
A Machine-learning Based Ensemble Method For Anti-patterns Detection

Antoine Barbeza, Foutse Khomha, Yann-Gaël Guéhéneucb

aPolytechnique Montreal
bConcordia University

Abstract

Anti-patterns are poor solutions to recurring design problems. Several empirical studies have highlighted their negative impact on
program comprehension, maintainability, as well as fault-proneness. A variety of detection approaches have been proposed to identify
their occurrences in source code. However, these approaches can identify only a subset of the occurrences and report large numbers of
false positives and misses. Furthermore, a low agreement is generally observed among different approaches. Recent studies have shown
the potential of machine-learning models to improve this situation. However, such algorithms require large sets of manually-produced
training-data, which often limits their application in practice.

In this paper, we present SMAD (SMart Aggregation of Anti-patterns Detectors), a machine-learning based ensemble method to
aggregate various anti-patterns detection approaches on the basis of their internal detection rules. Thus, our method uses several detection
tools to produce an improved prediction from a reasonable number of training examples. We implemented SMAD for the detection of
two well known anti-patterns: God Class and Feature Envy. With the results of our experiments conducted on eight java projects, we
show that: (1) our method clearly improves the so aggregated tools; (2) SMAD significantly outperforms other ensemble methods.

Keywords: Software Quality, Anti-patterns, Machine Learning, Ensemble Methods

1. Introduction

Source code refactoring, which consists in improving the in-
ternal structure of the code while keeping its external behaviour
unchanged, represents a substantial portion of software mainte-
nance activities. To help practitioners in identifying where – and
what kind of – refactoring should be applied in software systems,
the concept of design smells has been introduced and defined by
Fowler [13] as symptoms of poor solutions to recurring design
problems. These symptoms, also called anti-patterns, are typi-
cally introduced in object-oriented systems when developers im-
plement sub-optimal design solutions due to lack of knowledge
and–or time constraints. For example, the God Class anti-pattern
refers to the situation in which a class grows rapidly by the addi-
tion of new functionalities, when developers break the principle of
single responsibility. Prior empirical studies highlighted the nega-
tive impact of anti-patterns on a variety of quality characteristics,
such as program comprehension [1], maintainability [45], and cor-
rectness (increase of fault-proneness) [19]. Thus, it is important
to identify their occurrences in systems and apply refactoring op-
erations to remove them.

Several approaches have been proposed to detect the occur-

Email addresses: antoine.barbez@polymtl.ca (Antoine Barbez),
foutse.khomh@polymtl.ca (Foutse Khomh),
yann-gael.gueheneuc@concordia.ca (Yann-Gaël Guéhéneuc)

rences of anti-patterns in source code. Most of these approaches
attempt to identify bad motifs in models of source code using
manually-defined heuristics that rely on some metrics (e.g., cy-
clomatic complexity). For example, Moha et al. [33] proposed a
domain-specific language to describe and generate detection algo-
rithms for anti-patterns using structural and lexical metrics while
Palomba et al. [36, 34] proposed a rule-based approach to detect
anti-patterns from change history information.

Even though these approaches have shown acceptable perfor-
mances, none of them can claim high accuracy on any systems
and for any anti-patterns. Besides, each approach relies on its own
definitions of anti-patterns and only focuses on specific aspects of
systems. Thus, we observe a complementarity among the differ-
ent approaches, especially when they rely on orthogonal sources
of information (e.g., structural vs. historical) [11, 36].

Consequently, we propose SMAD (SMart Aggregation of Anti-
patterns Detectors), a machine-learning based ensemble method
to combine various anti-patterns detection approaches in order to
achieve better performances. Hence, our approach aims at reduc-
ing software maintenance costs by helping practitioners in identi-
fying more accurately the code components to be refactored. Con-
cretely, for each approach to be aggregated, we identify a set of
core metrics, i.e., metrics that reflect the internal detection rule of
the approach. We then use the core metrics as input features of a
neural-network classifier. To the best of our knowledge, we are the
first to propose an ensemble method in the context of anti-patterns

Preprint submitted to Journal of Systems and Software November 26, 2019

detection.
Recently, machine-learning models have been shown efficient

in a variety of domains, such as speech recognition [15] or im-
age processing [23]. Several machine-learning based approaches
have been proposed to detect anti-patterns. However, these ap-
proaches failed to surpass clearly conventional techniques. On the
one hand, learning high-level features of systems requires com-
plex machine-learning models, such as deep-neural-networks. On
the other hand, these complex models require substantial amounts
of manually-produced training data, which is hardly available and
time consuming to produce for anti-patterns.

On the contrary our method relies on existing approaches which
allows our model to take as input a low number of high-level key
features (i.e., the core metrics). As a consequence, our method
can benefit from a simple machine-learning classifier that requires
a reasonable number of training examples. We implemented
the proposed ensemble method to detect two well known anti-
patterns: God Class and Feature Envy. To conduct our experi-
ments, we created an oracle containing occurrences of the studied
anti-patterns in eight Java systems.

This paper thus makes the following contributions: (1) a
manually-produced oracle reporting the occurrences of God Class
and Feature Envy in eight Java software systems; (2) a ma-
chine learning-based ensemble method to aggregate existing anti-
patterns detection approaches.

The remainder of this paper is organized as follows. Section 2
defines the two anti-patterns considered in this study and discusses
the related work. Section 3 describes our approach SMAD. Sec-
tion 4 presents our data as well as preliminary considerations for
our study. Section 5 reports the results of our study aiming to
evaluate the performances of our method as well as to compare it
with other approaches. Section 6 discusses the threats that could
affect the validity of our results. Finally, Section 7 concludes and
discusses future work.

2. Background and Related Work

This section defines the anti-patterns considered in this study
and discusses prior detection approaches proposed in literature, as
well as ensemble methods.

2.1. Definitions

2.1.1. God Class
A God Class or Blob, is a class that tends to centralize most

of the system’s intelligence, and implements a high number of re-
sponsibilities. It is characterized by the presence of a large num-
ber of attributes, methods and dependencies with data classes (i.e.,
classes only used to store data in the form of attributes that can be
accessed via getters and setters). Thus, assigning much of the
work to a single class, delegating only minor operations to other
small classes causes a negative impact on program comprehension

[1] and reusability. The alternative refactoring operation com-
monly applied to remove this anti-pattern is called Extract Class
Refactoring and consists in splitting the affected God Class into
several more cohesive smaller classes [13].

2.1.2. Feature Envy
A method that is more interested in the data of another class

(the envied class) than that of the class it is actually in. This anti-
pattern represents a symptom of the method’s misplacement, and
is characterized by a lot of accesses to foreign attributes and meth-
ods. The main consequences are an increase of coupling and a
reduction of cohesion, because the affected method often imple-
ments responsibilities more related to the envied class with respect
to the methods of its own class. This anti-pattern is commonly re-
moved using Move Method Refactoring, which consists in moving
all or parts of the affected method to the envied class [13].

2.2. Rule Based Approaches

The first attempts to detect components affected by anti-patterns
have focused on the definition of rule-based approaches which rely
on some metrics to capture deviations from good object-oriented
design principles. First, Marinescu [29] presented detection strat-
egy, a metric-based mechanism for analyzing source code mod-
els and detect design fragments. They illustrate this methodol-
ogy step by step by defining the detection strategy for God Class.
Later, Lanza and Marinescu [24] formulated the detection strate-
gies for 11 anti-patterns by designing a set of metrics, along with
thresholds, for each anti-pattern. These metric–threshold pairs are
then logically combined using AND/OR operators to create the fi-
nal detection rule. These heuristics have been implemented inside
Eclipse plug-ins such as InCode [30].

Similar to the approach described above, Moha et al. [33]
proposed DECOR (DEtection and CORrection of Design Flaws)
which relies on a systematic analysis of the definitions of code
and design smells in the literature. They propose templates and a
grammar to encode these smells and generate detection algorithms
automatically. They applied their approach to four design anti-
patterns (God Class, Functional Decomposition, Spaghetti Code,
and Swiss Army Knife) and their 15 underlying code smells. Their
detection approach takes the form of a “Rule Card” that encodes
the formal definition of design anti-patterns and code smells. In
this context, the identification of components affected by a God
Class is based on both structural and lexical information.

Other approaches rely on the identification of refactoring op-
portunities to detect anti-patterns. Based on this consideration, in-
stances of a given anti-pattern can be detected in a system by look-
ing at the opportunities to apply the corresponding refactoring op-
eration. In this context, Fokaefs et al. [10] proposed an approach
to detect God Classes in a system by suggesting a set of Extract
Class Refactoring operations. This set of refactoring opportuni-
ties is generated in two main steps. First, they identify cohesive
clusters of entities (i.e., attributes and methods) in each class of

2

the system, that could then be extracted as separate classes. To do
so, the Jaccard distance is computed among each class members
(i.e., entities). The Jaccard distance between two entities ei and e j

measures the dissimilarity between their respective “entity sets”
S i and S j and is computed as follows:

dist(ei, e j) = 1 −
|S i ∩ S j|

|S i ∪ S j|
(1)

For a method, the “entity set” contains the entities accessed by
the method, and for an attribute, it contains the methods access-
ing this attribute. Then, cohesive groups of entities are identified
using a hierarchical agglomerative algorithm on the information
previously generated. In the second step, the potential classes to
be extracted are filtered using a set of rules, to ensure that the be-
havior of the original program is preserved. Later, this approach
has been implemented as an Eclipse plug-in called JDeodorant
[9].

Similarly, methods that can potentially be moved to another
class are presented to the software engineer as potential Feature
Envy methods. In this context, Tsantalis and Chatzigeorgiou [41]
proposed an approach for automatic suggestions of Move Method
Refactoring. First, for each method m in the system, a set of can-
didate target classes T is created by examining the entities that are
accessed in the body of m. Second, T is sorted according to two
criteria: (1) the number of entities that m accesses from each target
class of T in descending order and; (2) the Jaccard distance from
m to each target class in ascending order if m accesses an equal
number of entities from two or more classes. In this context, the
Jaccard distance between an entity e and a class C is computed as
follows:

dist(e,C) = 1 −
|S e ∩ S C |

|S e ∪ S C |
where S c =

⋃
e∈C

{e} (2)

With S e the entity set of a method defined in Equation 1. Third,
T is filtered under the condition that m must modify at least one
data structure in the target class. Fourth, they suggest to move
m to the first target class in T that satisfies a set of preconditions
related to compilation, behavior, and quality. This algorithm is
also implemented in the Eclipse plug-in JDeodorant [8].

Anti-patterns can also impact how source code entities evolve
with one another over time, when changes are applied to the sys-
tem. Based on such consideration, Palomba et al. [36, 34] pro-
posed HIST (Historical Information for Smell deTection), an ap-
proach to detect anti-patterns using historical information derived
from version control systems (e.g., Git, SVN). They applied their
approach to the detection of five anti-patterns: Divergent Change,
Shotgun Surgery, Parallel Inheritance, God Class and Feature
Envy. The detection process followed by HIST consists of two
steps. First, historical information is extracted from versioning
systems using a component called the change history extractor
which outputs the sequence of changes applied to source code en-
tities (i.e., classes or methods) through the history of the system.

Second, a set of rules is applied to this so produced sequence to
identify occurrences of anti-patterns. For instance, Feature Envy
methods are identified as those “involved in commits with meth-
ods of another class of the system β % more than in commits with
methods of their class”. The value of β being set to 80% after
parameters calibration.

2.3. Machine Learning Based Approaches

Kreimer [22] proposed the use of decision trees to identify oc-
currences of God Class and Long Method. Their model relies on
the number of fields, number of methods, and number of state-
ments as decision criteria for God Class detection and have been
evaluated on two small systems (IYC and WEKA). This observa-
tion has been confirmed 10 years later by Amorim et al. [2] who
extended this approach to 12 anti-patterns.

Khomh et al. [20, 21] presented BDTEX (Bayesian Detection
Expert), a metric based approach to build Bayesian Belief Net-
works from the definitions of anti-patterns. This approach has
been validated on three different anti-patterns (God Class, Func-
tional Decomposition, and Spaghetti Code) and provides a prob-
ability that a given entity is affected instead of a boolean value
like other approaches. Following, Vaucher et al. [42] relied on
Bayesian Belief Networks to track the evolution of the“godliness”
of a class and thus, distinguishing real God Classes from those
that are so by design.

Maiga et al. [27, 28] introduced SVMDetect, an approach based
on Support Vector Machines to detect four well known anti-
patterns: God Class, Functional Decomposition, Spaghetti code,
and Swiss Army Knife. The input vector fed into their classifier
for God Class detection is composed of 60 structural metrics com-
puted using the PADL meta-model [16].

Fontana et al. [12] performed the largest experiment on the ef-
fectiveness of machine learning algorithms for smell detection.
They conducted a study where 16 different machine learning al-
gorithms were implemented (along with their boosting variant)
for the detection of four smells (Data Class, God Class, Feature
Envy, and Long Method) on 74 software systems belonging to the
Qualitas Corpus dataset [40]. The experiments have been con-
ducted using a set of independent metrics related to class, method,
package and project level as input information and the datasets
used for training and evaluation have been filtered using an under-
sampling technique (i.e., instances have been removed from the
original dataset) to avoid the poor performances commonly re-
ported from machine learning models on imbalanced datasets.
Their study concluded that the algorithm that performed the best
for both God Class and Feature Envy was the J48 decision tree al-
gorithm with an F-measure close to 100%. However, Di Nucci et
al. [6] replicated their study and highlighted many limitations. In
particular, the way the datasets used in this study have been con-
structed is strongly discussed and the performances achieved after
replication were far from those originally reported.

3

More recently, Liu et al. [25] proposed a deep learning based
approach to detect Feature Envy. Their approach relies on both
structural and lexical information. On one side, the names of
the method, the enclosing class (i.e., where the method is imple-
mented) and the envied class are fed into convolutional layers.
On the other side, the distance presented in Equation 2 is com-
puted for both the enclosing class (dist(m, ec)) and the target class
(dist(m, tc)), and values are fed into other convolutional layers.
Then the output of both sides is fed into fully-connected layers
to perform classification. To train and evaluate their model, they
use an approach similar to Moghadam and Ó Cinnéide [32] where
labeled samples are automatically generated from open-source ap-
plications by the injection of affected methods. These methods as-
sumed to be correctly placed in the original systems are extracted
and moved into random classes to produce artificial Feature Envy
occurrences (i.e., misplaced methods).

2.4. Ensemble Methods

Ensemble methods aim at aggregating multiple classifiers in or-
der to improve the classification performances. Ensemble meth-
ods are commonly used in the literature as Boosting techniques
[38], i.e., a function is applied to the output of various machine-
learning based classifiers trained independently. We found no ex-
isting ensemble method proposed for anti-patterns detection, as
most of the existing detection approaches rely on manually de-
fined rules. However, two ensemble methods proposed in the con-
text of Bug prediction can be applied to our problem. These meth-
ods aim at aggregating the output of multiple machine-learning
based classifiers (e.g., Support Vector Machine, Multi-layer Per-
ceptron, Decision Tree) trained to predict the bug-proneness of
software components.

First, Liu et al. [26] proposed Validation and Voting, which con-
sists in considering a majority vote over the outputs of the classi-
fiers. Second, Di Nucci et al. [5] proposed ASCI (Adaptive Selec-
tion of Classifiers in bug predIction), an adaptive method which
uses a decision tree algorithm to dynamically predict which clas-
sifier is the best for each code component to be classified. The
workflow of ASCI is organised as follows: Given a training set
T of instances (i.e., code components) and their associated labels
(i.e., buggy or not buggy), each classifier is experimented against
T . Then a new training set T ∗ is created by labelling each input
instance with the information about the classifier which correctly
identified its bug-proneness. Then a decision tree is trained on T ∗

to predict the best classifier for each input instance.

3. SMAD: SMart Aggregation of Anti-patterns Detectors

3.1. Problem Definition

Let us consider D anti-patterns detection tools d1, d2, ..., dD per-
forming a boolean prediction over the entities (i.e., classes or
methods) of a software system based on some internal detection

rule. We refer to as di(e) ∈ {True, False} the boolean prediction
of the ith detection tool on an entity e.

We want to combine these approaches to maximize the
Matthew’s Correlation Coefficient (MCC) (cf. Equation 5) of the
so-produced “merged” prediction over the entities of the studied
system. Thus, we want to find a function of the D approaches that
outputs an improved prediction on any software system S . Which
can be expressed as:

f (d1, d2, ..., dD, e) ∈ {True, False}

and

MCC(f (d1, d2, ..., dD, S)) ≥ max
i

MCC(di(S)), ∀S

3.2. Overview
The proposed method SMAD allows to combine various detec-

tion approaches on the basis of their internal detection rule instead
of their output. Indeed, the internal detection process of any rule
based approach relies on some structural or historical metrics (i.e.,
core-metrics) that can be computed for any entity to be classified.
Thus, the key idea behind SMAD is to compute the core-metrics
of various approaches for each input entity and use these metrics
to feed a machine-learning based classifier. First, for each anti-
pattern considered in this study, we selected three state-of-the-art
detection tools to be aggregated. These tools respectively rely on:

• Rule Cards: Affected entities are identified using a combi-
nation of source-code metrics designed to reflect the formal
definition of the anti-patterns. For this category, we selected
DECOR [33] for God Class and InCode [30] for Feature
Envy detection.

• Historical Information: Affected entities are identified via an
analysis of change history information derived from version-
ing systems. For this category, we used HIST [36, 34] for
both God Class and Feature Envy detection.

• Refactoring Opportunities: Anti-patterns are detected by
identifying the opportunities to apply their corresponding
refactoring operations. For this category, we used the refac-
toring operations Extract Class [10] and Move Method [41]
provided by JDeodorant, respectively for God Class and Fea-
ture Envy detection.

Selecting tools that are based on different strategies allows us to
expect a high complementarity of the aggregated approaches and
thus, maximize the expected performances of our method. Then,
we selected the core metrics, i.e., metrics that reflect best the inter-
nal decision process of each tool, as input features for our model.
The classifier used by SMAD to predict whether an entity is an
anti-pattern or not is a Multi-layer Perceptron (MLP), i.e., a fully-
connected feed-forward neural-network. This model is composed
of tanh dense hidden layers connected to a sigmoid output layer.
Fig. 1 overviews our approach.

4

Figure 1: Overview of SMAD Detection Process

3.3. Input

3.3.1. Metrics for God Class Detection
For God Class detection, we extract six core metrics from the

three detection tools considered in this study. These metrics are
computed for each class of a system.

DECOR:. The internal detection rule relies on the definition of
four code and design smells and can be expressed as: “(is asso-
ciated to many DataClass) AND is a (ControllerClass OR Large-
Class OR LowCohesionClass)”. These smells are defined using
structural and lexical metrics along with some thresholds: (1) Dat-
aClass relies on the number of accessors, (2) ControllerClass re-
lies on lexical properties, (3) LargeClass relies on the sum of the
NMD and NAD metrics (Number of Methods Declared + Num-
ber of Attributes Declared), and (4) LowCohesionClass relies on
the LCOM metric (Lack of Cohesion in Methods) [4]. Thus, we
extracted four core metrics from DECOR internal detection rule
for God Class:

• Number of associated DataClass

• JControllerClassK

• nmd nad

• lcom

with JK a boolean variant of the kronecker delta defined in Equa-
tion 11, nmd nad and lcom are the uppercase metrics divided by
their respective threshold. The value of these thresholds depends
on the systems characteristics and can be computed through the
Ptidej API 1.

1https://github.com/ptidejteam/v5.2

HIST:. God Classes are identified as: “classes modified (in any
way) in more than α% of commits involving at least another
class”. Thus, we extracted one core metric from HIST internal
detection rule for God Class:

• Ratio between the number of commits in which the consid-
ered class has been modified along with other classes and the
number of commits involving other classes of the system.

JDeodorant:. God Classes are classes from which a concept (i.e.,
a subclass) can be extracted. Formally, a concept is defined as:
“a distinct entity or abstraction for which a single class provides a
description and/or a set of attributes and methods that contribute
together to the same task”. We define our core metric for JDeodor-
ant as:

• Number of concepts that can be extracted from the consid-
ered class.

3.3.2. Metrics for Feature Envy Detection
A Feature Envy is characterized by two source code compo-

nents: a method (i.e., the envious method) and a class (i.e., the
envied class). Hence, in a given system, the number of potential
entities that must be investigated is equal to nm×(nc−1) with nc and
nm respectively the numbers of classes and methods in the system.
To reduce this number, we filter the studied system at both class
and method level, similarly to Tsantalis and Chatzigeorgiou [41].
First, we consider as potential envious methods only non-static
and non-accessor methods. Then, for each of the remaining meth-
ods, we consider as potential envied classes only classes that are
accessed in some way in the body of the method. We extract seven
core metrics from the three considered detection tools.

InCode:. Methods are identified as being envious without infor-
mation about the envied class. In this context, a method is de-
clared affected if: (1) “it uses directly more than a few attributes
of other classes” (ATFD > FEW), (2) “it uses far more attributes
from other classes than its own” (LAA < ONE THIRD), and (3)
“the used “foreign” attributes belong to very few other classes”
(FDP ≤ FEW). We redefined the first two metrics to express infor-
mation about the envied class, which led us to three core metrics:

• ATFD (Access To Foreign Data), i.e., number of attributes of
the envied class accessed by the method.

• LAA (Locality of Attribute Accesses), i.e., ratio between the
number of accesses to attributes that belongs to the envied
class vs. the enclosing class.

• FDP (Foreign Data Providers), i.e., number of distinct for-
eign classes whose attributes are accessed by the method.

5

HIST:. Feature Envy methods are identified as: “methods in-
volved in commits with methods of another class of the system
β% more than in commits with methods of their class”. Thus,
we extract one core metric from HIST internal detection rule for
Feature Envy:

• Ratio between the number of commits involving the consid-
ered method and methods of the envied class vs. methods of
the enclosing class.

JDeodorant:. For each method m in the system, a set of candidate
target classes T is created and sorted based on: (1) the number of
entities (methods or attributes) that m accesses from each class
of T and (2) the Jaccard distance (cf. Equation 2) between m and
each target class. Then, JDeodorant suggests to move m to the first
target class that satisfies a set of preconditions related to compila-
tion, behavior, and quality. We extracted three core-metrics, which
can be expressed as:

• Ratio between the number of accesses to entities that belong
to the envied class vs. enclosing class.

• Ratio between the Jaccard distance from the method to the
envied class vs. enclosing class.

• Boolean value indicating whether the Move Method Refac-
toring operation has been proposed by JDeodorant or not.

3.4. Replication Package

To facilitate further evaluation and reuse of our work, all the
data used in this study is publicly available2. Our replication pack-
age includes: (1) the oracle; (2) the source code of our model; (3)
the scripts used to generate our data; and, (4) the implementation
of our experiments. Furthermore, we created a component called
repositoryMiner to extract automatically all the necessary data to
test or train our model on new systems.

4. Methodology

This section describes the data used to run our experiments,
the metrics used to assess the performances of the different ap-
proaches investigated in this work, as well as the methodology
used for training neural-networks to detect anti-patterns.

4.1. Building a Reliable Oracle

To train and evaluate the performances of SMAD, as well as
to compare it with competing classifiers, we needed an oracle re-
porting the occurrences of the two studied anti-patterns in a set of
software systems. Unfortunately, we found no such large dataset
in the literature. Indeed, creating a large oracle for anti-patterns is

2https://github.com/antoineBarbez/SMAD/

a painful process that requires weeks of manual source code anal-
ysis, which explains the unavailability of such data. Hence, we
created our oracle following a different procedure for each of the
two anti-patterns.

For God Class, we found two sets of manually-detected
occurrences in open-source Java systems, respectively from
DECOR [33] and HIST [36] replication packages34. Thus, we
created our oracle from these sets under two constraints: (1) the
full history of the system must be available through Git or SVN,
and (2) the occurrences reported must be relevant, i.e., we kept
only the systems for which we agreed with the occurrences tagged.
After filtering, over the 15 systems available in these replication
packages, we retained eight to construct our oracle.

For Feature Envy, most of the approaches proposed in the litera-
ture are evaluated on artificial occurrences, i.e., methods assumed
to be correctly placed in the original systems, are then extracted
and moved into random classes to produce Feature Envy occur-
rences (i.e., misplaced methods) [32, 39, 25]. However, our ap-
proach partially relies on the history of code components. There-
fore, such artificial occurrences are not usable because they have
been willingly introduced in the considered systems’ snapshot.
Thus, we had to build manually our own oracle.

First, we formed a set of 779 candidate Feature Envy occur-
rences over the eight subject systems by merging the output of
three detection tools (HIST, InCode, and JDeodorant), adjusting
their detection thresholds to produce a number of candidate per
system proportional to the systems sizes. Second, three differ-
ent groups of people manually checked each candidate of this
set: (1) the authors of this paper, (2) nine M.Sc. and Ph.D. stu-
dents, and (3) two software engineers. We gave them access
to the source code of the enclosing classes (where the methods
were defined) and the potential envied classes. After analyzing
each candidate, we asked respondents to report their confidence in
the range [strongly approve, weakly approve, weakly disapprove,
strongly disapprove]. To avoid any bias, none of the respondent
was aware of the origin of each candidate. We made the final de-
cision using a weighted vote over the reported answers. First we
assigned the following weights to each confidence level:

strongly approve → 1.00 weakly disapprove → 0.33
weakly approve → 0.66 strongly disapprove → 0.00

Then, a candidate is considered as a Feature Envy if the mean
weight of the three answers reported for this occurrence is greater
than 0.5.

Table 1 reports, for each system, the number of God Classes,
the number of produced Feature Envy candidates, and the number
of Feature Envy retained after manual-checking.

3http://www.rcost.unisannio.it/mdipenta/papers/ase2013/
4http://www.ptidej.net/tools/designsmells/materials/

6

Table 1: Characteristics of the Oracle

System name #God Class #Candidate FE #Feature Envy
Android Opt Telephony 11 62 18
Android Support 4 21 2
Apache Ant 7 110 25
Apache Lucene 4 42 4
Apache Tomcat 5 173 57
Apache Xerces 15 129 37
ArgoUML 22 144 24
Jedit 5 98 22
Total 73 779 189

4.2. Studied Systems

The context of our study consists of the eight open-source Java
software systems presented in Table 1, which belong to various
ecosystems. Two systems belong to the Android APIs5: An-
droid Opt Telephony and Android Support. Four systems be-
long to the Apache Foundation6: Apache Ant, Apache Tomcat,
Apache Lucene, and Apache Xerces. Finally, one free UML de-
sign software: ArgoUML7 and one text editor: Jedit8 available
under GNU General Public License9. Without loss of generaliz-
ability, we chose to analyze only the directories that implement
the core features of the systems and to ignore test directories. Ta-
ble 2 reports for each system, the Git identification (SHA) of the
considered snapshot, its age (i.e., number of commit) and its size
(i.e., number of class).

Table 2: Characteristics of the Studied Systems

System name Snapshot Directory #Commit #Class
Android Opt Telephony c241cad src/java/ 98 192
Android Support 38fc0cf v4/ 195 109
Apache Ant e7734de src/main/ 6397 694
Apache Lucene 39f6dc1 src/java/ 429 155
Apache Tomcat 398ca7ee java/org/ 3289 925
Apache Xerces c986230 src/ 3453 512
ArgoUML 6edc166 src new/ 5559 1230
Jedit e343491 ./ 1181 423

As explained in Section 4.1, the choice of these systems has
been motivated by the need of manually-detected occurrences of
God Class. However, they have been used in prior studies for a
similar purpose. Consequently they belong to various domains
and as shown in Table 2, they have different sizes and history
lengths which comfort us for the generalization of our findings.

5https://android.googlesource.com/
6https://www.apache.org/
7http://argouml.tigris.org/
8http://www.jedit.org/
9https://www.gnu.org/

4.3. Evaluation Metrics
To compare the performances achieved by different approaches

on the studied systems, we consider each approach as a binary
classifier able to perform a boolean prediction on each entity of the
system. Thus, we evaluate their performances using the following
confusion matrix:

Table 3: Confusion Matrix for Anti-patterns Detection

predicted

to
ta

l

1 0

tr
ue 1 T P FN npos

0 FP T N nneg

total mpos mneg n

With (T P) the number of true positives; (FN) the number of
false negatives (or misses); (FP) the number of false positives and
(T N) the number of true negatives. Also, we note mpos and mneg

respectively the number of entities positively and negatively la-
beled by a classifier; npos and nneg respectively the number of af-
fected and healthy entities in a system ; and n the total number of
entities in the system. Then, based on this matrix, we compute the
widely adopted precision and recall metrics:

precision =
T P

T P + FP
(3) recall =

T P
T P + FN

(4)

Although these two metrics express relevant information about
the classification performances, our evaluation of the classifiers
investigated in this work should not rely solely on them. Indeed,
commonly used evaluation metrics such as precision, recall or F-
measure can be biased due to the fact that the positive and nega-
tive classes are of different sizes [37]. For this reason and to ob-
tain a single aggregated evaluation metric, we also compute the
Matthews Correlation Coefficient (MCC) [31], which has been
shown to limit the bias mentioned above and provide a more ac-
curate description of the confusion matrix [37]:

MCC =
T P × n − npos × mpos

√
npos × mpos × nneg × mneg

(5)

4.4. Training
Here, we discuss the considerations adopted to train neural-

networks on the task of anti-patterns detection. We consider
training a multi-layer feed-forward neural-network to assign a
boolean value to the entities of a system. First, the training set
D = {(xi, yi)}ni=1 contains the instances and labels associated to
each entity of the training systems. With xi the input vector (i.e.,
instance) corresponding to the ith entity, yi ∈ {0, 1} the true label
for this entity and n the size (i.e., number of entities) of the train-
ing set. Second, we refer to the set of weights of the network as

7

θ = {wl}
L
l=1, with wl being the weight matrix of the lth layer and L

the number of layers in the network. Finally, we refer to the output
of the neural network corresponding to the positive label, i.e., the
predicted probability that an entity is affected as:

Pθ(1|xi) = g(xi.θ) (6)

With g the sigmoid function:

g(x) =
1

1 + e−x (7)

4.4.1. Custom Loss Function
Software systems are usually affected by a small proportion of

anti-patterns (< 1%) [35]. As a consequence, the distribution
of labels within a dataset containing software system entities is
highly imbalanced. Such imbalanced dataset compromises the
performances of models optimized using conventional loss func-
tions [17]. Indeed, the conventional binary cross entropy loss
function maximizes the expected accuracy on a given dataset ,i.e.,
the proportion of instances correctly labeled. In the context of
anti-patterns, the use of this loss function lead to useless models
that assign the majority label to all input instances, thus maximiz-
ing the overall accuracy (> 99%) during training. To overcome
this issue, we must define a loss function that reflects our training
objective (i.e., finding the set of weights θ∗ that maximizes the
MCC achieved on the training set) which can be expressed as:

θ∗ = argmax
θ

MCC(θ,D) (8)

Which can be addressed through gradient descent by consider-
ing a loss: L = −MCC. However, to compute the gradient of the
loss, we need it to be a continuous and differentiable function of
the weights θ. As defined in Equation 5, the MCC does not meet
this criterion, which prevents its direct use to define our loss func-
tion. Indeed, computing the number of true positives (T P) and
positives (mpos) (cf. Table 3) requires counting elements from the
output probability of the model, which necessarily involves dis-
continuous operators:

T P(θ,D) =

n∑
i=1

yi=+1

δ(Pθ(1|xi) > 0.5) (9)

mpos(θ,D) =

n∑
i=1

δ(Pθ(1|xi) > 0.5) (10)

With:

δ(x) =

{ 1 if x=True
0 if x=False (11)

To define a continuous and differentiable approximation of the
MCC, we proceed similarly to the approach proposed by Jan-
sche [18] to maximize the expected F-measure through logistic
regression, which relies on the following limit:

δ(Pθ(1|xi) > 0.5) = lim
γ→+∞

g(γxi.θ) (12)

Thus, to calculate the loss of our model, we compute the MCC
as expressed in Equation 5 using the identity mneg = n − mpos, as
well as the following approximations:

T P(θ,D) ≈
n∑

i=1
yi=+1

g(γxi.θ) with γ > 0 (13)

mpos(θ,D) ≈
n∑

i=1

g(γxi.θ) with γ > 0 (14)

Note that the value of the hyper-parameter γ will be adjusted
during the tuning of our model.

4.4.2. Regularization
Regularization is a way to prevent a statistical model to learn

specific and irrelevant features of its training data, which is known
as “overfitting”. To help our model to generalize to new examples
and prevent overfitting, we use the widely adopted L2 regulariza-
tion technique.

L2 regularization consists in adding a term to the loss function
to encourage the weights to be small [44]. This term is propor-
tional to the sum of the Euclidean norm of the weight matrices,
i.e., ‖w‖2 =

√
w>w, also called L2-norm. Thus, the L2 regulariza-

tion term added to the loss function can be expressed as:

L2 = λ

L+1∑
l=1

‖wl‖2 (15)

With λ ∈ R an hyper-parameter adjusted during cross-
validation.

4.4.3. Boosting
Before starting to train a neural-network on a given dataset,

the values of each weight of the network must me set to an ini-
tial value, which is called weight initialization. In practice, the
weights are often initialized randomly following a Gaussian dis-
tribution whose parameters (i.e., mean and standard deviation) de-
pend on the network’s shape [14]. As a consequence, two neural
networks trained identically may achieve different performances
due to the randomness of their initialization. To limit this phe-
nomenon, several networks are trained separately and the final
prediction is computed from the output of each classifier, which
is commonly referred to as boosting or ensemble learning. Be-
side stabilizing the output of the model, such technique has been
shown to improve the overall performances and even to lead to
better results than those of each independent classifier [7]. In the
context of this study, we used the widely adopted Bayesian aver-
aging heuristic to compute the ensemble prediction of the model
from the output of several independently trained networks (10 in

8

our study). This heuristic simply consists in taking the average of
the probabilities outputed by the different classifiers.

5. Evaluation of the Detection Performances

In this section, we address the evaluation of SMAD in detecting
the two anti-patterns considered in this study. We answer the two
following research questions:

• RQ1: Does SMAD outperform standalone detection tools?

• RQ2: Does SMAD outperform other ensemble methods?

5.1. Study Design
The goal of this study is to evaluate the proposed ensemble

method on both God Class and Feature Envy. We compare SMAD
to the standalone detection tools aggregated through our approach
as well as to other ensemble methods. To assess the performances
of the respective approaches on each subject system, we rely on
a leave-one-out cross validation. Consequently, for each of the
eight systems presented in Table 2, we leave this system out for
testing while keeping the other seven for hyper-parameters tuning
and training.

To run the standalone tools on the evaluation systems (RQ1),
we used their publicly-available implementations whenever pos-
sible and replicated the approaches for which no implementa-
tion was available. Thus, we ran DECOR using the Ptidej API10

and JDeodorant using its Eclipse plug-in11. We implemented
the detection rules for HIST as described in the original paper
[36]. InCode Eclipse plug-in is no longer available and we re-
implemented its detection rule as described in the original book
[24] to retrieve also information about the envied class, as ex-
plained in Section 3.3.2.

To answer RQ2, we choose to compare SMAD to the vot-
ing technique and the method ASCI proposed by Di Nucci et
al. [5]. We selected these two techniques because, to the best of
our knowledge, other ensemble methods are specific to machine-
learning classifiers and cannot be adapted to our problem. Fur-
thermore, these two techniques have been shown to achieve state-
of-the-art results in the context of bug prediction [43, 26, 5]. How-
ever, one must note that these methods are originally used to ag-
gregate the output of several pre-trained machine learning classi-
fiers while in this study, we use them to combine anti-patterns de-
tection tools. The voting technique predicts an entity as affected if
it has been detected by at least k classifiers. We call k the policy of
the vote. This parameter has been tuned before conducting our ex-
periments, contrary to the Validation and Voting method proposed
by Liu et al. [26], which uses a majority voting policy (k = 2 in
our case). The ASCI method uses a decision tree algorithm to

10https://github.com/ptidejteam/v5.2/
11https://marketplace.eclipse.org/content/jdeodorant/

Table 4: Hyper-parameters Tuning

Model Hyper-parameter Range

SMAD

η 10−[0.0;2.5]

λ 10−[0.0;2.5]

γ [1; 10]
num hidden layers [1; 3]
hidden layers sizes [4; 100] then [4; s]

ASCI

max f eatures {sqrt, log2,None}
max depth 10 × [1; 10]
min samples lea f [1; 5]
min samples split 10−[1.0;4.0]

Vote k [1; 3]
HIST (FE) α From 100% to 300% by 5%
HIST (GC) β From 0% to 20% by 0.5%

InCode
TAT FD [1; 5]
TLAA [1; 5]
TFDP [1; 5]

With s the size of the previous dense layer.

predict the best classifier for each entity given its characteristics.
Then, an entity is declared as affected according to the classifier
selected by ASCI for this entity. Regarding the input of the deci-
sion tree, i.e., the characteristics of the entities, we used the same
metrics used for SMAD and presented in Section 3.3. Also, simi-
larly to a neural-network, a decision tree is subject to variations in
its prediction from one training to another. Hence, to compute the
performances of ASCI, we use the same boosting technique used
for SMAD and explained in Section 4.4.3.

5.2. Hyper-parameters Tuning

Before computing the performances achieved by each approach
on a given system, we first calibrate its hyper-parameters when-
ever necessary. As explained in the previous subsection, this cal-
ibration is performed using instances of the seven remaining sys-
tems. The number of hyper-parameters to be tuned for SMAD
and ASCI makes it impossible to perform an exhaustive search,
thus we relied on a random search (200 random generations).
This technique has shown to be more efficient than grid search
on similar multi-dimensional optimization problems [3]. For these
two approaches, we evaluate the performances achieved with each
hyper-parameters’ combination by carrying out a leave-one-out
cross-validation. At each iteration, we thus keep instances of six
systems for training (100 epochs) and use the remaining one as a
validation set. We finally keep the hyper-parameters that led to the
best overall MCC on the validation sets.

For SMAD, we tuned five hyper-parameters: the learning rate
(η), the L2 regularization weight (λ), the parameter γ of our
loss function (cf. Section 4.4.1), the number of hidden layers,
and the number of neurons per hidden layer. Finally, the two
models used for experiments (i.e., one model per anti-pattern)
have been trained during 120 epochs with an exponential learn-

9

Table 5: Overall Performances

Approaches God Class Feature Envy
Precision Recall MCC Precision Recall MCC

Rule Card 28% 47% 35% 45% 54% 49%

HIST 53% 14% 26% 2% 8% 2%

JDeodorant 8% 47% 16% 38% 47% 42%

Vote 34% 32% 32% 12% 41% 22%

ASCI 27% 26% 25% 48% 54% 51%

SMAD 45% 51% 46% 40% 80% 56%

ing rate decay of 0.5 at the 100th epoch. For ASCI, we tuned
four hyper-parameters: the number of features to consider for
a split (max f eatures), the maximum depth of the decision tree
(max depth), the minimum number of samples required to be at
a leaf node (min samples lea f) and the minimum proportion of
samples required to split an internal node (min samples split). As
explained in Section 5.1, for the voting technique, we tuned one
single parameter: the policy of the vote (k).

Although we followed rigorously the guidelines given by the
authors of HIST and InCode when reimplementing these tools,
some differences may remain between our respective implemen-
tations. Such differences could affect the optimal values of their
parameters. Thus, we performed an additional parameter tuning
for these tools. For HIST we tuned the parameters α and β re-
spectively related to Feature Envy and God Class detection (cf.
Section 3.3), while for InCode, we tuned the thresholds related to
the metrics ATFD, LAA and FDP (TAT FD, TLAA and TFDP). Ta-
ble 4 reports for each approach investigated, the hyper-parameters
that have been tuned, as well as the ranges of values experimented.

5.3. Analysis of the Results

Table 6 reports the results of our experiments for God Class
while Table 7 reports our results for Feature Envy. Our results
report the performances on the eight subject systems, in terms of
precision, recall, and MCC, achieved by: (1) the three detection
tools used for aggregation; (2) the two competing ensemble meth-
ods: Vote and ASCI; and, (3) SMAD. Note that a ”–” is indicated
in the cells where it was not possible to compute a metric, e.g.,
when an approach did not detect any occurrence. To resume our
results, Table 5 reports the overall performances achieved by each
approach for God Class and Feature Envy. The overall perfor-
mances are computed by merging the instances of the eight subject
systems, as if they belonged to a single one.

5.3.1. Does SMAD outperform standalone detection tools?
For God Class detection, SMAD shows a precision of 45%, a

recall of 51% and a Matthew’s Correlation Coefficient of 0.46 on
overall over the subject systems. Thus, the proposed ensemble

method clearly outperforms the three approaches used for aggre-
gation. Specifically, the overall MCC improves by 45% in com-
parison to the tool that performed the best (DECOR with 0.35).
Considering the performances achieved on each system, we can
see that SMAD achieves poor performances on the first system
(Android Telephony) due to our model over-fitting its training
data. However on the remaining seven systems the proposed
method shows a MCC ranging between 0.46 and 0.70, which
confirms that SMAD performs well independently of the systems
characteristics. On the contrary, the competing tools show wider
ranges of MCC and achieve poor performances on several sys-
tems. However, the low performances reported for JDeodorant
(especially precision) can be due to this tool relying on a different
definition of God Class than others. Indeed, affected entities are
detected only if opportunities to split them are identified.

For Feature Envy detection, SMAD achieves on overall a pre-
cision of 40% and a recall of 80% leading to an MCC of 0.56.
We observe better performances in terms of MCC achieved by the
static code analysis tools (0.49 by InCode and 0.42 by JDeodorant)
than for God Class detection and low results for HIST. These re-
sults show that SMAD outperforms the standalone tools when de-
tecting Feature Envy with an overall MCC 14% higher than that of
the tool that performed the best (InCode). Similarly to God Class,
SMAD shows acceptable performances on every systems with an
MCC ranging between 0.32 and 0.82. It is important to highlight
that when replicating HIST’s rule for Feature Envy detection, we
used a different component12 to extract changes at method level
than that of the original approach because the original component
is supposedly unavailable because of its license. We are aware that
such difference could affect the reported performances.�

�

	
SMAD significantly outperforms the standalone detection
tools in detecting God Class and Feature Envy. Furthermore,
our results indicate that SMAD performs well independently
of the systems characteristics.

5.3.2. Does SMAD outperform other ensemble methods?
We report the results of our study aiming to compare the per-

formances of SMAD with those of the two competing ensemble
methods considering God Class and Feature Envy independently
in turn. For God Class, we can see that our method outperforms
on overall both the voting technique and ASCI in terms of pre-
cision, recall and MCC. Indeed, for this anti-pattern none of the
competing ensemble method seems to improve the performances
of the aggregated tools. However when looking at the perfor-
mances achieved on each system, we observe that contrary to
ASCI, the voting technique has the advantage of showing an ac-
ceptable MCC for every systems. However, we must notice that in

12http://www.incava.org/projects/diffj

10

Table 6: Performances per System for God Class

Approaches Android Telephony Android Support Apache Ant Apache Lucene
Precision Recall MCC Precision Recall MCC Precision Recall MCC Precision Recall MCC

DECOR 17% 9% 8% – 0% – 14% 43% 24% 100% 25% 50%

HIST 75% 55% 62% 100% 50% 70% – 0% – – 0% –

JDeodorant 17% 36% 18% 33% 25% 26% 3% 57% 11% 7% 25% 9%

Vote 75% 27% 44% 100% 25% 49% 13% 29% 18% 100% 25% 50%

ASCI 17% 9% 8% – 0% – 27% 43% 33% 100% 25% 50%

SMAD 0% 0% -4% 100% 50% 70% 36% 71% 50% 67% 50% 57%

Approaches Apache Tomcat Apache Xerces ArgoUML Jedit
Precision Recall MCC Precision Recall MCC Precision Recall MCC Precision Recall MCC

DECOR 67% 40% 52% 54% 100% 72% 21% 41% 27% 17% 60% 30%

HIST – 0% – – 0% – – 0% – 22% 40% 29%

JDeodorant 2% 60% 10% 18% 47% 26% 18% 50% 28% 5% 60% 15%

Vote 100% 20% 45% 54% 47% 49% 35% 27% 30% 13% 40% 22%

ASCI 100% 20% 45% 100% 20% 44% 20% 32% 24% 23% 60% 36%

SMAD 26% 100% 51% 63% 67% 64% 53% 41% 46% 44% 80% 59%

Table 7: Performances per System for Feature Envy

Approaches Android Telephony Android Support Apache Ant Apache Lucene
Precision Recall MCC Precision Recall MCC Precision Recall MCC Precision Recall MCC

InCode 39% 75% 54% 100% 50% 71% 67% 46% 55% 100% 67% 82%

HIST 0% 0% -1% 0% 0% -1% 1% 5% 1% 0 0% -1%

JDeodorant 67% 33% 47% 100% 50% 71% 43% 59% 50% 0% 0% -1%

Vote 100% 8% 29% 20% 100% 44% 67% 9% 25% 8% 67% 23%

ASCI 44% 100% 66% 100% 50% 71% 60% 41% 49% 67% 67% 67%

SMAD 50% 83% 64% 67% 100% 82% 37% 86% 56% 15% 67% 32%

Approaches Apache Tomcat Apache Xerces ArgoUML Jedit
Precision Recall MCC Precision Recall MCC Precision Recall MCC Precision Recall MCC

InCode 57% 52% 54% 31% 78% 49% 67% 18% 35% 50% 53% 51%

HIST 5% 15% 8% 1% 6% 1% 1% 5% 1% 1% 6% 0%

JDeodorant 31% 50% 39% 43% 50% 46% 46% 23% 32% 44% 65% 53%

Vote 73% 17% 35% 12% 100% 34% – 0% – 9% 100% 28%

ASCI 60% 50% 54% 36% 78% 52% 80% 18% 38% 50% 53% 51%

SMAD 39% 81% 56% 36% 75% 51% 47% 68% 56% 48% 88% 65%

11

our experiments we chose to feed the decision tree used by ASCI
with the same metrics used to feed the MLP on which rely our ap-
proach SMAD. We cannot exclude that another version of ASCI
based on different software metrics may have led to better results.

For Feature Envy, we can see that in term of precision, ASCI
outperforms our method with 48% against 40% for SMAD. How-
ever, SMAD achieves a recall significantly higher than its com-
petitors with a value of 80% against 54% and 41%. Finally, re-
garding the MCC, we can see that although ASCI is able to im-
prove the performances of the aggregated tools, its is our method,
SMAD that shows the biggest improvement with an MCC of 0.56�

�

	
SMAD significantly outperforms both the voting technique
and ASCI in terms of recall and MCC. Furthermore, our re-
sults indicate that none of the competing method is able to
improve the detection for both anti-patterns.

6. Threats to Validity

In this section, we discuss the threats that could affect the valid-
ity of our study.

Construct Validity. Threats to construct validity concern the rela-
tion between theory and observation. In our context, this could
refer to the reliability of the oracle used to train and evaluate the
different approaches investigated in this work. Instances of God
Class extracted from HIST and DECOR replication packages have
been filtered before being incorporated in our oracle. Furthermore,
both papers have been awarded by the community, which confirms
the quality of the processes conducted to produce these instances.
For Feature Envy, we followed a strict blind procedure where each
instance has been investigated by three different persons. How-
ever, we can not exclude the possibility of some missed occur-
rences or false positives. Another threat is related to the replica-
tion of some of the competitive approaches. We followed rigor-
ously the guidelines provided by the respective authors, and per-
formed an additional parameter tuning for each approach when-
ever necessary. However, some differences may remain between
our respective implementations.

Internal Validity. Threats to internal validity concern all the fac-
tors that could have impacted our results. In our context, this
could refer to the training procedure presented in Section 4.4.
Even though we compared the proposed procedure with conven-
tional techniques while performing preliminary experiments, we
did not report the results of our comparisons. Hence, a compara-
tive study of the proposed procedure with conventional optimiza-
tion approaches would be desirable. Note that these techniques
are in fact part of the approach we propose and are necessary to
train models on real imbalanced datasets. Another threat is related
to choice of the machine-learning based classifier (MLP) used in

our method. We plan to investigate the use of different machine-
learning algorithms to perform aggregation. Finally, to train the
competing ensemble method ASCI, we first performed an hyper-
parameter tuning of this approach rigorously identical to that of
SMAD and used the same boosting technique.

External Validity. Threats to external validity concern the gener-
alizability of our findings. To reduce this threat, we experimented
our method on a reasonable number of systems (8). Furthermore,
the software systems used for evaluation have different domains,
origins, sizes and history lengths. However, further evaluation of
our approach on a larger set of systems would be desirable. An-
other threat could be related to the choice of the detection tools
chosen to be aggregated. As explained in Section 3.2 we selected
these tools because they are based on different strategies, and thus,
are more likely to have complementary results. However, we can-
not assert that using SMAD to aggregate other detection tools
would led to similar results.

7. Conclusion and Future Work

We proposed SMAD, a machine-learning based ensemble
method to aggregate various anti-pattern detection approaches on
the basis of their internal detection rule. The goal is to create an
improved classifier with respect to the standalone approaches. Our
method consists in identifying the core-metrics of each approach
to be aggregated and then use these metrics to feed a neural-
network classifier. To train and evaluate our model, we built an
oracle containing the occurrences of God Class and Feature Envy
in eight open-source systems. To address the poor performances
commonly reported by neural-networks on imbalanced datasets
such as our oracle, we also designed a training procedure allow-
ing to maximize the expected MCC. Then, we evaluated SMAD
on this oracle and compared its performances with the so aggre-
gated tools as well as with competing ensemble methods. Key
results of our experiments indicate that:

• SMAD significantly outperforms the standalone tools aggre-
gated through our approach in detecting God Class and Fea-
ture Envy and performs well independently of the systems
characteristics.

• SMAD outperforms other ensemble methods in terms of re-
call and MCC. Also, none of the competing ensemble method
(i.e., Vote and ASCI) has succeeded to improve the detection
for both anti-patterns.

Future work includes a comparative study of the different
machine-learning algorithms that could be used for aggregation.
We also plan to extend our approach to the detection of other anti-
patterns with a greater number of detection tools.

12

Acknowledgement

This work is partly supported by the The Natural Sciences
and Engineering Research Council of Canada (NSERC) and the
Canada Research Chair on Patterns in Mixed-language Systems.

8. References

[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and
Giuliano Antoniol. An empirical study of the impact of
two antipatterns, blob and spaghetti code, on program com-
prehension. In Software maintenance and reengineering
(CSMR), 2011 15th European conference on, pages 181–
190. IEEE, 2011.

[2] Lucas Amorim, Evandro Costa, Nuno Antunes, Baldoino
Fonseca, and Marcio Ribeiro. Experience report: Evalu-
ating the effectiveness of decision trees for detecting code
smells. In Software Reliability Engineering (ISSRE), 2015
IEEE 26th International Symposium on, pages 261–269.
IEEE, 2015.

[3] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. Journal of Machine Learn-
ing Research, 13(Feb):281–305, 2012.

[4] Lionel C Briand, John W Daly, and Jürgen Wüst. A unified
framework for cohesion measurement in object-oriented sys-
tems. Empirical Software Engineering, 3(1):65–117, 1998.

[5] Dario Di Nucci, Fabio Palomba, Rocco Oliveto, and Andrea
De Lucia. Dynamic selection of classifiers in bug prediction:
An adaptive method. IEEE Transactions on Emerging Topics
in Computational Intelligence, 1(3):202–212, 2017.

[6] Dario Di Nucci, Fabio Palomba, Damian A Tamburri,
Alexander Serebrenik, and Andrea De Lucia. Detecting
code smells using machine learning techniques: are we
there yet? In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER),
pages 612–621. IEEE, 2018.

[7] Thomas G Dietterich. Ensemble methods in machine learn-
ing. In International workshop on multiple classifier sys-
tems, pages 1–15. Springer, 2000.

[8] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzi-
georgiou. Jdeodorant: Identification and removal of feature
envy bad smells. In Software Maintenance, 2007. ICSM
2007. IEEE International Conference on, pages 519–520.
IEEE, 2007.

[9] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and
Alexander Chatzigeorgiou. Jdeodorant: identification and
application of extract class refactorings. In Software En-
gineering (ICSE), 2011 33rd International Conference on,
pages 1037–1039. IEEE, 2011.

[10] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and
Alexander Chatzigeorgiou. Identification and application of
extract class refactorings in object-oriented systems. Journal
of Systems and Software, 85(10):2241–2260, 2012.

[11] Francesca Arcelli Fontana, Pietro Braione, and Marco
Zanoni. Automatic detection of bad smells in code: An
experimental assessment. Journal of Object Technology,
11(2):5–1, 2012.

[12] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni,
and Alessandro Marino. Comparing and experimenting ma-
chine learning techniques for code smell detection. Empiri-
cal Software Engineering, 21(3):1143–1191, 2016.

[13] Martin Fowler. Refactoring: Improving the Design of Exist-
ing Code. Addison-Wesley, Boston, MA, USA, 1999.

[14] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010.

[15] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hin-
ton. Speech recognition with deep recurrent neural networks.
In Acoustics, speech and signal processing (icassp), 2013
ieee international conference on, pages 6645–6649. IEEE,
2013.

[16] Yann-Gaël Guéhéneuc. Ptidej: Promoting patterns with pat-
terns. In Proceedings of the 1st ECOOP workshop on Build-
ing a System using Patterns. Springer-Verlag, 2005.

[17] Haibo He and Edwardo A Garcia. Learning from imbalanced
data. IEEE Transactions on Knowledge&Data Engineering,
(9):1263–1284, 2008.

[18] Martin Jansche. Maximum expected f-measure training of
logistic regression models. In Proceedings of the conference
on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 692–699. Association
for Computational Linguistics, 2005.

[19] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël
Guéhéneuc, and Giuliano Antoniol. An exploratory study
of the impact of antipatterns on class change-and fault-
proneness. Empirical Software Engineering, 17(3):243–275,
2012.

[20] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc,
and Houari Sahraoui. A bayesian approach for the detec-
tion of code and design smells. In Quality Software, 2009.
QSIC’09. 9th International Conference on, pages 305–314.
IEEE, 2009.

13

[21] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc,
and Houari Sahraoui. Bdtex: A gqm-based bayesian ap-
proach for the detection of antipatterns. Journal of Systems
and Software, 84(4):559–572, 2011.

[22] Jochen Kreimer. Adaptive detection of design flaws. Elec-
tronic Notes in Theoretical Computer Science, 141(4):117–
136, 2005.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[24] Michele Lanza and Radu Marinescu. Object-oriented met-
rics in practice: using software metrics to characterize, eval-
uate, and improve the design of object-oriented systems.
Springer Science & Business Media, 2007.

[25] Hui Liu, Zhifeng Xu, and Yanzhen Zou. Deep learning
based feature envy detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering, pages 385–396. ACM, 2018.

[26] Yi Liu, Taghi M Khoshgoftaar, and Naeem Seliya. Evolu-
tionary optimization of software quality modeling with mul-
tiple repositories. IEEE Transactions on Software Engineer-
ing, 36(6):852–864, 2010.

[27] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata
Sabane, Yann-Gael Gueheneuc, and Esma Aimeur. Smurf:
A svm-based incremental anti-pattern detection approach.
In Reverse engineering (WCRE), 2012 19th working confer-
ence on, pages 466–475. IEEE, 2012.

[28] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata
Sabané, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and
Esma Aı̈meur. Support vector machines for anti-pattern de-
tection. In Automated Software Engineering (ASE), 2012
Proceedings of the 27th IEEE/ACM International Confer-
ence on, pages 278–281. IEEE, 2012.

[29] Radu Marinescu. Detection strategies: Metrics-based rules
for detecting design flaws. In Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on, pages
350–359. IEEE, 2004.

[30] Radu Marinescu, George Ganea, and Ioana Verebi. Incode:
Continuous quality assessment and improvement. In Soft-
ware Maintenance and Reengineering (CSMR), 2010 14th
European Conference on, pages 274–275. IEEE, 2010.

[31] Brian W Matthews. Comparison of the predicted and ob-
served secondary structure of t4 phage lysozyme. Biochim-
ica et Biophysica Acta (BBA)-Protein Structure, 405(2):442–
451, 1975.

[32] Iman Hemati Moghadam and Mel O Cinneide. Automated
refactoring using design differencing. In Software mainte-
nance and reengineering (CSMR), 2012 16th European con-
ference on, pages 43–52. IEEE, 2012.

[33] Naouel Moha, Yann-Gaël Guéhéneuc, Duchien Laurence,
and Le Meur Anne-Franccoise. Decor: A method for the
specification and detection of code and design smells. IEEE
Transactions on Software Engineering (TSE), 36(1):20–36,
2010.

[34] F. Palomba, G. Bavota, M. Di Penta, R. Oliverto, D. Poshy-
vanyk, and A. De Lucia. Mining version histories for detect-
ing code smells. IEEE Transactions on Software Engineer-
ing, 41(5):462–489, 2015.

[35] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Fausto Fasano, Rocco Oliveto, and Andrea De Lucia. On the
diffuseness and the impact on maintainability of code smells:
a large scale empirical investigation. Empirical Software En-
gineering, 23(3):1188–1221, 2018.

[36] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk.
Detecting bad smells in source code using change history in-
formation. In ASE, pages 268–278, 2013.

[37] David Martin Powers. Evaluation: from precision, recall and
f-measure to roc, informedness, markedness and correlation.
2011.

[38] Lior Rokach. Ensemble-based classifiers. Artificial Intelli-
gence Review, 33(1-2):1–39, 2010.

[39] Vitor Sales, Ricardo Terra, Luis Fernando Miranda, and
Marco Tulio Valente. Recommending move method refac-
torings using dependency sets. In Reverse Engineering
(WCRE), 2013 20th Working Conference on, pages 232–241.
IEEE, 2013.

[40] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing
Li, Markus Lumpe, Hayden Melton, and James Noble. The
qualitas corpus: A curated collection of java code for empir-
ical studies. In Software Engineering Conference (APSEC),
2010 17th Asia Pacific, pages 336–345. IEEE, 2010.

[41] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identi-
fication of move method refactoring opportunities. IEEE
Transactions on Software Engineering, 35(3):347–367,
2009.

[42] Stephane Vaucher, Foutse Khomh, Naouel Moha, and Yann-
Gaël Guéhéneuc. Tracking design smells: Lessons from
a study of god classes. In Reverse Engineering, 2009.
WCRE’09. 16th Working Conference on, pages 145–154.
IEEE, 2009.

14

[43] Tao Wang, Weihua Li, Haobin Shi, and Zun Liu. Soft-
ware defect prediction based on classifiers ensemble. JOUR-
NAL OF INFORMATION &COMPUTATIONAL SCIENCE,
8(16):4241–4254, 2011.

[44] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J
Pal. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2016.

[45] Aiko Yamashita and Leon Moonen. Exploring the impact of
inter-smell relations on software maintainability: An empir-
ical study. In Proceedings of the 2013 International Confer-
ence on Software Engineering, pages 682–691. IEEE Press,
2013.

15

