspected flawed structures.
Discussion:

We share with all the above authors the idea that anti-patterns detec-
tion is a powerful mechanism to assess code quality, in particular to study
whether the existence of anti-patterns and their evolutions make the code
more difficult to maintain. In this paper we perform a study to analyse
co-change dependencies across anti-patterns to understand their impact on
fault-proneness. In our previous study [5], we reported the results of an
empirical study, performed on three object-oriented systems, which provides
empirical evidence of the negative impact of dependencies with anti-patterns
on fault-proneness. We found that having static relationships with anti-
patterns (such as use, creation, association, aggregation, and composition
relationships) can significantly increase fault-proneness. Indeed, we identi-
fied all the instances of the anti-patterns and design patterns of interest in
the different analyzed systems. Then, we detect the static relationships of
the classes in these instances with the rest of the classes. Thus, we assume
that an anti-pattern A has a static relationships with a class C if at least
one class belonging to A has a use, association, aggregation, or composition
relationships with C. We also found that classes having co-change depen-
dencies with anti-patterns are more fault prone than others. In this paper,
we continue to investigate the impact of specific source code motifs, such as
anti-patterns and change patterns, and we report new results that confirm,
within the limits of the threats to its validity, the conjecture in the literature
that anti-patterns have a negative impact on software system quality, espe-
cially when such anti-patterns follow the same Asynchrony change pattern
occurrence.

2.3. Software Clones Definition and Detection

As we defined in several previous works, a clone is a source code fragment
whose structure is identical or very similar to the structure of another code
fragment. Cloned code is a consequence of a frequent programming practice:
copying a piece of functionality and pasting it in another context where it
is adapted. Baker [19] reported that software systems contain about 30% of
redundant code, often referred as code clones. Ducasse et al. [20] observed
that clones exist at rates of over 50% of the effective lines of code ELOC in
a particular COBOL system. Related works reported different clone rates
in software systems. For example, Koschke and Bazrafshan [21] found that

5

the analysed open source applications have cloning rates of 1-12%. Cheung
et al. [22] reported that JavaScript web applications have 95% of inter-file
clones and 9197% of widely scattered clones. Li et al. [23] found that PHP
web applications have cloning rates of 5-82%.

Several works indicated that code cloning is commonly a bad smell [24].
However, other works argue that, in some contexts, clones can be a prac-
tical way to actually design or implement a system. For example, Kapser
and Godfrey [25] introduced eight cloning patterns that they had uncovered
during projects post-mortem. These patterns present numerous motivations
for cloning, such as Templating, which occurs when the desired behavior is
already known and an existing solution closely satisfies this need.

Numerous tools have been developed for clone detection. In the following,
we presented some preeminent related work. Ducasse et al. [26] developed
a language independent clone detection tool duploc. The author defined a
line based comparison by using a dynamic pattern matching. Indeed, their
approach allows spotting all occurrences of a pattern in a text.

The Simian1 tool is able to detect clones in different programming lan-
guages. If this tool does not identify programming language of the source file,
then it treats it as a natural text file to find clones. Lee and Jeong presented
the Similar Data Detection tool [27] to analyze clones in large systems. Their
tool is based on generating index and inverted index for code fragments and
their positions. Then, Lee and Jeong used an n-neighbor distance algorithm
to locate clones. Cordy et al. [28] detected near-miss clones in HTML web
pages using island grammar to identify and extract all structural fragments.
This grammar represents the bulk of the code (HTML text in our experiment)
as sequences of uninteresting tokens known as water. Then, potential clones
are compared to each other using the Unix diff command i.e., a standard
utility on most Unix systems that can be used to determine the differences
between two files (usually on a line-by-line basis), and display them in a
number of formats.

Metrics extracted from source code are compared to assess similarity
[29][30]. These metrics are calculated from names, layout, expressions and
control flow of functions and used with abstract syntax tree to detect clones.

Koschke et al. [31] presented a clone detection tool using a parser to
generate abstract syntax tree AST. Then the AST is serialized and input

1http://www.harukizaemon.com/simian/

6

to suffix tree. The technique is able to detect syntactic units which are not
possible by applying suffix tree only. In fact, abstract syntax trees and parse
trees are commonly used models when source code is to be transformed into
tree structures [32] [33] [34].

Komondoor and Horwitz [35] and krinke [36] presented a clone detection
tools based on a program dependency graph (PDG). A program dependency
graph represents control and data flow dependencies of a function of source
code. Graph representation of source program is partitioned depending upon
the behavior of source code fragment. The partitioning algorithm and sub-
string comparison are used to detect similarity. However, it has shown in an
evaluation experiment reported by Bellon et al. [37], that PDG based clone
detection approaches can be slow in detection of contiguous clones. Thus,
Higo et al. proposed a technique for improving the PDG-based clone detec-
tion by introducing new links between every pair of two nodes whose program
elements are consecutive in the source code. Authors reported that the pro-
posed technique improved detection capability of the PDG-based technique.

CCFinder [38], a token based clone detection tool, uses suffix tree match-
ing algorithm to find clones. Indeed, in token based clone detection tech-
niques, firstly, tokens are extracted from the source code by lexical analysis.
Then some set of tokens (at a specific granularity level) is formed into a se-
quence. Suffix tree or suffix array based token by token comparison is the
heart of token based clone detection algorithms. CCFinder is popular among
researchers and has been widely used for code clone analysis, code clone man-
agement, etc. In addition, CCFinder shows the highest recall and reasonable
precision in comparison with other tools [37].
Discussion:

Geiger et al. [8] have shown that a high number of files shared clones and
co-changes. However, the results of a statical test on the formula proposed
to express co-change relations in function of cloning relations were not sta-
tistically significant. In our previous work [6], we showed that the relation
between cloning and co-changes requires a relaxed definition of changes, bal-
anced by a stricter definition of co-changes. Given that clone groups may
change in the same way but not necessarily at the same time, the Asynchrony
change pattern might be more appropriate to analyze consistent changes in
clones than commits. Although previous attempts at providing evidence that
cloned code requires to be co-changed have been unsuccessful, we showed in
[6] that cloned files tend to follow the Asynchrony change pattern with files
with which they share cloned fragments. Moreover, files requiring consistent

7

changes (those that co-change with their clones) are indeed likely to create
bugs. In this paper, we present, to the best of our knowledge, the first em-
pirical evidence of the impact of cloned files that follow the same change
pattern on fault proneness.

2.4. Fault-proneness

The most studied and traditional approach for fault prediction is to relate
software faults to the size and complexity of code [39] and [40]. Chidamber
and Kemerer [41] proposed a suite of object-oriented design metrics which
has been substantiated by several theoretical and empirical studies [42] and
[43]. Results show that the more complex the code is, the more faults exist
in it. In addition, the size of source code is one of the best indicators for
fault proneness. Hassan and Holt [44] proposed heuristics to analyze fault
proneness. They found that recently modified and fixed classes were the most
fault-prone.

D’Ambros et al. [45] reported that there was a correlation between change
coupling and defects which is higher than the one observed with complexity
metrics. Further, defects with a high severity seem to exhibit a correlation
with change coupling which, in some instances, is higher than the change rate
of the components. They also enriched bug prediction models based on com-
plexity metrics with change coupling information. Marcus et al. [46] used a
cohesion measurement based on Latent semantic indexing (LSI), an indexing
and retrieval method to identify patterns in the relationships between the
terms and concepts contained in an unstructured collection of source code.
LSI is based on the principle that words that are used in the same contexts
tend to have similar meanings. The authors used LSI for fault prediction
and they stated that structural and semantic cohesion directly impacts the
understandability and readability of the source code.

Ostrand et al. [47], Bernstein et al. [48], and Neuhaus et al. [49] predict
faults in systems, using change and fault data, while Moser et al. [50] used
metrics (e.g. code churn, past faults and refactorings, etc.) to predict the
presence/absence of faults in files of Eclipse.

Khomh et al. [1] investigated the impact of anti-patterns on classes in
object-oriented systems by studying the relation between the presence of
anti-patterns and the change- and fault-proneness of the classes. The authors
showed that in almost all releases of the four systems, classes participating
in anti-patterns are more change and fault-prone than others.

8

Several papers explored the relation between clones and bugs. In par-
ticular, Aversano et al. found that several late propagations were linked to
bug-fixes [51]. Juergens et al. showed that only half of the unintentionally
inconsistent changes on clones were related to faults [2]. Indeed, if a code
fragment contains a bug and that fragment is cloned at different places, the
same bug will be present in all the code fragments. Thus, code cloning can
increase the probability of bug propagation [51] [2].
Discussion:

Previous work raised the consciousness of researchers and developers to-
wards the impact of anti-patterns and clones on software quality and main-
tenance tasks. In our previous work [7], we have showed that if two files
are following the same Asynchrony change pattern, thus this implies the
existence of (hidden) dependencies between these two files. If these depen-
dencies are not properly maintained, they can introduce faults in a system.
In this paper, we aim to understand if the negative effects of specific source
code motifs, such as anti-patterns and clones, can increase the fault-proneness
of files in software systems, when such motifs follow the same Asynchrony
change patterns.

3. Background and Methodology

In this section, we define the different phases of our methodology by listing
the used concepts and their background. First of all, as shown in Figure 1, we
perform the identification of anti-patterns using the DECOR approach [52].
Second, we use CCFinder [38] to detect duplicated code describing clones
in the software systems. Third, we use Macocha [7] to detect Asynchrony
change pattern occurrences by mining version-control systems (such as CVS
and SVN). Finally, we apply the heuristics by Sliwersky et al. [53] to identify
fault fix locations and investigate the fault proneness of files participating in
anti-patters or clones, and following Asynchrony change patterns.

3.1. Anti-pattern Identification

We use the DECOR approach[52] to specify and detect anti-patterns in
each release of the analyzed systems. DECOR is based on a thorough domain
analysis of anti-patterns specified in the literature, presents a domain-specific
language to model smells, and a tool to spot their occurrences. DECOR uses
the Pattern and Abstract-level Description Language PADL [54] meta-model

9

Figure 1: Overview of our approach to study the fault-proneness of clones and anti-patterns
that follow Asynchrony change patterns.

and POM framework (Primitives, Operators, Metrics) [55]. PADL is a meta-
model used to define the architecture of object-oriented systems [54]. POM
is a PADL-based framework that calculates more than 60 metrics in relation
with software quality.

We focus on 10 anti-patterns from Brown et al. [16]. We choose these anti-
patterns because they are representative of problems with data, complexity,
size, and the features provided by files [1]. We also use these anti-patterns
because they have been used and analyzed in previous work [1] to validate
our results by comparing them with previous data [52]. The definitions and
specifications of the anti-patterns are beyond the scope of this paper and
are available in [56]. The list of anti-patterns considered in this study is as
follows:

• AntiSingleton: which provides mutable variables that could be used as

10

global variables.

• Blob: which is too large and not cohesive enough, that monopolizes
most of the processing, takes most of the decisions, and is associated
to data classes.

• ClassDataShouldBePrivate: which exposes its fields, thus violating the
principle of encapsulation.

• ComplexClass: which has (at least) one large method, in terms of cy-
clomatic complexity and LOCs.

• LongMethod: which has a method that is overly long, in term of LOCs.

• LongParameterList: which has (at least) one method with a too long
list of parameters with respect to the average number of parameters
per methods in the system.

• MessageChain: which uses a long chain of method invocations to realize
(at least) one of its functionality.

• RefusedParentBequest: which redefines inherited methods using empty
bodies thus breaking polymorphism.

• SpeculativeGenerality: which is defined as abstract but that has very
few children.

• SwissArmyKnife: which contains methods that can be divided in dis-
junct set of many methods, thus providing many different unrelated
functionalities.

Based on an extensive empirical study performed on nine software systems
[52], DECOR approach has a recall of 100% and a precision greater than 50%,
with an average precision greater than 60%.

3.2. Clone Identification

We use CCFinder [38] to detect clones in our empirical study. The au-
thor of this tool defines a clone relation as an equivalence relation (i.e.,
reflexive, transitive, and symmetric relation) on code fragments. A clone re-
lation describe two fragments of code with the same token sequences. Indeed,
CCFinder uses a token-based clone process in which the input is source files

11

Figure 2: Files F1 and F2 follow the Asynchrony change pattern

Figure 3: Three different bit vectors showing approximate Asynchrony change pattern

and the output is clone pairs. First, each line of source files is divided into
tokens in accordance with the programming language lexical rules. Then,
equivalent pairs of transformed token sequences are detected as clone pairs
[38].

We choose CCFinder because, as compared to other clone detection tools,
CCFinder has a good performance, scalability, and recall, through a lower
precision [57] [58]. Actually, choosing CCFinder can amplify the identifica-
tion of fragmented clones, i.e. clones that are broken up by a few lines of
non-cloned fragments of code. For example, Burd and Bailey [57] conducted
an experiment to compare three clone detection tools, CCFinder, CloneDR
and Covet and two plagiarism detectors JPlag and Moss. The results of
their experiment showed that CCFinder had the highest recall (72%) and
reasonable precision (72%).

Furthermore, CCFinder does not depend on the syntax of the language,
as opposed to abstract syntax tree based detection tools [59]. In this study,
clones were identified using the configuration of CCFinder version 10.2.7.

3.3. Change-Pattern Identification

We use Macocha [7] to identify occurrences of the Asynchrony change
pattern in software systems.

An Asynchrony change pattern describes two or more changed files that
change together during the period of time considered in the study.

To detect occurrences of Asynchrony change pattern, we have to detect
the change periods in a software system by identifying all the changes per-
formed closely in time, whatever the developers who committed them and
the messages log.

Second, we define a profile as a bit vector that describes whether a file
is changed, or not, during each of the change periods of a software system.

12

The length n of this bit vector is the number of change periods discovered by
the KNN algorithm. Indeed, we used the KNN algorithm, a non-parametric
learning algorithm, to identify changes occurring close to one another, that
is, belonging to a same change period. We showed that, using this algorithm
to group changes into change periods, allowed us to improve precision and
recall over the state-of-the-art previous approaches [7]. Precision and recall
are metrics used in information retrieval studies to measure the accuracy of a
detection method. In several previous study [7], [11], and [12], these metrics
were defined in terms of the set of retrieved co-changed files produced by a
query and the set of relevant co-changed files. Precision is the fraction of
co-changed files that are relevant. Recall is the fraction of the co-changed
files that are relevant to the query that are successfully retrieved.

Third, similar profiles grouped together represent occurrences of the Asyn-
chrony change patterns, as illustrated in Figure 2. Indeed, Macocha returns,
among other results, the following sets of occurrences of change patterns:

• SMC , the set of files with identical profiles in a software system;

• SMCH , the set of files with similar profiles in a software system by
using the Hamming distance with DH ∈]0, 3[. We choose this threshold
in accordance with the results of a previous empirical study [7]. In
fact, After analyzing several values of threshold between two profiles
in different programs, we found that DH ∈]0, 3[is the best trade-off
between precision and recall.

Macocha approach for Asynchrony change patterns identification ensures
in average 96% of recall and has a precision greater than 85%.

3.4. Fault Proneness Computation

Finally, we estimate the fault-proneness of a file by relating fault reports
(extracted from Bugzilla) and commits to the file. We mine version-control
systems to detect changes committed to each file in order to fix faults. A
commit contains several attributes such as the dates of the change and the
name of the developer who committed the changes. Fault fixing changes are
documented in textual reports that describe different types of problems in a
software system. These textual reports are stored in issue tracking systems
like Bugzilla or Jira. We use a Perl script to parse the SVN/CVS change
logs of the subject systems to identify fault fixing commits. This Perl script,

13

which was used successfully in previous work [1], implements the heuristics by
Sliwersky et al. [53]. In fact, the authors reported that their heuristics have
a precision value of more than 90%. Then, from each fault fixing commit, we
extract the list of files that were changed to fix the fault. Indeed, we parse
bug reports and commit log messages using bug IDs and specific keywords,
such as fault or bug to identify fault-related commits from which we extract
the list of files that were changed to fix the faults.

4. Setup of The Study

This section describes the setup of our empirical study. In particular, we
present more details about the approach and the analyzed subject systems.
Then, we elaborate our analysis method.

The design of our study follows the Goal-Question-Metric (GQM) ap-
proach [60]. The goal of our study is to investigate the fault-proneness of
anti-patterns and clones when they also match the Asynchrony change pat-
tern. The quality focus is the analysis of the evolution of software systems
and the impact of anti-pattern occurrences and clones on their qualities.
The perspective is that the results may characterize a primary knowledge for
both researchers and practitioners who want to spot specific occurrences of
change patterns in order to build future maintenance activities. The context
of this study is four open source java software systems, namely ArgoUML,
JFreeChart, Lucene and XalanJ.

4.1. Analyzed Systems

We use several criteria to select our datasets. First, we select open-source
systems, so that other researchers can replicate our experiment. Second,
we choose different sizes of systems that represent systems handled by most
developers. Third, we selected systems with datasets containing a log his-
tory and fault specification information. The selected systems, ArgoUML,
JFreeChart, Lucene, and XalanJ span several years and versions and have
between hundreds and thousands of files. Table 1 summarizes the data col-
lected showing the case studies, programming language, revisions analyzed,
number of Asynchrony change pattern occurrences found in those revisions,
the number of files in that time interval, and the number of different files
sharing cloned fragments or involving in anti-patterns in that time interval.

ArgoUML is a UML diagramming system written in Java and released
under the open-source BSD License. For our study, we extracted a total

14

Table 1: Descriptive statistics of the object systems
Software systems ArgoUML JFreeChart Lucene XalanJ

of files 3,325 1,615 750 1,067
of snapshots 4,480 2,010 1,125 832
of releases 11 9 1 1
SLOC average 240,762 181,895 127,699 366,425

of AntiSingleton 3 38 17 1
of Blob 100 49 24 34
of ClassDataShouldBePrivate 51 3 2 18
of ComplexClass 158 52 27 53
of LongMethod 336 75 25 110
of LongParameterList 281 76 38 94
of MessageChains 162 59 29 54
of RefusedParentBequest 123 5 3 41
of SpeculativeGenerality 22 3 1 7
of SwissArmyKnife 13 26 13 5

of Clones 847 692 234 766

of Asynchrony change pattern occurrences 144 425 125 283

number of 4,480 snapshots between September 27th, 2008 and December
15th, 2011.

JFreeChart is a Java open-source framework to create charts. For our
study, we considered an interval of observation ranging from June 15th, 2007
(release 1.0.6) to November 20th, 2009 (release 1.0.13α) in which we extracted
2,010 snapshots.

Lucene is an open-source system hosted by Apache and written in Java.
It aims to produce high-performance full-text indexing and search software
and is used by many popular websites and Java applications. We analysed
the development period of the version 1.4 which includes 750 Java files.

XalanJ is a Java open source software library from the Apache Soft-
ware Foundation that implements and maintains libraries and programs that
transform XML documents using XSLT. We analysed the development pe-
riod of the version 2.6.0 which contains 1,067 Java files.

We choose these periods as we can identify enough occurrences of clones,
anti-patterns and Asynchrony change patterns to conduct statistical tests.
In addition, from our previous analysis [7], we know that for these periods,
we can use the adequate threshold value, without performing any other pre-
liminary analysis, to identify Asynchrony change pattern occurrences while
maintaining the best trade-off between precision and recall. Last but not
least, as we analysed the same periods in previous work, we were able to

15

recover and validate the co-change dependencies manually by using previous
results.

4.2. Analysis Method

The analysis reported in Section 5 have been performed using the R statis-
tical environment2. We use Fisher’s exact test [61] because it is a significance
test that is considered to be more appropriate for sparse and skewed sam-
ples of data than other statistical tests, such as the log likelihood ratio or
Pearson’s Chi-Squared test [62]. Indeed, this test it is useful for categori-
cal data that result from classifying objects in two different groups. In our
study, we examine the significance of the relation between the occurrence of
Asynchrony change pattern, anti-patterns or clones, and the number of fault.

Then, we use Chi-squared’s test [61] to check whether the difference
in fault-proneness between classes sharing the considered anti-patterns and
clones and other classes is significant. Chi-squared’s test is a nonparametric
statistical test used to examine the significance of the association (contin-
gency) between two classifications. Indeed, an inferential test such the Chi-
squared’s test is used in order to understand whether the overall population
medians are significantly different, based on a sample median. In this case,
the considered population is the set of classes of the considered systems. The
considered sample used in the Chi-squared’s test is the set of classes of the
specific analyzed version.

We also compute the odds ratio [61] that indicates the likelihood for an
event to occur. The odds ratio shows the strength of the association between
a predictor and the response of interest. Its advantage is that it can be used
to directly compare findings of different study designs.

The odds ratio is defined as the ratio of the odds p of an event occurring
in one sample, i.e., the odds that anti-patterns following Asynchrony change
pattern are identified as fault-prone to the odds q of the same event occurring
in the other sample, i.e., the odds that the rest of files are identified as fault-
prone. Thus, if the probabilities of the event in each of the groups are p
(faulty files for example) and q (not faulty files), then the odds ratio is:

OR = p/(1−p)
q/(1−q)

. An odds ratio greater than 1 indicates that the event is more
likely in the first sample, while an odds ratio less than 1 indicates that it is
more likely in the second sample.

2http://www.r-project.org

16

Last but not least, we report the effect size that measures the strength
of the relationship between two variables on a numeric scale. Indeed, this
statistical concept helps us in determining if the difference between in fault-
proneness between classes sharing the considered anti-patterns and clones
and other classes is real or if it is due to a change of factors.

5. Study Results

Tables 1, 2, 3, and 4 summarizes the data obtained by analyzing Ar-
goUML and JFreeChart. In this section, we will present in depth the mo-
tivation behind each research question, the used method to answer it, and
the results collected on its context. We validated the co-change set of files of
anti-pattern occurrences and clones manually. Yet, all these sets were small
enough so that we were able to recover and validate their co-change depen-
dencies manually in a previous work. We also checked external sources of
information provided by bug reports to confirm the results.

5.1. What is the impact on fault-proneness when a file participates both in
anti-pattern occurrences and Asynchrony change pattern occurrences?

5.1.1. Motivation

There exist a number of approaches that detect and analyze anti-patterns
in source code to alert developers of their occurrence and impact on the
quality of software systems [52, 18, 63]. These approaches rely on structural
information extracted from source code, for example, by means of constraints
defined on some source code metrics. In parallel, historical information has
been used in the context of quality analysis for the purpose of assessing to
what extent anti-patterns remained in the system for a substantial amount
of time [1, 5]. However, to the best of our knowledge, the use of historical
information and software repertoires for identifying the fault-proneness of
files participating in anti-patterns while they follow change patterns remains
a premiere of this paper. Previous work [1, 64] has shown that anti-patterns
have different “bad” properties that make them prone to faults or hard to
understand/maintain. Analyzing and calculating the fault-proneness of anti-
patterns that follow an Asynchrony change pattern allow programmers to
determine vulnerable parts in the source code so that they can prioritize
maintenance activities towards the most risky parts of software systems.

17

5.1.2. Method

First, we identify anti-pattern occurrences in the analyzed systems using
DECOR. Second, we identify occurrences of the Asynchrony change pattern
using Macocha. Then, we provide quantitative data on the anti-patterns that
also match an Asynchrony change pattern in the studied systems. Finally,
we perform a statistical analysis by verifying the null hypothesis which we
state as follows:

• HRQ10 : There is no statistically significant difference in fault-proneness
between files both affected by anti-patterns and showing the Asyn-
chrony change pattern and those files affected by anti-patterns but not
showing the Asynchrony change pattern.

5.1.3. Results

Table 2: Contingency table and Fisher test results for ArgoUML, JFreeChart, Lucene,
and XalanJ for anti-patterns that match the Asynchrony change pattern (AACPA: Anti-
patterns that follow Asynchrony change patterns with other anti-patterns, AACPNA:
Anti-patterns that follow Asynchrony change patterns with other files)

Faulty Non-faulty

(1) Number of AACPA in ArgoUML 132 62
(2) Number of AACPNA in ArgoUML 164 136
Fisher’s test for ArgoUML 0.001969
Odds-ratio for ArgoUML 1.76354
(1) Number of AACPA in JFreeChart 38 145
(2) Number of AACPNA in JFreeChart 26 399
Fisher’s test for JFreeChart 2.49e-07
Odds-ratio for JFreeChart 4.010807
(1) Number of AACPA in Lucene 19 78
(2) Number of AACPNA in Lucene 13 200
Fisher’s test for Lucene 0.0004933
Odds-ratio for Lucene 3.729169
(1) Number of AACPA in XalanJ 51 21
(2) Number of AACPNA in XalanJ 55 45
Fisher’s test for XalanJ 0.02517
Odds-ratio for XalanJ 4.010807
Effect size for XalanJ 1.97911

Fault-proneness refers to whether an artefact underwent at least one fault
fix in the system life cycle [1]. In our study, we report the cases when faults,
anti-patterns, and Asynchrony change patterns co-occur at the same period

18

of time. Moreover, we are analysing the scenarios when the fault fix occur
during the period when a file is involved in an anti-pattern and showing
Asynchrony change pattern.We noticed here that the Asynchrony change
pattern can involve two or more files. A file is considered as AACPNA
when it belongs to anti-pattern and it is involved in Asynchrony change pat-
tern with other files. Table 2 presents a contingency table for ArgoUML,
JFreeChart, Lucene, and XalanJ that reports the number of anti-patterns
that share Asynchrony change patterns with other anti-patterns and iden-
tified as faulty; anti-patterns that share Asynchrony change patterns with
anti-patterns and identified as non-faulty; other anti-patterns identified as
faulty and participating in Asynchrony change patterns with other files; and,
other anti-patterns identified as non-faulty and participating in Asynchrony
change patterns with other files.

The results of the Fisher’s exact tests and odds ratios when testing HRQ10

are significant. For all the analyzed systems, the p-value is less than 0.05 and
the likelihood that an anti-pattern that shares an Asynchrony change pattern
with other anti-patterns experiences a fault is about two to four times higher
than the likelihood that other anti-patterns experience faults if they share
an Asynchrony change pattern with other files.

We can also answer positively RQ1 as follows: anti-patterns that share
Asynchrony change patterns with other anti-patterns are significantly more
fault-prone than anti-patterns that share Asynchrony change patterns with
other files.

5.2. What is the impact on fault-proneness when a file participates both in
clones and Asynchrony change pattern occurrences?

5.2.1. Motivation

Co-change between code clones is considered in some previous work as a
threat to software quality and maintenance, because, on the one hand, faults
may have been cloned in parallel with the cloned co-changed code. On the
other hand, it is expected that changes done to the original code must often
be applied to the cloned code as well.

However, there exist only few empirical studies that analyze clones that
follow similar change patterns. Knowing the relations among clones and
change patterns and their impact on fault-proneness assists programmers
to discover files that must be checked to guarantee the maintainability of
software systems and decrease the menace of faults.

19

Table 3: Fault proneness and Fisher’s test results on ArgoUML, JFreeChart, Lucene, and
XalanJ for clones participating in Asynchrony change patterns (CACPC: Clones partic-
ipating in Asynchrony change patterns with clones, CACPNC: Clones that follow Asyn-
chrony change patterns with other files but not clones)

Faulty Non-faulty

Number of CACPC in ArgoUML 130 6

Number of CACPNC in ArgoUML 37 7

Fisher’s test for ArgoUML 0.01751

Odds-ratio for ArgoUML 4.058749

Number of CACPC in JFreeChart 30 59

Number of CACPNC in JFreeChart 12 52

Fisher’s test for JFreeChart 0.03014

Odds-ratio for JFreeChart 2.192315

Number of CACPC in Lucene 17 25

Number of CACPNC in Lucene 6 26

Fisher’s test for Lucene 0.0389

Odds-ratio for Lucene 2.904332

Number of CACPC in XalanJ 43 1

Number of CACPNC in XalanJ 12 3

Fisher’s test for XalanJ 0.04699

Odds-ratio for XalanJ 10.20738

5.2.2. Method

For each software system, we identify files that contain clones using
CCFinder. Second, we identify clones involved in an Asynchrony change
pattern using Macocha. Then, we identify if a file undergoes faults dur-
ing the same period as described in Section 3. Finally, we verify the null
hypothesis which we state as follows:

• HRQ20 : There is no statistically significant difference between propor-
tion of faults carried by clones participating in Asynchrony change pat-
tern with clones and clones that share Asynchrony change patterns with
other files in ArgoUML and JFreeChart.

5.2.3. Results

Table 3 presents the fault proneness analysis for ArgoUML, JFreeChart,
Lucene, and XalanJ that reports on the results of Fisher’s exact test and
odds ratios when testing HRQ20 are significants. The p-value is less than 0.05

20

Figure 4: The analysed sets in this study

21

and. For example, in ArgoUML, the odds ratio for fault-prone clones that
adhere to Asynchrony change patterns with clones is four times higher than
clones that adhere to Asynchrony change patterns with other files. We can
thus answer to RQ2 as follows: we found that clones sharing Asynchrony
change pattern are significantly more fault-prone than other clones. Sharing
Asynchrony change patterns among clones thus indeed correlates with the
fault proneness of files.

5.3. What is the fault-proneness of files that participate in anti-patterns and
clones?

5.3.1. Motivation

Previous work showed that some smells are more fault prone than others
[1] [51] [2]. Entities affected by anti-patterns and clones co-occurrence could
have a high risk of fault-proneness. Thus, they must be checked in depth
to guarantee a fine maintainability of software systems and decrease the risk
of faults in the future. We are attempting to compare the fault proneness
across the following groups of files: files belonging to an anti-pattern, files
having clones, files belonging to an anti-pattern and having clones, and files
not belonging to an anti-pattern and not having clones.

5.3.2. Approach

For each system, we identify whether a file has faults during the analysed
period of the studied systems as described in Section 3.

Then, we use Chi-squared’s test [61] to check whether the difference in
fault-proneness between files sharing the considered anti-patterns and clones
and other files is significant. We test the following null hypothesis:

• HRQ30 : The proportions of faults involving files having a co-occurrence
of anti-patterns and code clones and other files are the same. If we
reject the null hypothesis HRQ30 , the proportion of faults carried by
files having a co-occurrence of anti-patterns and code clones is not the
same as that of other files.

5.3.3. Results

Table 4 presents fault proneness analysis for ArgoUML, JFreeChart, Lucene,
and XalanJ. Indeed, the result of Chi-squared’s test and odds ratios when
testing HRQ30 are significant, the p-value is less than 0.05 and the odds ratio
for fault-prone CAC files (files presenting co-occurrence of anti-pattern and
clone) is higher than for fault-prone other files.

22

Table 4: Fault proneness and Chi-squared’s test results in ArgoUML, JFreeChart, Lucene,
and XalanJ (CAC: presenting co-occurrence of anti-pattern and clone)

Faulty Non-faulty

Number of files CAC in ArgoUML 126 41

Number of the rest of files in ArgoUML 992 2166

Chi-squared’s test for ArgoUML 0.0001

Odds-ratio for ArgoUML 6.7102

Effect size for ArgoUML 0.204

Number of files CAC in JFreeChart 31 8

Number of the rest of files in JFreeChart 578 998

Chi-squared’s test for JFreeChart 0.0001

Odds-ratio for JFreeChart 6.6907

Effect size for JFreeChart 0.136

Number of files CAC in Lucene 15 4

Number of the rest of files in Lucene 289 442

Chi-squared’s test for Lucene 0.0013

Odds-ratio for Lucene 6.022

Effect size for Lucene 0.126

Number of files CAC in XalanJ 42 13

Number of the rest of files in XalanJ 331 681

Chi-squared’s test for XalanJ 9.977e-11

Odds-ratio for XalanJ 5.8613

Effect size for XalanJ 0.202

Indeed, we can answer RQ3 as follows: we showed that classes having
clones and anti-patterns are significantly more fault-prone than other classes.

6. Discussion and Threats to Validity

We now discuss several observations from our results. Then, we discuss
the threats to validity of our study.

6.1. Impact of Smell Co-occurrence on Software Quality

The fault-proneness is one of the metrics that are used to measure the
quality of software systems. A fault is a manifestation of an error in software.
In accordance with the IEEE Standard Classification for Software Anomalies,
a defect is the algorithmic error in a program that may lead to a fault. Indeed,

23

a defect is a fault if it is encountered during software execution. Thus,
in order to evaluate the quality of systems, many previous works used the
number of faults per line as a quality measure [65, 66]. In the same context,
we notice that in the two systems considered in this study, files having co-
occurrences of clone and anti-pattern are more fault-prone than other files
(see Table 4). For example, in ArgoUML, files with co-occurrences of clones
and anti-patterns are 6.7 times more fault-prone than files that do not have
clone and anti-pattern and still higher even if a class had an occurrence
of an anti-pattern or a clone. One possible interpretation for this result
is that copying code smells can increase the fault injection and the risk of
introducing unknown types of faults in the classes. Many previous studies
have observed a relation between the number of lines of code and the fault-
proneness. Indeed, when a system had a high number of lines of code, it
showed a larger number of smell co-occurrence and thus the worst fault-
proneness degree. This observation suggested that producing too large files
increases the co-occurrence probability of clones and anti-patterns and thus
degrades software quality. However, some other studies showed that smaller
files had disproportionally many fault, as noticed for example by Koru et al.
[67]. Finally, we observed that anti-patterns resulting in large classes (classes
that are involved in anti-patterns like LargeClass or Blob), are not the most
affected by clones in the considered systems. This observation rejects the
possible impact of the size of files measured by the LOC metric on the fault-
proneness of classes with co-occurrence of clones and anti-patterns.

6.2. Smell Co-occurrence, Change and Fault Propagation

Our previous studies analyzed independently the impact of anti-patterns
[5] and clones [6] on change propagation on fault-proneness. We thus reported
that the detection and the analysis of anti-patterns and clones allow us to
detect the critical elements of software systems since they may represent
the set of more risky files in terms of fault-proneness. Other previous work
showed that clones require consistent changes [68] [59]. A consistent change
is a change that alters in the same way and at the same time, all instances of a
clone group. We also observed in a previous paper [5] the existence of change
dependencies between anti-patterns and other artefacts in software systems.
If these dependencies are not properly maintained, they can increase the risk
of faults. Such risks may increase in the case of co-occurrence of anti-patterns
and clones as several previous works have shown the negative impact of anti-
patterns on fault-proneness. Thus, by spotting the sets of co-occurrences of

24

anti-patterns and clones, we identify the more risky part of code in term of
consistent change.

6.3. Threats to Validity

We now discuss in detail the threat to validity of our results, following
the guidelines provided in [69].

Construct validity threats concern the relation between theory and obser-
vation. In our context, they are mainly due to the definition and the measure
of anti-patterns, clones and change patterns. We are aware that the detec-
tion technique used includes some subjective understanding of the definition
of smells. For this reason, the precision values of the change pattern, anti-
pattern and clone detection tools is a concern that we agree to accept. In case
that pattern specifications would be slight variants of the specifications used
by Macocha, CCFinder and DECOR, some change pattern, clone or anti-
pattern occurrences may be missed during the detection phase. Although
the sample of detected patterns used in our study can be considered large
enough to claim our conclusions valid, additional investigations are desirable
to further verify our findings with other tools or other definitions of patterns.

Reliability validity threats concern the possibility of replicating this study.
First, the source code repositories of the analysed systems are publicly avail-
able. Then, the anti-pattern, change pattern and clone detection tools used
in this study could be used freely. Finally, the change logs, the list of bugs
and the changed files of the analysed programs with the list of clones and
anti-pattern occurrences to obtain our observations are available on-line at
http://www.ptidej.net/downloads/experiments/JSS2016/.

Conclusion validity threats concern the relation between the treatment
and the outcome. We paid attention not to violate the assumptions of the
statistical test that we used, i.e., the Fisher’s exact test, which is a non-
parametric test. A possible threat to the conclusion validity is our particular
choice of anti-patterns. Although these anti-patterns are and have been
widely analyzed by other researchers, there is no consensus on their uni-
versality. Another possible threat to the conclusion validity is the possible
interference between the clone dataset and the anti-pattern dataset. We can
find a file that has at the same time an anti-pattern and clone. In our study,
we manually validates such cases and we disagreed them from our analysis to
be sure that such interference will not have an impact on the interpretation
of the results. However, we analyze the resulting impact of the interference
of clones and anti-patterns in section 5.

25

Threats to external validity concern the possibility to generalize our ob-
servations. Different systems with different CVS/SVN change logs, require-
ments, and contexts could lead to different results. However, the two se-
lected datasets have different SVN change logs, requirements, and source
code quality. Our dataset selection thus reduces this threat to external va-
lidity. However, more studies, for example on industrial datasets, are required
to generalize the results of our empirical study.

7. Conclusion

Several previous works analysed the impact of anti-patterns or cloned
code on fault proneness. Assuming that change propagation (as described
by Asynchrony change pattern) can increase the fault proneness of risky part
of code (such as clones and anti-patterns), we reported in this paper an em-
pirical study investigating the fault-proneness in ArgoUML and JFreeChart
of anti-patterns and clones involved in Asynchrony change patterns.

Our study’s results show that, in all systems, the fault proneness odds
ratios significantly increase for anti-patterns and clones participating in the
Asynchrony change pattern occurrences. We found also that file fault prone-
ness odds ratios significantly increase for files that had co-occurrence of anti-
patterns and clones in comparison with the rest of files in the studied systems.
Thus, we empirically found a specific and tangible correlation of clones and
anti-patterns on software quality when they are not properly maintained.

To confirm the conjectures established with this study, we are working in
several extensions of this work. Among others: the replication of the study
at class level instead of file level (by adding the analysis of C++ software
systems for example) and the prediction of the co-occurrence of clones and
anti-patterns and its impact on software quality.

Acknowledgment

This work has been partly funded by NSERC and the Research and De-
velopment Grants Quebec-Wallonie.

References

[1] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory
study of the impact of antipatterns on class change- and fault-proneness,
Empirical Software Engineering (2012) 243–275.

26

[2] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones
matter?, in: Proceedings of the 31st International Conference on Soft-
ware Engineering, IEEE Computer Society, Washington, DC, USA,
2009, pp. 485–495.

[3] S. Bouktif, G. Antoniol, E. Merlo, M. Neteler, A plugin based architec-
ture for software maintenance, Tech. Rep. EPM-RT-2006-03, Depart-
ment of Computer Science École Polytechnique de Montréal (2006).

[4] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, F. Khomh, Analysing anti-
patterns static relationships with design patterns, Journal of Electronic
Communications of the European Association of Software Science and
Technology (accepted).

[5] F. Jaafar, Y.-G. Gueheneuc, S. Hamel, F. Khomh, Mining the relation-
ship between anti-patterns dependencies and fault-proneness, in: Re-
verse Engineering (WCRE), 2013 20th Working Conference on, IEEE,
2013, pp. 351–360.

[6] A. Lozano, F. Jaafar, K. Mens, Y. Guéhéneuc, Clones and macro co-
changes, Electronic Communications of the European Association of
Software Science and Technology 63 (2014) 1–14.

[7] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, G. Antoniol, Detecting asyn-
chrony and dephase change patterns by mining software repositories,
Journal of Software: Evolution and Process 26 (1) (2014) 77–106.

[8] R. Geiger, B. Fluri, H. C. Gall, M. Pinzger, Relation of code clones and
change couplings, in: Proceedings of the 9th International Conference
on Fundamental Approaches to Software Engineering, Springer-Verlag,
Berlin, Heidelberg, 2006, pp. 411–425.

[9] A. Yamashita, L. Moonen, To what extent can maintenance problems
be predicted by code smell detection? - an empirical study, Information
Software Technology 55 (12) (2013) 2223–2242.

[10] A. T. T. Ying, G. C. Murphy, R. Ng, M. C. Chu-Carroll, Predicting
source code changes by mining change history, Transactions on Software
Engineering 30 (9) (2004) 574–586.

27

[11] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, Mining versionf
histories to guide software changes, in: Proceedings of the 26th Inter-
national Conference on Software Engineering, IEEE Computer Society,
2004, pp. 563–572.

[12] M. Ceccarelli, L. Cerulo, G. Canfora, M. Di Penta, An eclectic approach
for change impact analysis, in: Proceedings of the 32nd International
Conference on Software Engineering, ACM Press, New York, NY, USA,
2010, pp. 163–166.

[13] G. Canfora, M. Ceccarelli, L. Cerulo, M. Di Penta, Using multivariate
time series and association rules to detect logical change coupling: An
empirical study, in: Proceedings of the IEEE International Conference
on Software Maintenance, IEEE Computer Society Press, Washington,
DC, USA, 2010, pp. 1–10.

[14] B. F. Webster, Pitfalls of Object Oriented Development, 1st Edition, M
& T Books, 1995.

[15] A. J. Riel, Object-Oriented Design Heuristics, 1st Edition, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[16] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st Edition, John Wiley and Sons, 1998.

[17] E. V. Emden, L. Moonen, Java quality assurance by detecting code
smells, in: The 9th Working Conference on Reverse Engineering. IEEE
Computer, Society Press, 2002, pp. 97–107.

[18] D. Ratiu, S. Ducasse, T. Gı̂rba, R. Marinescu, Using history informa-
tion to improve design flaws detection, in: Proceedings of the Eighth
Euromicro Working Conference on Software Maintenance and Reengi-
neering, IEEE Computer Society, 2004, pp. 223–233.

[19] B. S. Baker, On finding duplication and near-duplication in large soft-
ware systems, in: Reverse Engineering, 1995., Proceedings of 2nd Work-
ing Conference on, IEEE, 1995, pp. 86–95.

[20] S. Ducasse, M. Rieger, S. Demeyer, A language independent approach
for detecting duplicated code, in: Proceedings of the IEEE International

28

Conference on Software Maintenance, IEEE Computer Society, Wash-
ington, DC, USA, 1999, pp. 109–118.

[21] R. Koschke, S. Bazrafshan, Software-clone rates in open-source programs
written in c or c++, in: IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 3, 2016, pp. 1–7.

[22] W. T. Cheung, S. Ryu, S. Kim, Development nature matters: An empir-
ical study of code clones in javascript applications, Empirical Software
Engineering 21 (2) (2016) 517–564.

[23] C. Li, J. Sun, H. Chen, An improved method for tree-based clone detec-
tion in web applications, in: Digital Information and Communication
Technology and it’s Applications (DICTAP), Fourth International Con-
ference on, IEEE, 2014, pp. 363–367.

[24] M. Fowler, Refactoring: Improving the design of existing code, Interna-
tional Thomson Computer Press, 1999.

[25] C. Kapser, M. W. Godfrey, ” cloning considered harmful” considered
harmful, in: Reverse Engineering, 2006. WCRE’06. 13th Working Con-
ference on, IEEE, 2006, pp. 19–28.

[26] S. Ducasse, M. Rieger, S. Demeyer, A language independent ap-
proach for detecting duplicated code, in: Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on, IEEE,
1999, pp. 109–118.

[27] S. Lee, I. Jeong, Sdd: high performance code clone detection system for
large scale source code, in: Companion to the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, ACM, 2005, pp. 140–141.

[28] J. R. Cordy, T. R. Dean, N. Synytskyy, Practical language-independent
detection of near-miss clones, in: Proceedings of the 2004 conference of
the Centre for Advanced Studies on Collaborative research, IBM Press,
2004, pp. 1–12.

[29] R. Koschke, R. Falke, P. Frenzel, Clone detection using abstract syntax
suffix trees, in: Reverse Engineering, 2006. WCRE’06. 13th Working
Conference on, IEEE, 2006, pp. 253–262.

29

[30] K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, M. Bernstein, Pat-
tern matching for clone and concept detection, in: Reverse engineering,
Springer, 1996, pp. 77–108.

[31] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, K. Kontogiannis, Mea-
suring clone based reengineering opportunities, in: Software Metrics
Symposium, 1999. Proceedings. Sixth International, IEEE, 1999, pp.
292–303.

[32] W. Yang, Identifying syntactic differences between two programs, Soft-
ware: Practice and Experience 21 (7) (1991) 739–755.

[33] R. Falke, P. Frenzel, R. Koschke, Empirical evaluation of clone detection
using syntax suffix trees, Empirical Software Engineering 13 (6) (2008)
601–643.

[34] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone de-
tection using abstract syntax trees, in: Software Maintenance, 1998.
Proceedings., International Conference on, IEEE, 1998, pp. 368–377.

[35] R. Komondoor, S. Horwitz, Effective, automatic procedure extraction,
in: Program Comprehension, 2003. 11th IEEE International Workshop
on, IEEE, 2003, pp. 33–42.

[36] J. Krinke, Identifying similar code with program dependence graphs, in:
Reverse Engineering, 2001. Proceedings. Eighth Working Conference on,
IEEE, 2001, pp. 301–309.

[37] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison
and evaluation of clone detection tools, IEEE Transactions on software
engineering 33 (9).

[38] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: a multilinguistic token-
based code clone detection system for large scale source code, Vol. 28,
IEEE, 2002.

[39] T. J. McCabe, A complexity measure, in: Proceedings of the 2Nd Inter-
national Conference on Software Engineering, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1976, pp. 407–417.

30

[40] M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series), Elsevier Science Inc., New York, NY, USA, 1977.

[41] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented
design, IEEE Transaction On Software Engineering 20 (6) (1994) 476–
493.

[42] V. R. Basili, L. C. Briand, W. L. Melo, A validation of object-oriented
design metrics as quality indicators, IEEE Transaction On Software En-
gineering 22 (10) (1996) 751–761.

[43] R. Subramanyam, M. S. Krishnan, Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software defects,
IEEE Transaction On Software Engineering 29 (4) (2003) 297–310.

[44] A. E. Hassan, R. C. Holt, The top ten list: Dynamic fault prediction,
in: Proceedings of the 21st IEEE International Conference on Software
Maintenance, IEEE Computer Society, 2005, pp. 263–272.

[45] M. D’Ambros, M. Lanza, R. Robbes, On the relationship between
change coupling and software defects, in: Proceedings of the 16th Work-
ing Conference on Reverse Engineering, IEEE Computer Society, Wash-
ington, DC, USA, 2009, pp. 135–144.

[46] A. Marcus, D. Poshyvanyk, R. Ferenc, Using the conceptual cohesion
of classes for fault prediction in object-oriented systems, IEEE Transac-
tions On Software Engineering (2008) 287–300.

[47] T. Ostrand, E. Weyuker, R. Bell, Predicting the location and number
of faults in large software systems, IEEE Transactions on Software En-
gineering (2005) 340–355.

[48] A. Bernstein, J. Ekanayake, M. Pinzger, Improving defect prediction
using temporal features and non linear models, in: Ninth International
Workshop on Principles of Software Evolution, ACM, 2007, pp. 11–18.

[49] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller, Predicting vulner-
able software components, in: The 14th Conference on Computer and
Communications Security, ACM, 2007, pp. 529–540.

31

[50] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction, in:
The 30th International Conference on Software Engineering, ACM, New
York, NY, USA, 2008, pp. 181–190.

[51] L. Aversano, L. Cerulo, M. Di Penta, How clones are maintained: An
empirical study, in: Software Maintenance and Reengineering, 2007.
CSMR’07. 11th European Conference on, IEEE, 2007, pp. 81–90.

[52] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. Le Meur, DECOR: A
method for the specification and detection of code and design smells,
Transactions on Software Engineering (2010) 20–36.

[53] J. Śliwerski, T. Zimmermann, A. Zeller, When do changes induce fixes?,
SIGSOFT Software Engineering Notes 30 (4) (2005) 1–5.

[54] Y.-G. Guéhéneuc, G. Antoniol, Demima: A multilayered approach for
design pattern identification, IEEE Transactions on Software Engineer-
ing 34 (5) (2008) 667–684.

[55] Y.-G. Guéhéneuc, H. Sahraoui, F. Zaidi, Fingerprinting design patterns,
in: Reverse Engineering, 2004. Proceedings. 11th Working Conference
on, IEEE, 2004, pp. 172–181.

[56] D. Romano, P. Raila, M. Pinzger, F. Khomh, Analyzing the im-
pact of antipatterns on change-proneness using fine-grained source code
changes, Working Conference on Reverse Engineering (2012) 437–446.

[57] E. Burd, J. Bailey, Evaluating clone detection tools for use during pre-
ventative maintenance, in: Proceedings of the Second IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, IEEE
Computer Society, Washington, DC, USA, 2002, pp. 36–46.

[58] D. Rattan, R. Bhatia, M. Singh, Software clone detection: A systematic
review, Information and Software Technology 55 (7) (2013) 1165–1199.

[59] A. Lozano, M. Wermelinger, Assessing the effect of clones on change-
ability, in: Proceeding of 24th International Conference on Software
Maintenance, IEEE, 2008, pp. 227–236.

32

[60] BasiliV., PerriconeB.T., Software errors and complexity: An empirical
investigation, Communications of the ACM 27 (1) (1984) 42–52.

[61] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman & Hall/CRC, 2007.

[62] T. Pedersen, Fishing for exactness, In Proceedings of the South-Central
SAS Users Group Conference cmp-lg/9608010 (1996) 188–200.

[63] D. Settas, A. Cerone, S. Fenz, Enhancing ontology-based antipattern
detection using bayesian networks, Expert Systems with Applications
39 (10) (2012) 9041–9053.

[64] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension, in: Proceedings of the 2011 15th European
Conference on Software Maintenance and Reengineering, IEEE Com-
puter Society, 2011, pp. 181–190.

[65] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, K.-i. Matsumoto, Software
quality analysis by code clones in industrial legacy software, in: Software
Metrics, 2002. Proceedings. Eighth IEEE Symposium on, IEEE, 2002,
pp. 87–94.

[66] M. Ohba, Software reliability analysis models, IBM Journal of research
and Development 28 (4) (1984) 428–443.

[67] A. G. Koru, D. Zhang, K. El Emam, H. Liu, An investigation into
the functional form of the size-defect relationship for software modules,
IEEE Transactions on Software Engineering 35 (2) (2009) 293–304.

[68] J. Krinke, A study of consistent and inconsistent changes to code clones,
in: Proceedings of the 14th Working Conference on Reverse Engineering,
IEEE Computer Society, Washington, DC, USA, 2007, pp. 170–178.

[69] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
SAGE Publications, London, 2002.

33

