
A Taxonomy of Service Identification Approaches for Legacy Software Systems
Modernization

Manel Abdellatif, Anas Shatnawi, Hafedh Mili, Naouel Moha, Ghizlane El Boussaidi, Geoffrey Hecht,
Jean Privat, Yann-Gaël Guéhéneuc

Polytechnique Montréal, Montreal, Quebec, Canada
manel.abdellatif@polymtl.ca

Université du Québec à Montréal, Montreal, Quebec, Canada
{shatnawi.anas,mili.hafedh,moha.naouel,hecht.geoffrey,privat.jean}@uqam.ca

École de Technologie Supérieure, Montréal, Québec, Canada
ghizlane.elboussaidi@etsmtl.ca

Concordia University, Montréal, Québec, Canada
yann-gael.gueheneuc@concordia.ca

Abstract

The success of modernizing legacy software systems to Service-Oriented Architecture (SOA) depends on Service Identi-
fication Approaches (SIAs), which identify reusable functionalities that could become services. The literature describes
several SIAs. However, the selection of an identification approach that is suitable for a practitioner is difficult because
it depends on several factors, including the goal of modernization, the available legacy artifacts, the organization’s
development process, the desired output, and the usability of the approach. Accordingly, to select a suitable service
identification approach, a practitioner must have a comprehensive view of existing techniques.

We report a systematic literature review (SLR) that covers 41 SIAs based on software-systems analyses. Based on
this SLR, we create a taxonomy of SIAs and build a multi-layer classification of existing identification approaches. We
start from a high-level classification based on the used inputs, the applied processes, the given outputs, and the usability
of the SIAs. We then divide each category into a fine-grained taxonomy that helps practitioners in selecting a suitable
approach for identifying services in legacy software systems. We build our SLR based on our experience with legacy
software modernization, on discussions and experiences working with industrial partners, and analyses of existing SIAs.
We validate the correctness and the coverage of our review with industrial experts who modernize(d) legacy software
systems to SOA. The results show that our classification conforms to the industrial experts’ experiences. We also show
that most of the studied SIAs are still at their infancy. Finally, we identify the main challenges that SIAs need to
address, to improve their quality.

Keywords: Service Identification, Microservices, Taxonomy, Legacy System, Migration

1. Introduction
The maintenance and migration of legacy software sys-

tems are central IT activities in many organizations in
which these systems are mission-critical. These systems
embed hidden knowledge that is still of significant values.
They cannot be removed or replaced because they exe-
cute effectively and accurately critical and complex busi-
ness logic. Yet, legacy software systems suffer from several
drawbacks including high maintenance costs, scalability
and portability problems, and so forth [1]. Thus, these
systems should be migrated to more flexible and modern
architectures to retain their business values while decreas-
ing their maintenance costs.

The migration of legacy software systems to a Service-
Oriented Architecture (SOA) is one avenue for the mod-
ernization of these systems. SOA allows developing com-

plex and inter-organizational systems by integrating and
composing services that are reusable, distributed, rela-
tively independent, and often heterogeneous [2]. Also over
the past few years, increasing efforts have been made to
migrate legacy systems to microservices, which are, in a
SOA architecture, any services having a single responsi-
bility, running in their own processes, and communicating
with lightweight mechanisms [3]. In the following, we use
the term “service” to cover any form/granularity of ser-
vices, including microservices.

The migration of legacy software systems to SOA is dif-
ficult because it depends on many factors, e.g., the choice
of the migration process, the service-identification approach,
the desired quality characteristics of the generated ser-
vices, the implementation and integration of the services,
etc., which we discuss in details later. Also, the modern-

1



ization of legacy systems may have some side effects that
could affect the expected or claimed benefits of the mi-
gration of legacy systems [4, 5]. Such side effects could
be the decrease of the system’s performance, users resis-
tance to the new technology/system, the unexpected high
cost of the modernization, the increasing time to finish the
migration, etc.

An organization may adopt one of three strategies to
migrate legacy software systems to SOA. It can migrate its
legacy systems through a top-down, forward-engineering
strategy by: (1) performing a high-level decomposition of
its domain artifacts, (2) modeling the needed services that
will take part of the targeted SOA, (3) implementing those
services, and (4) implementing the process that orches-
trates all these services.

An organization may also want to use a bottom-up
strategy to re-engineer its legacy software systems to a
service-oriented style by: (1) extracting all the dependen-
cies of their legacy system, (2) mining the existing ap-
plications for reusable functionality that could qualify as
services, (3) packaging these functions as services to en-
able their reuse and to delete their dependencies to the
legacy infrastructures, and (4) rewriting some existing ap-
plications to use the newly-identified services.

An organization may also adopt a hybrid strategy and
reuse its legacy artifacts by: (1) grouping the functions of
the applications into coarse functional blocks, (2) mapping
those functional blocks to available services while deleting
their dependencies to the legacy infrastructure, and (3)
implementing the process orchestrating these services.

Service identification is central to all aforementioned
three migration strategies, and has been recognized by
practitioners as the most challenging step of the overall
migration process [6, 7]. The services identified through
a Service Identification Approaches (SIAs) must meet a
range of expectations regarding their capabilities, quality
of service, efficiency of use, etc. [1], which we also discuss
in details later. To the best of our knowledge, all bottom-
up and hybrid SIAs focus solely on identifying services in
legacy software systems, not in ensuring that they can be
then called “as identified” by different clients immediately.
Indeed, once services become available, multiple clients
may call them simultaneously, which may and may not
cause problems in the services themselves (because they
store some states) or related databases (because they do
not take into account multiple clients/tenants).The chal-
lenges of turning such legacy code into autonomous and
self-contained services include dealing with multi tenancy,
data consistency and statefulness The legacy code might
have side effects that violate one or more service design
principles. These challenges must be considered after iden-
tifying the services, as part of the whole migration process
of legacy software systems [8].

Due to the importance of SIAs and their impact on the
success of legacy migrations to SOA, the literature pro-
posed several approaches for identifying services in legacy
systems. The selection of a SIA that is suitable for some

practitioners among all other SIAs is however difficult and
depends on several factors, e.g., the available legacy arti-
facts, the process of analyzing these legacy artifacts, the
available inputs, the desired outputs and the usability de-
gree of the approach. As a result, practitioners need a
comprehensive view of existing SIAs to select the identifi-
cation approach fulfilling their needs.

In the following, we propose a systematic literature re-
view (SLR) of published SIAs, with focusing on bottom-up
and hybrid approaches that use existing software artifacts.
We chose to focus on bottom-up and hybrid approaches be-
cause previous studies [7, 9] and our own preliminary study
showed that companies often have only source code as most
up-to-date source of information about their legacy soft-
ware systems.

Based on this SLR, we also present a taxonomy of SIAs,
i.e., a multi-layer classification of SIAs. This classification
helps practitioners in selecting a suitable service identifica-
tion approach that corresponds to their migration needs.
We perform our SLR using our experience with legacy soft-
ware modernization, discussions with industrial partners,
and the analysis of 41 papers retained from a first set of
3,246 papers. We validate the correctness and coverage of
our SLR through a survey and one-to-one interviews with
45 industrial experts in legacy software-systems modern-
ization. The results show that our taxonomy conforms
to the industrial experts’ experiences, with a precision of
99%, and a recall of 94%.

1.1. Research questions
Through our SLR, we study the SIAs following four

dimensions: the used inputs, the applied processes, the re-
sulting outputs, and the usability degree of the approaches.
We set out to answer the following research questions:

• RQ1: What are the inputs used by SIAs? We
aim to identify the different inputs used by SIAs that
are based on software systems analyses. We aim to
classify the targeted SIAs based on the artifacts used
for the identification.

• RQ2: What are the processes followed by SIAs?
We aim to describe the processes that underlie the
service identification approaches reported in the lit-
erature. This entails gathering information about,
(1) the techniques used to identify candidate ser-
vices, (2) the desired quality metrics, (3) the direc-
tion of the identification, (4) the automation level,
and (5) the type of analysis used.

• RQ3: What are the outputs of SIAs? We aim
to report information about the generated outputs
of service identification approaches in terms of the
targeted service types.

• RQ4: What is the usability of SIAs? We aim to
study the usability degree of service identification ap-
proaches in the literature based on the systems used

2



Execution	of	the	
Search	query

Filtration	process
based	on	exclusion	

Criteria
Snowballing

Collected

Papers
3.246

Filtrated

Papers

Final List

41 Papers

Search 

9 Iterations

Query

Figure 1: Paper selection

to validate the results, the accuracy of the identifica-
tion method (when reported), the tool support, and
the quality of the reported identification results.

We answer these questions and conclude that the state-
of-the art SIAs are still at their infancy. This is due
to four main reasons: (1) the lack of validation on real
enterprise-scale systems; (2) the lack of tool support,(3)
the lack of automation of SIAs, and (4) the lack of as-
sessment of the quality of the identified services. The re-
sults also show that the proposed SIAs generally ignore the
economic aspects of the identification phase such as the
implementation and maintenance costs, the re-factoring
costs, and time-to-market issues. We believe that more
work should be done to automate state-of-the-art SIAs and
consider enterprise-scale systems to validate the proposed
approaches. We also believe that regardless of the sought
quality attributes, SIAs should provide means to assess the
quality of the identified services and consider economic as-
pects in their identification process.

1.2. Outline
The remainder of this paper is structured as follows.

Section 2 describes our SLR methodology. Section 3 de-
scribes the inputs used by SIAs. Section 4 describes the
processes that underlie the studied SIAs. Section 5 surveys
the outputs of SIAs. Section 6 describes the usability level
of these SIAs. Section 7 details the validation of our tax-
onomy. Section 8 synthesizes the comparison between the
studied SIAs. Section 9 describes related work. Finally,
Section 10 concludes our work.

2. Search methodology

In this section, we describe the design methodology of
our systematic literature review as well as the mechanisms
and data that we analyse to answer our research questions.
We follow the procedures proposed by Kitchenham et al.
[10] for performing systematic reviews.

Figure 1 depicts our methodology. We first collected re-
search papers based on search queries. We started by iden-
tifying relevant query terms based on our research ques-
tions and the context of our work: service identification,
SOA, and migration. Then, for each keyword, we identi-
fied a set of related terms and synonyms using an online
synonym finder tool1 and defined the following query:

1https://www.synonym-finder.com/

(service identification OR service mining OR
service packaging) AND (migration OR mod-
ernization OR transformation OR re-engineering)
AND (legacy OR existing systems OR Object-
Oriented)

We executed this query in different scientific search en-
gines, such as Google Scholar, ACM Digital Library, and
IEEE Xplore Digital Library, Engineering Village, etc.

Our search queries returned a total of 3,246 unique
references. We then filtered these references, first, based
on their titles, second, based on their abstracts, and finally,
based on their contents. Two of the authors manually and
independently analyzed all the papers and then reconciled
any differences through discussions. We excluded from our
review papers meeting one of the following criteria:

• Papers not written in English.

• Papers not related to service identification.

• Papers about top-down SIAs.

• Papers that did not propose a technique or a method-
ology for service identification.

• Papers published before 2004 and after 2019.

Based on these exclusion criteria, we reduced the num-
ber of references and retain 26 papers that focus on SIAs
that analyze software artifacts. We believe that our search
string may not cover all query terms related to service
identification (e.g., microservices, decomposition, restruc-
turing, etc.) and thus we risk to miss important stud-
ies. To minimize these threats, we (1) included in our
search string the most important keywords related to ser-
vice identification, and (2) applied forward and backward
snowballing [11, 12] to minimize the risk of missing impor-
tant papers. Forward snowballing refers to the use of the
bibliographies of the papers to identify new papers that
are referenced. Backward snowballing refers to the identi-
fication of new papers citing the papers being considered.
We iterated the backward and forward snowballing and
apply for each candidate paper our exclusion criteria. We
stopped the iteration process when we have found no new
candidate paper. We performed a total of nine iterations
and added 15 papers. We thus obtained 41 papers that
describe different SIAs, presented in Table 1.

3. RQ1: What are the inputs used by SIAs?

Using suitable inputs for service identification is cru-
cial to the quality of the identified services and thus the
migration process [13]. When it comes to legacy systems,
not all software-related artifacts (e.g., use cases, business
process models, activity diagrams, etc.) are always avail-
able. Consequently, as depicted in Table 1, many SIAs
in the literature relied on different types of inputs. When

3



considering bottom-up and hybrid approaches, they all use
source code or related models, as well as other types of in-
put. We classify the inputs into three main categories: (1)
executable models of the systems, (2) non-executable mod-
els of the systems, and (3) domain artifacts. We discuss
them in turn, below.

3.1. Executable Models
Executable models of the systems include source code

and database schemas and test cases.

3.1.1. Source Code
"If the map and the terrain disagree, trust the
terrain".
—Swiss Army Aphorism

With legacy systems, documentation (the map) is of-
ten missing or out of date. The source code (the terrain)
becomes the only reliable source of information about the
system. Source code is the most commonly used software
artifact by the existing SIAs, due to its availability. SIAs
that use source code as input identify business capabilities
of the existing legacy systems and expose them as reusable
services. Such SIAs rely on reverse and re-engineering pro-
cessing to (1) extract dependencies between program ele-
ments such as variables, functions, modules/classes, etc.;
(2) recover other kinds of information such as data flow di-
agrams, use cases, business process models, state machine
diagrams, etc.; (3) map the source code to other artifacts
such as business process models, use cases and database
schemas, to complete the system map; and, usually, (4)
apply clustering techniques to extract reusable services.

For legacy object-oriented systems, some SIAs rely on
the relationships among classes to analyze the system struc-
ture and identify highly cohesive and loosely coupled reusable
parts that could be exposed as services. For example, Ad-
joyan et al. [14] relied on the analysis of dependencies be-
tween the classes of legacy object-oriented software sys-
tems. They proposed a fitness function that takes into
account the type of relationship between the classes and
assigns a score for each relationship. They then applied
an agglomerative clustering technique to group classes into
candidate services. Aversano et al. [19] mined candidate
services from the analysis of legacy source-code. They ap-
plied reverse-engineering techniques to extract UML di-
agrams of systems and analyse the signatures of related
methods to identify candidate services.

Other SIAs identify services by analysing the source
code of non-object-oriented software systems. For exam-
ple Rodriguez et al. [9] reported the analysis of a large
legacy system in an Argentinian government agency writ-
ten in COBOL and running on IBM mainframes. They
analysed the legacy source code to identify the transac-
tions to be migrated to services. These transactions are
then translated into Java code, which is easier to expose
as Web services.

Although the identification of candidate services us-
ing source code analysis leads to reusable and fine grained
services, a combination of this kind of input with other
artifacts (e.g., business processes, databases, etc.) can be
used to identify services with more business values.

3.1.2. Databases
Architecturally, the database layer is important to man-

age the persistence of data. Database contents, schemas
and transactions are the artifacts used by database-related
SIAs [23, 33, 34]. These approaches identify data/entity
services that provide access to, and management of, the
persistent data of the systems(C.f. Section 5).

For example, Baghdadi et al. [23] identified entity ser-
vices by extracting SQL statements from systems. They
then re-factored these statements and added them to the
specification of a list of candidate services using CRUD
operations patterns (Create, Read, Update and Delete).
Saha et al. [33] relied on identifying instances of database-
access patterns (database related operations) to identify
reusable services. Using specific quality metrics, they re-
fined database-related operations and wrapped them into
data/entity services. Interactions between the application
to migrate and the database have been also used by Del
et al. [34] to identify pieces of functionalities that can be
exported as services. They performed the identification
using clustering techniques and formal concept analysis.

Although the identification of candidate services based
on the study of database queries or schema leads to reusable
and fine grained services–which can only be entity services
(cf. Section 5), a forward-engineering process is needed
to build more coarse-grained services, that combine these
finer-grain services, into business services.

3.1.3. Test Cases
A test case can be defined as a specification of the

inputs, execution conditions, testing procedure, and ex-
pected output results that must be executed to achieve
a testing objective, such as to verify compliance with a
specific requirement.

We found only three SIAs that use test cases, among
other inputs, to identify reusable services [39, 42, 20]. For
example, Bao et al. [39] use test cases as an intermediate
input for service identification. They first analysed the
legacy system source code and manually identified candi-
date use cases that correspond to potential reusable ser-
vices. Then, they derived test cases from these use cases
and used them to drive the execution of legacy-software
systems. They used dynamic analysis techniques to ana-
lyze the execution log traces and generate coarse-grained
code segments for each candidate use case that corresponds
to an identified service. Also, Jin et al. [42] only used test
cases to execute different paths of the system and generate
the corresponding log traces. They analysed these log files
to get all classes and method invocations of the system.
They then applied a clustering algorithm to group high

4



Method
Ex. Rep.
of the Soft.

Non Ex. Rep. of the Soft. Domain Artifacts

Runtime Artifacts Model Artifacts
SC DB TEST LogT UAI BPM UC AD DFD SMD Ont Hu.Exp Doc

Service Identification Based on Quality Metrics [14] x
A spanning tree based approach to identifying web services [15] x x x
Generating a REST Service Layer from a Legacy System [16] x
A service identification framework for legacy system migration into SOA [17] x x x
Reusing existing object-oriented code as web services in a SOA [18] x x
Mining candidate web services from legacy code [19] x x
From objects to services: toward a stepwise migration approach for Java
applications [20]

x x x x

Migrating interactive legacy systems to web services [21] x x x
MDCSIM: A method and a tool to identify services [22] x x x x
Reverse engineering relational databases to identify and specify basic Web
services with respect to service oriented computing [23]

x

Identifying services in procedural programs for migrating legacy system to
service oriented architecture [24]

x x x

A service-oriented analysis and design approach based on data flow diagram
[25]

x x

Service discovery using a semantic algorithm in a SOA modernization process
from legacy web applications [26]

x x x x

Incubating services in legacy systems for architectural migration [27] x x x x
Migrating to Web services: A research framework [28] x x
Service Identification and Packaging in Service Oriented Re-engineering [29] x x
A wrapping approach and tool for migrating legacy components to web ser-
vices [30]

x

Extracting reusable object-oriented legacy code segments with combined for-
mal concept analysis and slicing techniques for service integration [31]

x x

Using dynamic analysis and clustering for implementing services by reusing
legacy code [32]

x x x x

Service Mining from Legacy Database Applications [33] x
An approach for mining services in database oriented applications [34] x x
Using user interface design to enhance service identification [35] x x
A method to identify services using master data and artifact-centric modeling
approach [36]

x x x x

Multifaceted service identification: Process, requirement and data [37] x x x
The service modeling process based on use case refactoring [38] x x x
Extracting reusable services from legacy object-oriented systems [39] x x x x x x
Locating services in legacy software:information retrieval techniques, ontol-
ogy and FCA based approach [40]

x x x

Microservices Identification Through Interface Analysis [41] x x
Functionality-Oriented Microservice Extraction Based on Execution Trace
Clustering [42]

x x x x x

Bottom-up and top-down cobol system migration to web services [9] x x x
Extraction of microservices from monolithic software architectures [43] x
Service Cutter: A Systematic Approach to Service Decomposition [44] x x
An approach to align business and IT perspectives during the SOA services
identification [45]

x x x

Discovering Microservices in Enterprise Systems Using a Business Object
Containment Heuristic [46]

x x x x

A heuristic approach to locate candidate web service in legacy software [47] x
Identifying Microservices Using Functional Decomposition [48] x x
Towards the understanding and evolution of monolithic applications as mi-
croservices [49]

x

From Monolithic Systems to Microservices: A Decomposition Framework
based on Process Mining [50]

x x x

Function-Splitting Heuristics for Discovery of Microservices in Enterprise
Systems [51]

x x x x

From a Monolith to a Microservices Architecture: An Approach Based on
Transactional Contexts [52]

x

Re-architecting OO Software into Microservices A Quality-centered approach
[53]

x

Table 1: Inputs of Service Identification Approaches(SC for Source Code, DB for Database, LogT for Log Traces, UAI for User
Application Interaction, BPM for Business Process Model, UC for Use Case, AD for Activity diagram, DFD for Data Flow
Diagram, SMD for State Machine Diagram, Ont for Ontology, Hu.Exp for Human Expertise, Doc for documentation)

cohesive and loosely coupled group of classes that will be
mapped into services.

As shown by Table 1, test cases are rarely used by SIAs.
They are only used as an intermediate artifact to guide the
service identification process, probably because test cases
are seldom available, and when they are, they cover only
a small portion of the system.

3.2. Non-executable Models
We distinguish between two categories of non-executable

models: runtime artifacts extracted during the execution
of the systems, and non-executable models that describe
the architecture of the systems. We discuss them below.

3.2.1. Runtime Artifacts
Runtime artifacts are extracted during the executions

of the systems. They contain log traces and user-application
interactions (e.g., user interfaces).

Log Traces. Execution traces of legacy software systems
depict the dynamic behavior of the systems. Six SIAs
rely on log traces to extract sequence calls related to spe-
cific execution scenarios [32, 39, 42, 46, 50, 51]. These

approaches identify pieces of legacy code executed during
a set of business processes [32] or use cases [39], which are
usually identified manually by business analysts. Then,
they suggest those pieces of code as potential implemen-
tations of services. For example, Fuhr et al. [32] applied
mapping techniques of legacy code to business processes.
They used log trace analyses and clustering techniques.
They cluster the classes identified in the log traces accord-
ing to their usage during the business processes.

We note that SIAs do not rely solely on log traces to
identify services; they usually combine them with other
types of inputs such as business process models, use cases,
or human expertise.

User Interactions. User-interface inputs capture the re-
lationship between users and the system’s functionalities.
User interfaces usually embody data requirements and work-
flows [54]. If the workflow model of a system is not avail-
able, knowledge extracted from its user interfaces is useful
to recover its underlying business logic [35, 27].

We found five SIAs that analyse users’ interactions
with user interfaces to identify services [41, 35, 21, 27, 40,
42]. For example, Mani et al. [35] proposed an XML-based

5



representation, Unified User Interface Design Specification
(UUIDS), to describe user interfaces, including data bind-
ings and navigation events. They use this representation
to automate the analysis of user interfaces and retrieve
useful information for candidate services requirements.

The analyses of user interactions help to retrieve navi-
gational information through the operations performed by
users. They also help to identify reusable tasks with high
business values, which could become services. However,
SIAs based on user interactions are hardly automated.
Further, they require a model of the tasks, as input, which
may not be readily available.

3.2.2. Model Artifacts
Model artifacts abstract the structure and execution

behavior of systems. They include business process mod-
els, use cases, activity diagrams, and state machine dia-
grams, which are discussed in turn below.

Business Process Model (BPMs). They describe sets
of activities and tasks that accomplish an organizational
goal [55]. BPMs have been used extensively by SIAs be-
cause of their ability to describe the business logic of legacy
software systems at a high-level of abstraction. Business
processes can be modeled with the Business Process Model
and Notation (BPMN) and executed through their corre-
sponding Business Process Execution Language (BPEL).
The decomposition of business processes is a common strat-
egy to identify services [37]. Business process-driven SIAs
usually decompose business processes into tasks. These
tasks are then clustered and exposed as services.

For example, Alahmari et al. [17] identified services
based on analyzing business process models. These busi-
ness process models are derived from questionnaires, inter-
views and available documentations that provide atomic
business processes and entities on the one hand, and ac-
tivity diagrams that provide primitive functionalities on
the other hand. The activity diagrams are manually iden-
tified from UML class diagrams extracted from the legacy
code using IBM Rational Rose. Different service granu-
larity levels are distinguished, as they pertain to atomic
business processes and entities. Related atomic processes
and entities are grouped together within the same service
candidates to maximize cohesion of candidate services and
minimize coupling between them. Fuhr et al. [32] relied on
business process models to correlate classes of legacy ob-
ject oriented systems. Each activity in the business pro-
cess model is executed. The classes that are called during
the execution of a task are considered to be related. The
identification of services is based on a clustering technique
where the similarity measurement is based on how many
classes are used together in the activity executions.

In the context of service identification, BPMs help to
understand and capture the broad functional domains of
legacy systems and how they interact with each other.
Furthermore, business process-driven approaches identify
high-level candidate services (based on process and tasks

activities). However, the major problem with relying on
BPMs to identify services is that such models are not al-
ways available especially for legacy software systems.

Use Cases. They help to identify, at a high-level of ab-
straction, the interactions between users and systems to
achieve goals. Use cases depicts functional requirements
as well as sequences of actions that can be used for ser-
vice identification [56]. We found seven SIAs that use such
artifact [15, 21, 38, 39, 44, 48, 51].

For example, Bao et al. [39] analyze of the relationships
between use-case elements to identify reusable services.
They consider independent use cases of object-oriented
systems are candidate services. If a use case A extends a
use case B, they consider B as a candidate service, whereas
A is not. Further, if use case A specializes (inherits from)
use case B, then A is considered as a candidate service,
whereas B is not.

The main reasons for SIAs to rely on use cases is that
they offer systematic and intuitive means of capturing func-
tional requirements with a focus on value to the users.
However, to the best of our knowledge, SIAs based on use
cases are difficult to automate to the extent that they often
rely on human expertise.

Activity Diagram. They show interactions in systems as
well as the different steps involved in executing tasks [57].
Only two SIAs use activity diagrams to identify services
[15, 17]. For example, Al Ahmari et al. [17] extracted,
from activity diagrams, useful information and transform
them to BPMN using mapping rules. They then analysed
the business process models to extract reusable services.
They used activity diagrams of legacy systems as input
but concretely relied on analysing the BPMNs to identify
reusable services in the system.

None of the identified SIAs relied only on activity di-
agrams. Other types of inputs are usually used such as
source code, BPMs, and use cases to complement the iden-
tification process of candidate services.

Data Flow Diagram. A Data Flow Diagram (DFD) is a
graphical representation of functional dependencies, based
on the analysis of data flows, between business functions or
processes [58]. The main entities of a DFD are the (1) data
stores storing data for later use, (2) external entities rep-
resenting sources/destinations of the data, (3) processes
manipulating the data, and (3) data flows. Only two SIAs
use DFDs to identify reusable services [24, 25].

For example, Zhao et al. [25] rely on DFDs to identify
services. They start by elaborating DFDs based on the
system source code analysis. They recommend to design
new DFDs for coarse-grained processes and to delete from
the diagrams the fine-grained ones. They map each process
of the elaborated DFDs to a service. They finally recom-
mend to design a composite service that will capture the
operations provided by identified services and allow these
operations to be invoked in a defined workflow structure.

6



DFDs can describe the business logics of a software sys-
tem. However, they are not always available nor straight-
forward to generate from legacy systems. SIAs based on
DFDs of ill-structured systems do not guarantee as well the
identification of relevant services [24, 25]. Further, DFDs
cannot represent dynamic dependencies because they are
only based on the source code of software systems.

State Machine Diagram. A State Machine Diagram
(SMD) shows a dynamic view of a system and describes
the different states that entities can have during their life-
times [59]. We found that only two SIAs use state machine
diagrams as inputs [21, 22]. Canfora et al. [21] used these
diagrams to model the interactions between users and sys-
tems. Huergo et al. [22] used them to model the life-cycle
of master data, defined as any information considered to
play a key role in the operation of a business.

Although state machine diagrams are ideal for describ-
ing the behavior of a limited number of objects, they are
not suitable for SIAs that are dealing with large systems
due to the state-explosion problem. Further, they are sel-
dom available, and are not easy to obtain from source code
or documentation.

3.3. Domain Artifacts
Domain artifacts provide knowledge about the appli-

cation domain of the systems. They include software doc-
umentation, human expertise, and ontologies.

3.3.1. Documentation
Software documentation describes and documents sys-

tems at different levels of abstraction [60]. Software doc-
umentation includes textual descriptions as well as dia-
grams and models, such as the ones discussed above. Soft-
ware documentation can guide SIAs by reducing the search
space for candidate services by describing key functional-
ities of the systems. Some SIAs rely on software docu-
mentation to better understand the system at hand, which
helps to identify reusable services [9, 19, 24, 27, 28, 39]. For
example, Aversano et al. [19] proposed a SIA that analyses
the Javadoc documentation of systems to calculate lexical
similarity between the classes or methods of the systems;
they then used that similarity to identify clusters of func-
tionality that can map to services. Rodriguez et al. [9]
described an industrial case study in which the documen-
tation of a COBOL system was used to understand the
system and to identify business rules in the code.

As with many other inputs (e.g., business process mod-
els, log traces, use cases, etc.), software documentation is
not always available, and often outdated or out of sync
with the source code of legacy systems.

3.3.2. Human Expertise
Human expertise appears in different ways in SIAs. It

has been used to fine tune the parameters of various ser-
vice identification algorithms (see e.g. [15]). It has also
been used to define the business logic and translate it into

business processes [17, 37, 61]. It is also needed to anal-
yse use cases and identify candidate services [39]. Finally,
human expertise is needed to define data flow diagrams of
the system to then identify candidate services [24, 25, 28].

Human expertise in SIAs limits the automation of ser-
vice identification approaches and it appears in most of
SIAs at different steps of the identification process.

3.3.3. Ontologies
An ontology is a structured set of terms representing

the semantics of a domain, whether through metadata or
elements of a knowledge domain [62]. Several SIAs use
ontologies to identify services [34, 37, 40, 63].

For example, Djeloul et al. [40] proposed a WordNet-
based technique to identify services. They built queries
by analysing users interfaces. They then used WordNet to
expand the queries and identify pieces of code participat-
ing in services. They also used information-retrieval tech-
niques, such as vector-space model and latent-semantic
analysis, to map queries to the relevant code.

Chen et al. [63] started by analyzing the source code
of systems and used three types of ontologies: a domain
concept ontology, a functionality ontology, and a software-
component ontology. They used formal and relational con-
cept analysis to map source code of legacy systems to the
ontologies they specified to identify candidate services.

The major challenge of ontology-based SIAs lies in defin-
ing the proper ontologies for the system. Also, the high
cost of developing ontologies in terms of time, effort and
resources remain a well-known bottleneck in the ontology
development process [64]. Finally, ontology-based SIAs are
complex and require a lot of human expertise.

4. RQ2: What are the processes followed by SIAs?

A service-identification process applies one or more iden-
tification techniques (e.g, wrapping, clustering, formal con-
cept analysis, etc.) that target a set of quality metrics (e.g,
coupling, cohesion, granularity, etc.) based on a prede-
fined identification direction (i.e, bottom-up, top-down or
hybrid). Human expertise defines the automation degree
of the process, based on specific analysis types (e.g, static,
dynamic, lexical, etc.).

4.1. Techniques of SIAs
We classified techniques of SIAs into six types:

• Wrapping: A black-box identification technique that
encapsulates the legacy system with a service layer
without changing its implementation. The wrapper
provides access to the legacy system through a ser-
vice encapsulation layer that exposes only the func-
tionalities desired by the software architect [21, 65].

• Genetic Algorithm: A metaheuristic for solving op-
timization problems that is based on “natural selec-
tion". It relies on the calculation of a fitness function

7



to reach an optimal (or near-optimal) solution. By
definition, an optimal solution is a feasible solution
where the fitness function reaches its maximum (or
minimum) value [66].

• Formal concept analysis (FCA): A method for data
analysis where we derive implicit relationships be-
tween objects in a formal way. It is also considered
as a principled way of grouping objects that have
common properties [67]. To use FCA, we should first
specify the context denoted by a triple C=(E, P, R)
where E is a set of finite elements, P is a set of finite
properties and R is a binary relation based on E and
P. Also a formal concept is defined as a grouping of
all the elements that share a common set of proper-
ties. A partial order could be defined on the formal
concepts with concept lattices [68], which also offer
a structured visualization of the concepts hierarchy.

• Clustering: It consists of classifying and partition-
ing data into clusters (also called groups, categories
or partitions) that share common properties. These
clusters are built based on the internal homogene-
ity of their elements and the external separation be-
tween them. In fact, elements in the same cluster
should be similar to each other while elements in
different clusters should not [69].

• Custom heuristics: Some authors proposed their own
heuristic algorithms, instead of using predefined al-
gorithms, to decompose legacy software into SOA.

• General guidelines: they refer to approaches that
only propose best practices, lessons learned, or rec-
ommendations for service identification.

In the following, we describe and discuss the use of these
techniques to identify services from legacy systems.

4.1.1. Wrapping
Wrapping-based SIAs use this technique for encapsu-

lating a legacy system (or subset thereof) with a service
layer and exporting its functionalities without changing its
implementation [21]. Seven SIAs use/propose wrapping
techniques [9, 16, 18, 21, 28, 30, 33]. For example, Can-
fora et al. [21] proposed a wrapping methodology to ex-
pose the interactive functionalities of systems as services.
The wrapper acts as an interpreter of a Finite State Au-
tomaton (FSA) that describes the interaction model be-
tween the system interfaces and their users. Also, Sneed et
al. [18] proposed an automatic wrapping technique based
on the analysis of the public method interfaces of object-
oriented code. They transform the public method inter-
faces into a relational table. Then based on this table,
they generate WSDL interfaces that describe the func-
tionalities of web services. Finally, they generate from
the definitions of WSDL service interfaces the correspond-
ing BPEL scripts to manage the service, as well as the

corresponding test script to test the service. Wrapping
techniques do not require to understand fully the architec-
tures/implementations of the legacy software systems. It
avoids the decomposition of the systems into reusable ser-
vices.However, the underlying systems still must be main-
tained and so still need legacy expertise.

4.1.2. Genetic Algorithms
We found only three SIAs that rely on Genetic Al-

gorithms to identify services from legacy software systems
[15, 47, 37]. For example, Jain et al. [15] used Genetic Al-
gorithms to identify services in legacy source code. They
proposed an identification technique that is based on span-
ning trees. They used these representations to provide
developers with a set of possible solutions for the identifi-
cation problem. They also used a multi-objective genetic
algorithm to refine the initial set of service decomposi-
tions. The multi-objective Genetic Algorithm relied on a
fitness function that takes into consideration a set of man-
agerial goals (i.e., cost effectiveness, ease of assembly, cus-
tomization, reusability, and maintainability) to get a near-
optimal solution for the service identification problem. Ab-
delkader et al. [47] proposed also a Genetic Algorithm-
based SIA. However, they only take into consideration the
functional cohesion of a set of legacy system modules.

Although Genetic Algorithm-based SIAs may yield near-
optimal solutions of reusable services, these SIAs do not
guarantee to obtain systematically the optimal services
that (1) maximize (or minimize) the fitness function, and
(2) are architectally relevant for the identification prob-
lem. Also, the relevance of the identified services highly
depend on the choice of the objectives/managerial goals of
the identification.

4.1.3. Formal Concept Analysis
SIAs based on formal concept analysis basically rely on

ontologies and/or concept lattices [68] to identify services
[31, 34, 63]. These SIAs usually rely on concept lattices to
order the identified formal concepts and/or to visualise
these concepts as well as the specified ontologies–when
used. For example, Zhang et al. [31] used formal con-
cept analysis and program slicing to identify services in
object-oriented systems. They begin by mapping the pro-
gram entities (classes, methods) into elements and prop-
erties, using documentation and human expertise. They
then applied the Ganter algorithm [70] to build the concept
lattices. Finally, they visualized, interpreted and analyzed
these concepts to get meaningful, useful, and reusable ser-
vices. Also, Del et al. [34] identified database-related fea-
tures to be exported as services. They started by collect-
ing database queries, using the dynamic execution of the
database oriented systems. They then performed an anal-
ysis of the queries fields (i.e., the SELECT and the FROM
clauses) and constraints (i.e., the WHERE clauses). They
built a formal context using the concept lattice technique
[71]. They used FCA to group related queries into con-
cepts and map them to candidate services.

8



The big challenge of using FCA for service identifica-
tion consists in well identifying the concepts related to the
entities of legacy systems. A proper setting of the for-
mal context and their entities is required to ensure proper
identification of reusable services. Also, the lack of au-
tomation in setting the formal context of the system may
hinder the use of FCA algorithms to identify services in
enterprise-scale systems.

4.1.4. Clustering
SIAs use clustering to group classes or functionalities

in legacy systems and consider each group as a candi-
date service. In general, they combine clustering tech-
niques and custom heuristics. SIAs based on clustering
belong to either one of two categories: classes clustering
[14, 15, 27, 32, 37, 41, 42, 43, 44, 46, 48, 49, 51, 52, 53]
or functionalities clustering techniques [33, 29]. The main
clustering techniques used in the literature are k-means
[72, 32] and hierarchical-agglomerative clustering [73, 27].

For example, Zhang et al. [27] proposed an agglomer-
ative hierarchical clustering technique to extract reusable
services from object-oriented legacy code. They started
by analyzing legacy source code to calculate the similarity
between the source code entities. The similarity metric
consider the relationship between classes (i.e, inheritance,
association, etc.) as well as the semantic similarity be-
tween them according to their names. They finally express
the results in a dendrogram, which presents a hierarchic
view of several possible decompositions of the system into
services. Also, Fuhr et al. [32] used k-means clustering
techniques to identify services according to their type. The
similarity measurement is based on how many classes are
used together in a targeted activity execution.

K-means clustering techniques are indeed straightfor-
ward to apply. However, their results in the context of
service identification show below-average performance. On
the other hand, SIAs based on hierarchical clustering tech-
niques do not require to specify in advance the number of
the needed clusters/services. However, a subjective choice
of the cutting point level in the generated dendrogram is
needed to get the final set of services. This could be prob-
lematic for enterprise-scale systems where the number of
possibilities for cutting points could be important. The
choice between K-means and hierarchical clustering de-
pends on the application context where K-means could be
a good option when practitioners already know the number
of services to be identified. On the other hand, hierarchical
clustering is good for the case of unknowing the number of
services to be identified. In this case, the hierarchical clus-
tering will partition the system into a number of services
based on the inter and intra cluster scaling.

4.1.5. Custom Heuristics
Some SIAs use dedicated heuristics [14, 15, 24, 25, 27,

32, 43, 44] to identify services from legacy systems. Heuris-
tics techniques are usually used with clustering techniques

and genetic algorithms. They also rely on quality metrics
to identify candidate services.

For example, Adjoyan et al. [14] proposed a fitness
function based on three characteristics of services: com-
posability, self-containment, and functionality. They grouped
classes from object-oriented legacy software systems using
a hierarchical-agglomerative clustering algorithm, which
groups classes using the value of the fitness function. Also,
Jain et al. [15] proposed a set of heuristics based on dy-
namic and static relationships among classes in object-
oriented systems. Then, they used these heuristics with
a multi-objective optimization algorithm to get sets of
classes representing services.

Although the use of heuristics is common in SIAs, their
main challenge consists in establishing reliable heuristics
to guide the process of identifying reusable services.

4.1.6. General Guidelines
We found two works in the literature that propose only

general guidelines for service identification [17, 28].
For example, Alahmari et al. [17] proposed to extract

UML activity diagrams from legacy systems and perform a
model-to-model transformation to obtain BPMN from the
diagrams. They argued that having a well defined SOA
migration meta-model is important to make the migration
process effective. They recommended the use of ad-hoc
metrics because they assist in deriving optimal services
with suitable granularity. Also Sneed et al. [28] proposed
several guidelines for discovering potential services, evalu-
ating these services and extracting their code from legacy
systems. They recommended the use of a highly customiz-
able rule based decision making mechanisms to identify
which portions of legacy code could be potential services.
They also recommended the use of DFDs to analyse data
flow of the identified portions of code and decide about its
business value.

SIAs based on guidelines propose general ideas to ex-
tract services from legacy software systems. They are in-
deed difficult to validate and automate.

Technique SI Method Total
Wrapping [9, 16, 18, 21, 28, 30,

33]
7

GeneticAlgorithm [15, 47, 37] 3
Formal Concept Analyses [31, 34, 40, 63] 4
Clustering [14, 15, 29, 27, 32, 33,

37, 41, 42, 43, 44, 46,
48, 49, 51, 52, 53],

17

Custom heuristics [14, 15, 16, 19, 20, 22,
24, 25, 45, 27, 32, 35,
38, 39, 63, 42, 43, 44,
45, 46, 50, 49, 51, 52,
53]

25

General Guidelines [28, 17] 2

Table 2: Targeted techniques of SIAs

9



4.2. Quality of Identified Services
Achieving the desired level of quality is critical for ser-

vice based architectures. As a result, some SIAs use/target
some quality metrics/requirements to obtain high-quality
candidate services.

4.2.1. Quality Requirements
We describe the quality requirements targeted by the

studies SIAs as follows:

• Reuse: The ability of a service to participate in
multiple service assemblies (compositions) [74]. Bet-
ter reusability should provide better return of invest-
ment (ROI) and shorter development times [75].

• Maintainability: Services should ease the effort to
modify their implementation, to identify root causes
of failures, to verify changes, etc. [76].

• Interoperability: The ability of a service to com-
municate and be invoked by other systems/services
implemented in different programming languages [77].

• Self-containment: A service should be completely
self-contained to be deployed as a single unit, with-
out depending on other services [14].

• Composability: Services should be composable with
one another to be reused and integrated as services
that control other services or that provide function-
alities to other services [78].

Quality requirement SI Method Total
Reuse [9, 20, 27, 28, 37, 38] 6
Maintainability [29] 1
Interoperability [28] 1
Self-containment [14, 27] 2
Composability [14] 1

Table 3: Targeted quality requirements by SIAs

As we can see in Table 3, a few SIAs consider quality
requirements in their identification techniques. However,
service reuse is the most considered requirement by these
approaches. On the other hand, we notice that few stud-
ies consider the study of composability, self-containment,
maintainability, and interoperability of the identified ser-
vices. This could be because these quality requirements
are (1) difficult to characterize and measure and (2) hardly
provide useful insights to identify services.

4.2.2. Quality Metrics
We describe the quality metrics targeted by the studied

SIAs as follows:

• Coupling: The dependencies among services should
be minimized and the functionalities should be en-
capsulated to limit the impact of changes in one ser-
vice to other services [76].

• Cohesion: Cohesion is a measure of the strength of
the relationships among programming entities (e.g.,
classes, functions, etc.) implementing a service and
the functionality provided by the service [47].

• Granularity: An adequate granularity is a primary
concern of SIAs. It can be adjusted to the scope of
the functionality offered by the service [22].

• Total number of services: SIAs must not have too
many “small” services or not enough services [44].

Quality Metric SI Method Total
Coupling [14, 15, 17, 22, 24, 25, 27,

29, 36, 41, 48, 49, 50, 51,
52, 53]

16

Cohesion [9, 14, 15, 17, 22, 24, 25,
29, 36, 37, 41, 48, 49, 51,
53]

15

Granularity [9, 20, 22, 24, 25, 27, 29,
36, 38, 41, 48, 49, 52]

13

Number of services [14, 20, 44, 53] 4

Table 4: Targeted quality metrics by SIAs

Table 4 shows that state-of-the-art SIAs highly rely
on the use of some specific quality metrics such as loose
coupling, high cohesion, and granularity. However, these
SIAs fail at providing a comprehensive quality model to
assess and evaluate the quality of the identified services.

4.3. Directions of SIAs
SIAs can follow three directions: top-down, bottom-up,

and hybrid.

• A top-down process starts with high-level artifacts,
e.g., domain analysis or requirement characterization
of systems to define their functionalities. They do
not consider low-level artifacts to identify services.
Hence, we do not consider these SIAs in our study.

• A bottom-up process starts with low-level artifacts
to maximize code reuse and minimize changes. It
extracts more abstract artifacts, e.g., architectures,
which can be used to identify candidate services. It
can also identify new services that fill implementa-
tion gaps or meet new requirements [79].

• A hybrid process combines a top-down and a bottom-
up process. It uses both requirements and implemen-
tation artifacts to identify the candidate services.

As we focus in this SLR on SIAs that follow the bottom-
up and hybrid direction, we report in Table 5 the distribu-
tion of SIAs over these two directions. Table 5 shows that
there are almost equal numbers of bottom-up and hybrid
SIAs in the literature. Finally we notice that bottom-
up SIAs are more successful at delivering services in the
short-term but they usually identify fine-grained services

10



Direction SI Method Total
Bottom-up [9, 14, 15, 16, 23, 24,

25, 28, 30, 31, 33, 34,
40, 41, 42, 43, 44, 46,
47, 49, 53, 63]

22

Hybrid [17, 18, 19, 20, 21, 22,
26, 27, 29, 32, 35, 37,
38, 39, 45, 48, 50, 51,
52]

19

Table 5: Identification process directions of service identification
methods in the literature

with limited reuse. Moreover, Hybrid SIAs tend to comple-
ment and reduce the limitations of bottom-up approaches
by also considering requirements.

4.3.1. Analyses Types
SIAs may perform static, dynamic, lexical analyses, or

some combination thereof to identify services.

• Static analysis is performed without executing a soft-
ware system. Dependencies between classes are po-
tential relationships, like method calls and access at-
tributes. These dependencies are analyzed to iden-
tify strongly connected classes, for example, to iden-
tify services. [14, 16, 18, 19, 23, 27, 28, 29, 30] are ex-
amples of identification methods based only on static
analysis. The main advantage of static analysis is
that it depends only on the source code. It does not
address polymorphism and dynamic binding.

• Dynamic analysis is performed by examining the soft-
ware system at run time. Dependencies between
software elements (e.g., class instantiations and ac-
cesses [39], function calls [29, 51], relationships be-
tween database tables [46], etc.) are collected dur-
ing the program execution [80]. The execution is
performed based on a set of cases that covers the
system functionalities, called execution scenarios.

• Lexical analysis techniques suppose that the similar-
ity between the classes should be taken into account
during service identification process. This analysis
plays the main role in approaches that used features
location and textual similarity techniques.

Table 6 shows that 76% of SIAs rely on static analysis,
39% on dynamic analysis, and 21% on lexical analysis. Fi-
nally we found that 38% rely on a combination of analyses
to reduce the limitations of each individual analysis.

4.4. Automation of SIAs
Automation is the degree to which a SIA needs hu-

man experts. We distinguish three levels of automation:
manual, semi-automatic, and fully automatic.

Analysis
Type

SI Method Total

Static
analysis

[14, 15, 16, 18, 19, 22,
23, 28, 30, 26, 27, 29,
35, 37, 38, 45, 31, 33,
34, 40, 63, 41, 9, 43,
44, 46, 47, 48, 49, 52,
53]

31

Dynamic
analysis

[15, 17, 20, 21, 22, 24,
25, 39, 29, 32, 35, 42,
43, 46, 50, 51]

16

Lexical
analysis

[19, 26, 27, 31, 34, 40,
41, 43]

8

Table 6: Analyses types of SIAs

• Manual SIAs depend entirely on human experts. They
only provide general guidelines to experts to identify
services without automating any step of the service
identification process [16, 20].

• Semi-automatic SIAs need human experts to per-
form some of their tasks. For example, Jain et al.
[15] proposed a SIA that require a human expert to
provide objective functions and specify weights for
each of them.

• Automatic SIA do not need any human intervention
during the identification process. We did not find
any approach in the literature that fully automates
the identification of services in existing systems.

Table 7 shows that there is a lack of automation of
SIAs: 88% of the SIAs are semi-automatic or manual.

Analysis
Type

SI Method Total

Automatic [23, 33, 44, 45, 47] 5
Semi-
automatic

[9, 14, 15, 17, 18, 19,
21, 22, 24, 25, 26, 27,
28, 29, 30, 31, 32, 34,
35, 37, 39, 40, 41, 42,
43, 46, 49, 50, 51, 52,
53, 63]

32

Manual [16, 20, 38, 48] 4

Table 7: Automation of SIAs

5. RQ3: What are the outputs of SIAs?

In the following, we discuss the output of SIAs in terms
of the target service architecture (service-based/microser-
vice-based) and discuss the types of services considered by
these approaches.

5.1. Service Architecture
Service identification approaches aim at identifying ser-

vices that will be integrated in a SOA.

11



In the past few years, several SIAs have been inter-
ested in identifying microservices—a variant of the service-
oriented architecture style—to migrate legacy systems to
microservice-based systems [41, 43, 44, 48, 49, 50, 51, 52,
53]. For example, Escobar et al. [49] proposed a microser-
vice identification approach to migrate a monolithic Java
Enterprise Edition (JEE) application to microservices. They
performed a static analysis to cluster session and entity
beans into microservices. They started by associating a
cluster to each session bean. They grouped these clusters
according to a clustering threshold that focuses on struc-
tural coupling and cohesion. The distance between clusters
is calculated based on the number of shared entity beans.

Mazlami et al. [43] proposed a microservices identifica-
tion approach that relies on the analysis of data collected
from a version control repository of a monolithic applica-
tion. They also applied clustering and custom heuristics
to extract loosely-coupled and high-cohesive set of classes
that will be mapped to microservices. Both semantic and
logical coupling metrics were considered by their cluster-
ing algorithm. In particular, they combined three metrics
to identify microservices: semantic coupling (to identify
groups of classes that belong to the same domain), sin-
gle responsibility principle (to analyze classes that change
together in commits), and contributor coupling (to iden-
tify classes accessed by the same development team). All
these metrics were combined and used by a clustering al-
gorithm to identify groups of classes that belong to the
same domain and could represent a microservice.

We notice that microservices identification approaches
rely on clustering and custom heuristics to decompose the
system into small services. Although the granularity is an
important characteristic for qualifying microservices, none
of the studied approaches provided a comprehensive model
to evaluate whether microservices are identified with the
right level of granularity. Also, the granularity difference
between services and microservices is still neither well de-
fined nor clearly discussed by the studied microservices
identification approaches.

5.2. Service Types
We identified only four SIAs that identify specific types

of services in existing systems [17, 20, 22, 32] and nine pa-
pers proposing service taxonomies [17, 20, 22, 32, 81, 82,
83, 84, 85], that classify services with hierarchical-layered
schemas to support the communication among stakehold-
ers during the implementation of SOAs. These existing
taxonomies offer several service types with different clas-
sification criteria (e.g., granularity [17, 81, 82], reuse [32,
82, 84], etc.) and different names for the same service
types. We studied these previous works and identified the
following six service types that are generic and cover most
of the existing service types. We validated our taxonomy
through an industrial survey with practitioners [7] that we
detail in Section 7.

1. Business-process services: (Also called business
service [17, 32, 82, 84]), they correspond to business

processes or use cases. These are services used by
users. These services compose or use the enterprise-
task, application-task, and entity services described
in the following. Examples of business-process ser-
vices include flight booking services, hotel booking
services and sales order services.

2. Enterprise-task services: (Also called capabili-
ties [82]), they are of finer granularity than business-
process services. They implement generic business
functionalities reused across different applications.
Examples of Enterprise-task services include "on-
line payment" and "tax calculation".

3. Application-task services: (Also called task, ac-
tivity or composite service [17, 20, 23, 84]), they
provide functionalities specific to one application.
They exist to support reuse within one application
or to enable business-process services [82]. Examples
of Application-task services include quoting request
and invoicing that take part in the sales order busi-
ness process of a typical ERP system.

4. Entity services: (Also called information or data
services [17, 81, 84]), they provide access to and man-
agement of the persistent data of legacy software sys-
tems. They support actions on data (CRUD) and
may have side-effects (i.e., they modify shared data).
Examples of entity services include management ser-
vices for clients, bank accounts, and products.

5. Utility services: They do not support directly the
business-process services but provide some cross-cut-
ting functionalities required by domain-specific ser-
vices [84, 32, 22]. Examples of typical utility services
include notification, logging, and authentication.

6. Infrastructure services: They allow users deploy-
ing and running SOA systems. They include ser-
vices for communication routing, protocol conver-
sion, message processing and transformation [17]. They
are sometimes provided by an Enterprise Service Bus
(ESB). They are reused in more services than utility
services. Examples of Infrastructure services include
publish-subscribe, message queues, and ESB.

Most of SIAs identify general services of SOA without
specifying different service types, e.g., [14, 29, 86]. Only a
few approaches [17, 20, 22, 32] considered the identification
of specific types of services in existing systems.

For example, Alahmari et al. [17] identified services
based on analyzing business process models. These busi-
ness process models are derived from questionnaires, inter-
views and available documentations that provide atomic
business processes and entities on the one hand, and activ-
ity diagrams that provide primitive functionalities on the
other hand. The activity diagrams are manually identified
from UML class diagrams extracted from the legacy code
using IBM Rational Rose. Different service granularity are
distinguished in relation to atomic business processes and
entities. Dependent atomic processes as well as the related

12



entities are grouped together at the same service to maxi-
mize the cohesion and minimize the coupling. There is no
details about how to identify the different service types.
Fuhr et al. [32] identified three types of services. These
are business, entity and utility services. The services are
identified from legacy codes based on a dynamic analysis
technique. The authors relied on a business process model
to identify correlation among classes. Each activity in the
business process model is executed. Classes that have got
called during the execution are considered as related. The
identification of services is based on a clustering technique
where the similarity measurement is based on how many
classes are used together in the activity executions. The
identified clusters are manually interpreted and mapped
into the different service types. Classes used only for the
implementation of one activity are grouped into a business
service corresponding to this activity. Entity services are
composed of clusters of classes that contribute to imple-
ment multiple activities but not all of them. A Cluster
of classes that are used by all of the activities represent
the implementation of utility services. A strong assump-
tion regarding this approach is that business process model
should be available to identify execution scenarios.

We notice that there is a lack of SIAs that are type-
centric: only four SIAs focus on the identification of spe-
cific types of services from legacy systems. These ap-
proaches focus on identifying business [17, 22, 32], entity
[20, 22] and utility services [17, 20, 22, 32]. Also, none of
the studied SIAs tried to identify enterprise-task or infras-
tructure services through the analysis of legacy systems.
These type-centric SIAs do not distinguish in their service
identification process between enterprise and application-
task services as the scope of reuse of the identified services
is not well studied or specified.

6. RQ4: What is the usability of SIAs?

Figure 2 shows that we consider four elements to es-
timate the usability of SIAs: validation, accuracy, tool
support, and result quality. We then introduce a measure
of the usability of the SIAs based on these four elements
and their values for each SIA.

6.1. Validation
Validation refers to the legacy software systems (if any)

on which the SIA was applied. It can be industrial (e.g.,
real industrial systems), experimental (small, experimen-
tal systems), or none at all. We evaluate the usability of a
SIA as follows. If the validation is performed on (1) indus-
trial systems, it is “high”; (2) experimental systems, it is
“medium”, else (3) it is “low”. We found that only 34% of
SIAs were validated on real industrial systems, with most
SIAs validated on experimental systems or not validated
at all. This lack of industrial validation is a major threat
to the applicability of SIAs.

6.2. Accuracy/Precision
We assign “high”, “medium”, and “low” values to the

accuracy/precision of SIAs. We assign “high” if it is greater
than 80%, medium if it is between 50% and 79% in the
SIA, and low if it is less than 50%.

Although the accuracy/precision of SIAs is important,
we found that only few SIAs have reported accuracy/preci-
sion (as depicted in Table 8).

6.3. Tool Support
Tool support refers to the tool(s) implementing a SIA

and their maturity, if any.
We consider the tool support of a SIA as “high” if it

is open-source or industry ready, “medium” if it is only a
prototype, and “low” if there is little or no tool support.

6.4. Result Quality
Result quality is an estimation of the quality of the

identified candidate services and whether or not the au-
thors detailed well their proposed SIA. It can be “high”,
“medium”, or “low”.

6.5. Usability
We consider these four preceding elements to estimate

the usability of SIAs. We assign to each SIA a usability
degree (UD) as follows:

UD =
4∑

i=1

Scorei

Scorei ∈ {high = 1,medium = 0, low = −1},∀i ∈
{1, .., 4} and refers to validation, accuracy, tool support,
and usability, respectively.

IfUD ≥ 1, then UD = high.
IfUD = 0, then UD = medium.
IfUD ≤ −1, then UD = low.
We tried our best to consider the most important us-

ability criteria and give a rational estimation of the usabil-
ity degree of the studied SIAs. For example, as shown in
Table 8, to calculate the usability of the SIA of Rodriguez
et al. [16], we studied the scores relative to tool support,
validation, identification accuracy, and quality results of
the approach. This study has a high tool support through
the tool named MIGRARIA (tool-support score is 1). It
is validated on an experimental system (validation score is
0). There was no mention of the accuracy/precision of the
approach and thus we did not consider associated scores
for calculating the usability of the approach. Finally, based
on our judgment of the whole approach, we estimated that
this SIA has high quality results (quality result is 1). We
added all these scores and obtain a usability score of two,
which we qualified as a high usability degree.

Table 8 shows that 39% of SIAs have a high usability
degree while 22% have medium usability, and 39% have
low usability. These results show that the studied SIAs
are still in their infancy, mainly due to (1) the lack of
validation on industrial systems, (2) the lack of estimation
of their accuracy/precision, (3) their lack of tool support,
and (4) their lack of automation.

13



Method ToolSupport Validation Accuracy
/ Preci-
sion

Result
Quality

Usability

Service Identification Based on Quality Metrics [14] Prototype Experimental Medium Medium Medium
A spanning tree based approach to identifying web services [15] MOGA-WSI Industry NA High High
Generating a REST Service Layer from a Legacy System [16] MIGRARIA Experimental NA High High
A service identification framework for legacy system migration into SOA [17] Prototype Experimental NA Low Low
Reusing existing object-oriented code as web services in a SOA [18] Industry ready Industry NA High High
Mining candidate web services from legacy code [19] NA Experimental NA Low Low
From objects to services: toward a stepwise migration approach for Java applications [20] NA Experimental NA Low Low
Migrating interactive legacy systems to web services [21] NA Case Study NA Medium Low
MDCSIM: A method and a tool to identify services [22] MDCSIM Industry NA High High
Reverse engineering relational databases to identify and specify basic Web services with respect
to service oriented computing [23]

CASE Experimental NA Medium High

Identifying services in procedural programs for migrating legacy system to service oriented
architecture [24]

NA Experimental NA Low Low

A service-oriented analysis and design approach based on data flow diagram [25] SOAD Experimental NA Low Medium
Service discovery using a semantic algorithm in a SOA modernization process from legacy web
applications [26]

MigraSOA Experimental NA Low Medium

Incubating services in legacy systems for architectural migration [27] Prototype Industry NA Low Medium
Migrating to Web services: A research framework [28] NA No Validation NA Low Low
Service Identification and Packaging in Service Oriented Reengineering [29] Prototype Case Study NA Medium Medium
A wrapping approach and tool for migrating legacy components to web services [30] Prototype Case Study NA Low Low
Extracting reusable object-oriented legacy code segments with combined formal concept analysis
and slicing techniques for service integration [31]

Prototype Experimental NA Low Low

Using dynamic analysis and clustering for implementing services by reusing legacy code [32] Prototype Case Study Meduim Low Low
Service Mining from Legacy Database Applications [33] Prototype Industry NA High High
An approach for mining services in database oriented applications [34] Prototype Industry High High High
Using user interface design to enhance service identification [35] Prototype Industry NA Medium High
A method to identify services using master data and artifact-centric modeling approach [36] NA Experimental NA Low Low
Multifaceted service identification: Process, requirement and data [37] Prototype Experimental High Low Medium
The service modeling process based on use case refactoring [38] Prototype Case Study NA Low Low
Extracting reusable services from legacy object-oriented systems [39] Prototype Industry NA Medium High
Locating services in legacy software:information retrieval techniques, ontology and FCA based
approach [40]

Prototype Case Study NA Low Low

Microservices Identification Through Interface Analysis [41] NA Case Study NA Low Low
Extraction of microservices from monolithic software architectures [43] Prototype Industry NA High High
Service Cutter: A Systematic Approach to Service Decomposition [44] ServiceCutter Experimental NA High High
Bottom-up and top-down cobol system migration to web services [9] Industry ready Industry NA High High
Functionality-Oriented Microservice Extraction Based on Execution Trace Clustering [42] FOME Experimental NA Low Medium
An approach to align business and IT perspectives during the SOA services identification [45] Prototype Experimental NA Low Low
Discovering Microservices in Enterprise Systems Using a Business Object Containment Heuristic
[46]

Prototype Industry NA Medium High

A heuristic approach to locate candidate web service in legacy software [47] Prototype Experimental NA Low Low
Identifying Microservices Using Functional Decomposition [48] Prototype Experimental NA Low Low
Towards the understanding and evolution of monolithic applications as microservices [49] Prototype Industry NA High High
From Monolithic Systems to Microservices: A Decomposition Framework based on Process Min-
ing [50]

Prototype Industry NA High High

Function-Splitting Heuristics for Discovery of Microservices in Enterprise Systems [51] Prototype Industry NA Medium High
From a Monolith to a Microservices Architecture: An Approach Based on Transactional Con-
texts [52]

Prototype Experimental Medium Medium Medium

Re-architecting OO Software into Microservices A Quality-centered approach [53] Prototype Experimental NA Medium Medium

Table 8: Usability of SIAs

7. Taxonomy and Validation

Figure 2 shows the taxonomy resulting from our an-
swers to the research questions. This taxonomy directly
derive from the previous sections.

We believe that the validation of a taxonomy is difficult
for several reasons. In fact, it is a tool for researchers and
practitioners and, as such, it should be used to assess its
strengths and limitations. Also, a taxonomy often cannot
be compared against other ones, either because they do
not exist or because they have different objectives. Conse-
quently, to validate our taxonomy, we performed a survey
with industrial experts.

7.1. Methodology
We conducted a survey with 45 industrial experts to

validate our taxonomy and also obtain their informed opin-
ions about legacy-to-SOA migration in general and service
identification in particular [7]. We conducted this survey
between October 2017 and March 2018 in five main steps:

7.1.1. Preparation of the Survey
We created a Web-based survey2 using Google Forms.

We built our survey on our taxonomy: the individual ques-

2https://goo.gl/forms/EE31KeA7R7pUeTYI2

tions correspond to each composite node of the taxonomy
and their possible answers correspond to the leave nodes.

Before releasing the survey, we performed a pilot study
with six participants, three from academia and three from
industry, and validated the relevance of the questions, their
wording, the coverage of their answers, etc. The six par-
ticipants went through the questions and suggested few
minor changes.

The final survey contained six sections: (1) partici-
pants’ professional and demographic data, (2) type of mi-
grated systems and reasons for migration, (3) general in-
formation about SIAs (perception of importance, strat-
egy, inputs, level of automation), (4) technical informa-
tion about SIAs (techniques, quality metrics), (5) types of
sought services, and (6) used tools and best practices.

For example, we asked the participants the following
questions: “What information do/did you use to identify
services?", “What kind of identification techniques do/did
you apply?", “What are the types of the migrated ser-
vices?", etc. We provide a list of possible answers for each
question and ask the participants to mention any other
answer if he/she did not select any possibility from the
provided list.

14



Taxonomy	of	Service	identification	Approaches	

OutputProcessInput

Business	
process	
Model

Quality	
requirements

Composability

Direction

Bottom-up

Top	down

Analysis	
Type

Static

Dynamic

Validation Tool	
Support

Accuracy	
precision

Results
	quality

Use	Case

Activity	
Diagram

Data	Flow	
Diagram

Source	code

Database

Domain	Artifacts

Experimental

Industry

No	validation

High

Medium

Reuse Mixed

Service	Types

Quality	
metrics

Cohesion

Coupling

Number	of
	services

LowCase	study

Automation

Automatic

Semi-
automatic

manual

Model	artifacts

Maintainability

Interoperability

Selfcontainment

Usability

Granularity

State	Machine	
Diagram

Non	executable	
Model	representations

of	the	software	

Lexical

Historic

Industry
	ready

Prototype

No	tool	
support

Architecture

Services

Microservices Open	
source	

Executable	software	
model	representations	

Ontology

Documentation

Human	
Expertise

User-Application
	Interactions

Runtime	artifacts

Log	traces

Business	services

Enterprise	services

Application	services

Quality

Entity	services

Utility	services

Infrastructure	services

Test	cases

Domain	Model

Figure 2: Taxonomy of service identification approaches

7.1.2. Selection of the Participants
We targeted developers with an industrial experience in

SOA migration. Identifying and soliciting such developers
was challenging. We relied on (1) information about com-
panies that offer modernization services, (2) online pre-
sentations and webinars made by legacy-to-SOA migra-
tion experts, and (3) search queries on LinkedIn profiles:
“legacy migration OR legacy modernization OR SOA ar-
chitect OR SOA migration OR Cloud migration OR ser-
vice migration OR service mining”. We attempted neither
to be exhaustive in our search for participants nor to cover
different strata of developers working on SOA migration.
As such, our sample is a random sample of convenience.

Once we identified potential participants, we sent them
invitations via e-mail, LinkedIn, Facebook, and Twitter.
We chose not to solicit more than three participants from
any given company (1) to have a diversity of companies
and (2) to avoid overburdening a single company.

7.1.3. Administering the Survey
We invited 289 participants and recommended about

15 minutes to complete the survey. We asked potential
participants to forward our invitations to colleagues with
experience in SOA migration in their social/professional
networks. The survey was completed by 47 participants,
two of whom did not participate in SOA migration and
whose answers we removed, for 45 complete answers.

7.1.4. Validation of the Survey
We assessed the reliability of the answers to the survey

by searching for spurious/facetious answers, contradictory
answers, etc. We also performed follow-up interviews with
24 of the 45 participants who agreed to such interviews by
providing their e-mail addresses.

We interviewed 8 of these 24 participants. We used a
two-pass method [87] to analyze our transcripts of the in-
dividual interviews3. We first performed a thematic coding

3https://goo.gl/ZYv2Ut for sample transcripts

to identify broad issues related to legacy-to-SOA migration
in general and SIAs in particular. We then performed an
axial coding to identify relationships among the identified
issues. We identified major issues related to our taxonomy
usingmeta-codes, which we then used to code manually the
data of all the interviewees [7].

7.1.5. Validation of the Taxonomy
We could then measure the precision and accuracy of

our taxonomy (input, process, and output of SIAs) as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP (True Positive) corresponds to a leaf/answer
identified by both a participant and our taxonomy, FP
(False Positive) corresponds to a leaf/answer identified in
our taxonomy but not mentioned by any participant, and
FN (False Negative) corresponds to an answer from at least
one participant but not identified in our taxonomy.

We do not assess the usability of the SIAs for two rea-
sons. First, we did not want to overburden the participants
with the assessment of a very subjective metric and be-
cause we believe that such a measure deserves a complete,
independent study (in future work).

7.2. Participants
We reached a total of 45 participants involved in legacy-

to-SOA migration projects in different capacities: 50%
were software architects, 23.7% were directors of technol-
ogy, and 21% were software engineers. The remaining 5.3%
were migration specialists, project managers, and CEOs.

The participants worked in different industries: 64%
were in technology and telecommunication, 20% in bank-
ing and insurance, 12.8% in health, and 3.2% in education.

15



In terms of experience, 78% had more than 10 years of ex-
perience, also reflected in their age distributions: 23% were
less than 35 years old, 39% were between 36 and 45, 20.5%
were between 46 and 55, and 17.5% were over 55.

7.3. Validation Results

Feature Precision Recall
Inputs 93% 100%
Techniques 100% 82%
Quality metrics 100% 73%
Direction 100% 100%
Automation 100% 100%
Analysis type 100% 100%
Service types 100% 100%

Table 9: Validation results of the service-identification taxonomy

Table 9 shows the validation results of our taxonomy
with precision and recall: our taxonomy is conformed to
the experts’ experiences with a precision between 93% and
100% and a recall between 73% and 100%.

In particular, for inputs, precision is 93% and recall
100%. None of the participants mentioned the use of test
scenarios to identify services. However, we kept this input
in our taxonomy as it is used by two SIAs. In terms of
the techniques, recall is 82%, which is acceptable, because
some participants mentioned the use of in-house tools or
manual identification. For quality metrics, recall is 73%,
which is acceptable, because some participants mentioned
the use of other economic quality metrics not considered
in any of the SIAs: identification cost, adaptation effort,
and time to market.

8. Discussions

In this section, we will discuss our observations about
the studied SIAs in terms of the main nodes of our taxon-
omy: inputs, processes, outputs, and usability.

8.1. Inputs
SIAs rely on diverse types of inputs to identify services.

We found that the most used inputs are source code and
business-process models (BPMs). Combining multiple in-
puts is also common. The most used combination of inputs
are also source code and BPMs [18, 20, 29, 32]. Only 10
SIAs rely on a single input type [14, 16, 23, 30, 33, 43, 47,
49, 52, 53], either source code again or databases.

8.2. Processes
Most SIAs rely on clustering and custom heuristics to

identify services. The main challenge for these approaches
is in using adequate heuristics to identify services.

The success of a SOA depends on the quality of the
services. Services with low quality attributes may (1) af-
fect reuse negatively and (2) compromise business agility
and reduce return on investment [88]. Quality attributes

are therefore important to identify services. However, not
all service quality requirements are considered by state-of-
the-art SIAs. Moreover, regardless of the adopted quality
requirements, SIAs should provide means to assess/control
the quality of the candidate services. Also, there are many
economic factors that SIAs should take into account. Such
aspects could be the implementation and maintenance cost,
the re-factoring cost of the system, and time-to-market.
The economic aspects of the identified methods are widely
ignored in the studied SIAs. We believe that more efforts
should be done in SIAs to consider as well such economic
aspects which play an important role to select the appro-
priate SIA for an organisation.

8.3. Outputs
We noticed that microservices architectures have been

gaining a lot of consideration in the past few years as we
found many studies focusing on the identification of mi-
croservices in legacy systems. The applied identification
techniques are quite similar to those used for identify-
ing services. On the other hand, few SIAs focus on the
identification of specific types of services. In particular
we observed that these SIAs focus on identifying business,
entity, and utility services but not enterprise/application-
task and infrastructure services. Also, we noticed that
these type-sensitive SIAs do not distinguish between en-
terprise and application task services as the scope of reuse
of the identified services is not well specified/studied. We
believe that the identification of services according to their
types is a challenging problem because (1) we have to build
a taxonomy that cover all service types, (2) define detec-
tion rules/signature for each service type, and (3) target
the metrics or detection rules that are appropriate for each
type. We believe that not all service types have distinct
signatures as two different service types may leave simi-
lar or indistinguishable signatures in the code. The tax-
onomy of service types may not be representative of all
existing service types. To mitigate this threat, we vali-
dated our taxonomy through an industrial survey with 45
practitioners who were involved in migration projects of
legacy systems to SOA [7]. None of them mentioned the
identification of new/other types of services.

8.4. Usability
We reported that 51% of the state-of-the-art SIAs have

medium or low usability degree due to (1) their lack of
validation on real industrial systems, (2) their lack of tool
support, and (3) their lack of automation. In particular,
most SIAs consider only small examples in their validation,
also confirmed by some participants in our survey [7]. The
participants reported that a problem exists in the knowl-
edge transfer between academia and industry because of
the lack of consideration of enterprise-scaled systems to
validate the proposed SIAs in academia.

Finally, we believe that measuring the usability of a
given SIA is quite difficult. Our proposed metric may par-
tially measure the usability of a given SIA as we do not

16



cover all possible usability-related aspects. However, we
tried our best to consider the most important usability cri-
teria such as the tool support, the quality of SIA results,
the validation of the process and the accuracy/precision
of the SIA. As a future work, we aim to empirically val-
idate our proposed metric of usability with people from
academia and industry to study its feasibility of quantify-
ing/estimating the usability degree of a SIA.

9. Related Work

Several systematic literature reviews and surveys on
SIAs have been proposed in the literature. In the period
from 2009 to 2019, ten surveys [89, 90, 85, 91, 92, 93, 88, 94,
95, 96] on service identification were identified. Although
these surveys had different goals, neither of them fully ad-
dressed all our research questions. Table 10 contains a
summary and comparison between the most relevant sur-
veys focusing on service identification in the literature.

For example, Boerner et al. [89], only studied business-
driven SIAs techniques and focused on their strategic and
economic aspects. They stressed the consideration of eco-
nomic aspects when identifying services based only on top
down approaches. Birkmeier et al. [98] proposed a classi-
fication of SIAs between 1984 and 2008. This SLR is in-
deed old, does not fully addressed our research questions
and does not cover recent SIAs. Cai et al. [97] proposed
another survey where they identified the most frequent ac-
tivities in the state-of-the-art SIAs between 2004 and 2011.
Then, Vale et al. [92] made a comparison of SIAs and a
list of recommendation of the most suitable SI technique
according to stakeholders’ needs in the Service-Oriented
Product Line Engineering context. Bani et al. [95, 96] pro-
posed two different surveys about service identification. In
the first one they studied the evaluation frameworks for 24
state-of-the-art SIAs. In the second survey they only iden-
tified the challenges of 14 service identification approaches
and their limitations. Both studies do not fully address
our research questions as we do in our SLR.

Finally Fritcsch et al. [94] provided a classification of
refactoring approaches of monolithic applications to mi-
croservices. They studied 10 microservices identification
approaches and provided a guide for decomposition ap-
proaches using microservices identification requirements.

Although there are several SLRs on service identifi-
cation in the literature, none of these surveys fully ad-
dressed our research questions. Their focus differ deeply
as we cover more in details state-of-the-art service iden-
tification approaches in terms of (1) the artifacts used by
SIAs, (3) the processes of these approaches,(4) the out-
puts of these processes, and (5) the usability degree of
these approaches. We also propose a taxonomy of SIAs
and validate its correctness and coverage with industrial
experts in legacy-to-SOA migration through surveys and
one-on-one interviews.

10. Conclusion and Future Work

We presented in this paper a systematic literature re-
view (SLR) on service identification approaches (SIAs)
that use the artifacts to build legacy software systems as
input. We studied the SIAs in terms of their inputs, their
processes, their outputs, and their usability. We built our
taxonomy on our experience with legacy software modern-
ization, discussions with industrial partners, and the anal-
ysis of existing SIAs. We validated the correctness and
the coverage of our taxonomy with industrial experts in
legacy-to-SOA migration through surveys and one-on-one
interviews. The validation results showed that our tax-
onomy is conformed to the industrial experts’ experiences
with 99% of precision and 94% of recall.

The results of our SLR show that the state-of-the art
SIAs are still at their infancy mainly due to (1) the lack of
validation on real enterprise-scale systems; (2) the lack of
tool support, and (3) the lack of automation of SIAs. The
results also show that the proposed SIAs generally ignore
the economic aspects of the identification phase as well as
the identification by service type. Indeed despite of their
importance in the migration process, only few SIAs con-
sider the economic aspects of the service identification pro-
cess such as the implementation and maintenance cost, the
re-factoring cost of the system, and time-to-market. Also,
most of the existing SIAs look for services based on their
functional cohesion and low coupling with other parts of
the applications, regardless of service types. Furthermore,
we showed that the current trend of SIAs is the identifi-
cation of microservices in existing systems. However, the
applied identification techniques were very similar to those
used for identifying services. The granularity border be-
tween services and microservices is still not well defined nor
clearly discussed by these approaches. Finally, we found
that most SIAs usually do not try to improve the qual-
ity attributes of the identified candidate services. We be-
lieve that regardless of the sought quality attributes, SIAs
should provide means to assess the quality of the identi-
fied services. Also, we believe that more work should be
done to automate the SIAs and consider enterprise-scaled
systems to validate the proposed approaches.

As future work, we will generalize our survey and study
top-down service identification approaches. We will study
in detail SIAs that use some architecture-centric methods
such as Architecture Tradeoff Analysis Method (ATAM)
[99], Attribute-Driven Design (ADD) [100], and Cost Ben-
efit Analysis Method (CBAM) [101]. These methods could
assist a service identification approach by providing and
evaluating architectural descriptions of the system to mi-
grate. Also, we will study empirically the gap of the state
of the practices of SIAs between academia and industry.
We want to identify issues that the research community
can address to ease knowledge transfer between academia
and industry in the context of legacy-to-SOA migration.
Finally, we believe that the identification of services ac-
cording to their types is a challenging but interesting prob-

17



SIA Goal Year of
publica-
tion

Covered years Included
papers

RQ1 RQ2 RQ3 RQ4

Boerner et al.[89] Business-driven SI techniques comparison with
the study of their strategic and economic as-
pects

2009 2005-2008 5 NA PA PA A

Birkmeier et al.[90] Classification of service identification tech-
niques

2009 1984*-2008 15 PA A PA NA

Gu and Lago[85] Providing the basic elements of SI to help prac-
titioners selecting the most suitable one basic
on their needs

2010 2004-2009 30 A A A NA

Cai et al.[97] Identify frequent used activities done in several
SI research works

2011 2004-2011 41 PA A PA NA

Vale et al.[92] Comparison of SI methods and recommenda-
tion of the most suitable SI technique according
to stakeholders’ needs in the Service-Oriented
Product Line Engineering context

2012 2005-2012 32 PA PA PA PA

Taei et al.[93] Suitable inputs identification for SI methods in
small and medium enterprise

2012 2002-2010 48 PA PA PA NA

Huergo et al.[88] Classification of SI methods 2014 2002-2013 105 PA A PA NA
Bani et al.[96] Exploring existing evaluation frameworks for

state-of-the-art SIAs
2018 2007-2016 23 PA PA NA PA

Bani et al.[95] Identifying service identification challenges in
service oriented architecture

2018 2005-2016 14 PA NA NA NA

Fritzsch et al.[94] Classification of Refactoring Approaches of
monolithic applications to microservices

2018 2015-2017 10 PA PA PA NA

Our SLR Focusing on bottom-up and hybrid SIAs based
on the used input, the applied process, the gen-
erated output and the usability of the approach
Reviewing SI from the point of view of re-
searchers and practitioners interest

2019 2004-2019 41 A A A A

Table 10: Systematic literature reviews of Service Identification in the literature (A for Addressed, PA for Partially Addressed, NA for Not
Addressed

lem. As future work, we aim to propose a type-centric
service identification approach that promote better reuse
at the application, enterprise, and business levels.

References

[1] Grace Lewis, Ed Morris, Liam O’Brien, Dennis Smith, and
Lutz Wrage. Smart: The service-oriented migration and reuse
technique. Technical report, DTIC Document, 2005.

[2] Thomas Erl. SOA design patterns. Pearson Education, 2008.
[3] Sam Newman. Building microservices: designing fine-grained

systems. " O’Reilly Media, Inc.", 2015.
[4] Ravi Khadka, Prajan Shrestha, Bart Klein, Amir Saeidi, Ju-

rriaan Hage, Slinger Jansen, Edwin van Dis, and Magiel
Bruntink. Does software modernization deliver what it aimed
for? a post modernization analysis of five software modern-
ization case studies. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 477–
486. IEEE, 2015.

[5] Christian Wagner. Model-Driven Software Migration: A
Methodology: Reengineering, Recovery and Modernization of
Legacy Systems. Springer Science & Business Media, 2014.

[6] Ravi Khadka, Amir Saeidi, Slinger Jansen, and Jurriaan Hage.
A structured legacy to soa migration process and its evaluation
in practice. In Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems (MESOCA), 2013 IEEE 7th Inter-
national Symposium on the, pages 2–11. IEEE, 2013.

[7] Manel Abdellatif, Geoffrey Hecht, Hafedh Mili, Ghizlane El-
boussaidi, Naouel Moha, Anas Shatnawi, Jean Privat, and
Yann-Gaël Guéhéneuc. State of the practice in service identifi-
cation for soa migration in industry. In International Confer-
ence on Service-Oriented Computing, pages 634–650. Springer,
2018.

[8] Andrei Furda, Colin Fidge, Olaf Zimmermann, Wayne Kelly,
and Alistair Barros. Migrating enterprise legacy source code
to microservices: on multitenancy, statefulness, and data con-
sistency. IEEE Software, 35(3):63–72, 2017.

[9] Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos, Ale-
jandro Zunino, and Marcelo Campo. Bottom-up and top-down
cobol system migration to web services. IEEE Internet Com-
puting, 17(2):44–51, 2013.

[10] Barbara Kitchenham. Procedures for performing systematic
reviews. Keele, UK, Keele University, 33(2004):1–26, 2004.

[11] Claes Wohlin. Guidelines for snowballing in systematic lit-
erature studies and a replication in software engineering. In

Proceedings of the 18th international conference on evaluation
and assessment in software engineering, page 38. ACM, 2014.

[12] Katia Romero Felizardo, Emilia Mendes, Marcos Kalinowski,
Érica Ferreira Souza, and Nandamudi L Vijaykumar. Using
forward snowballing to update systematic reviews in software
engineering. In Proceedings of the 10th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and
Measurement, page 53. ACM, 2016.

[13] Ali Taei Zadeh, Muriati Mukhtar, Shahnorbanun Sahran, and
MR Khabbazi. A systematic input selection for service iden-
tification in smes. Journal of Applied Sciences, 12(12):1232,
2012.

[14] Seza Adjoyan, Abdelhak-Djamel Seriai, and Anas Shatnawi.
Service identification based on quality metrics - object-oriented
legacy system migration towards SOA. In The 26th Inter-
national Conference on Software Engineering and Knowledge
Engineering, Hyatt Regency, Vancouver, BC, Canada, July
1-3, 2013., pages 1–6, 2014.

[15] Hemant Jain, Huimin Zhao, and Nageswara R Chinta. A span-
ning tree based approach to identifying web services. Interna-
tional Journal of Web Services Research, 1(1):1, 2004.

[16] Roberto Rodríguez-Echeverría, Fernando Maclas, Vlctor M
Pavón, José M Conejero, and Fernando Sánchez-Figueroa.
Generating a rest service layer from a legacy system. In Infor-
mation System Development, pages 433–444. Springer, 2014.

[17] Saad Alahmari, Ed Zaluska, and David De Roure. A service
identification framework for legacy system migration into soa.
In Services Computing (SCC), 2010 IEEE International Con-
ference on, pages 614–617. IEEE, 2010.

[18] Harry M Sneed, Chris Verhoef, and Stephan H Sneed. Reusing
existing object-oriented code as web services in a soa. In Main-
tenance and Evolution of Service-Oriented and Cloud-Based
Systems (MESOCA), 2013 IEEE 7th International Sympo-
sium on the, pages 31–39. IEEE, 2013.

[19] Lerina Aversano, Luigi Cerulo, and Ciro Palumbo. Mining
candidate web services from legacy code. In 10th International
Symposium on Web Site Evolution, pages 37–40. IEEE, 2008.

[20] Alessandro Marchetto and Filippo Ricca. From objects to ser-
vices: toward a stepwise migration approach for java applica-
tions. International journal on software tools for technology
transfer, 11(6):427, 2009.

[21] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and
Porfirio Tramontana. Migrating interactive legacy systems to
web services. In Conference on Software Maintenance and
Reengineering (CSMR’06), pages 10–pp. IEEE, 2006.

[22] Rosane S Huergo, Paulo F Pires, and Flávia C Delicato. Mdc-

18



sim: A method and a tool to identify services. IT Convergence
Practice, 2(4):1–27, 2014.

[23] Youcef Baghdadi. Reverse engineering relational databases to
identify and specify basic web services with respect to service
oriented computing. Information systems frontiers, 8(5):395–
410, 2006.

[24] Masahide Nakamur, Hiroshi Igaki, Takahiro Kimura, and
Kenichi Matsumoto. Identifying services in procedural pro-
grams for migrating legacy system to service oriented architec-
ture. Implementation and Integration of Information Systems
in the Service Sector, page 237, 2012.

[25] Yun Zhao, Huayou Si, Yulin Ni, and Hengnian Qi. A service-
oriented analysis and design approach based on data flow dia-
gram. In International Conference on Computational Intelli-
gence and Software Engineering CiSE 2009., pages 1–5. IEEE,
2009.

[26] Encarna Sosa-Sánchez, Pedro J Clemente, Miguel Sánchez-
Cabrera, José M Conejero, Roberto Rodríguez-Echeverría, and
Fernando Sánchez-Figueroa. Service discovery using a seman-
tic algorithm in a soa modernization process from legacy web
applications. In Services (SERVICES), 2014 IEEE World
Congress on, pages 470–477. IEEE, 2014.

[27] Zhuopeng Zhang and Hongji Yang. Incubating services in
legacy systems for architectural migration. In 11th Asia-
Pacific Software Engineering Conference, 2004., pages 196–
203. IEEE, 2004.

[28] Harry Sneed. Migrating to web services: A research framework.
In Proceedings of the International, 2007.

[29] Zhuopeng Zhang, Ruimin Liu, and Hongji Yang. Service iden-
tification and packaging in service oriented reengineering. In
SEKE, volume 5, pages 620–625, 2005.

[30] Guo Chenghao, Wang Min, and Zhou Xiaoming. A wrap-
ping approach and tool for migrating legacy components to
web services. In First International Conference on Network-
ing and Distributed Computing (ICNDC),2010, pages 94–98.
IEEE, 2010.

[31] Zhuopeng Zhang, Hongji Yang, and William C Chu. Extract-
ing reusable object-oriented legacy code segments with com-
bined formal concept analysis and slicing techniques for service
integration. In 2006 Sixth International Conference on Quality
Software (QSIC’06), pages 385–392. IEEE, 2006.

[32] Andreas Fuhr, Tassilo Horn, and Volker Riediger. Using dy-
namic analysis and clustering for implementing services by
reusing legacy code. In Reverse Engineering (WCRE), 2011
18th Working Conference on, pages 275–279. IEEE, 2011.

[33] Diptikalyan Saha. Service mining from legacy database appli-
cations. In Web Services (ICWS), 2015 IEEE International
Conference on, pages 448–455. IEEE, 2015.

[34] Concettina Del Grosso, Massimiliano Di Penta, and Ignacio
Garcia-Rodriguez de Guzman. An approach for mining ser-
vices in database oriented applications. In 11th European Con-
ference on Software Maintenance and Reengineering, 2007.
CSMR’07., pages 287–296. IEEE, 2007.

[35] Senthil Mani, Vibha S Sinha, Noi Sukaviriya, and Thejaswini
Ramachandra. Using user interface design to enhance service
identification. In Web Services, 2008. ICWS’08. IEEE Inter-
national Conference on, pages 78–87. IEEE, 2008.

[36] Rosane S Huergo, Paulo F Pires, and Flavia C Delicato. A
method to identify services using master data and artifact-
centric modeling approach. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pages 1225–1230.
ACM, 2014.

[37] Mohammad Javad Amiri, Saeed Parsa, and Amir Moham-
madzade Lajevardi. Multifaceted service identification: Pro-
cess, requirement and data. Computer Science and Informa-
tion Systems, 13(2):335–358, 2016.

[38] Yukyong Kim and Kyung-Goo Doh. The service modeling pro-
cess based on use case refactoring. In International Conference
on Business Information Systems, pages 108–120. Springer,
2007.

[39] Liang Bao, Chao Yin, Weigang He, Jun Ge, and Ping Chen.

Extracting reusable services from legacy object-oriented sys-
tems. In software maintenance (ICSM), 2010 IEEE Interna-
tional Conference on, pages 1–5. IEEE, 2010.

[40] M.A.M. Djeloul. Locating services in legacy soft-
ware:information retrieval techniques, ontology and fca
based approach. WSEAS Transactions on Computers,
11(1):19 – 26, 2012/01/. legacy software;information re-
trieval techniques;FCA based approach;Web services tech-
nology;WORDNET ontology;formal concepts analysis;source
code;.

[41] Luciano Baresi, Martin Garriga, and Alan De Renzis. Mi-
croservices identification through interface analysis. In Euro-
pean Conference on Service-Oriented and Cloud Computing,
pages 19–33. Springer, 2017.

[42] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuanfang
Cai. Functionality-oriented microservice extraction based on
execution trace clustering. In 2018 IEEE International Con-
ference on Web Services (ICWS), pages 211–218. IEEE, 2018.

[43] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of
microservices from monolithic software architectures. In 2017
IEEE International Conference on Web Services (ICWS),
pages 524–531. IEEE, 2017.

[44] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf
Zimmermann. Service cutter: A systematic approach to service
decomposition. In European Conference on Service-Oriented
and Cloud Computing, pages 185–200. Springer, 2016.

[45] Eric Souza, Ana Moreira, and Cristiano De Faveri. An ap-
proach to align business and it perspectives during the soa ser-
vices identification. In 2017 17th International Conference on
Computational Science and Its Applications (ICCSA), pages
1–7. IEEE, 2017.

[46] Adambarage Anuruddha Chathuranga De Alwis, Alistair Bar-
ros, Colin Fidge, and Artem Polyvyanyy. Discovering microser-
vices in enterprise systems using a business object containment
heuristic. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems", pages 60–79.
Springer, 2018.

[47] Mostefai Abdelkader, Mimoun Malki, and Sidi Mohamed
Benslimane. A heuristic approach to locate candidate web
service in legacy software. International Journal of Computer
Applications in Technology, 47(2-3):152–161, 2013.

[48] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhim-
ing Liu. Identifying microservices using functional decompo-
sition. In International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications, pages 50–65.
Springer, 2018.

[49] Daniel Escobar, Diana Cárdenas, Rolando Amarillo, Eddie
Castro, Kelly Garcés, Carlos Parra, and Rubby Casallas. To-
wards the understanding and evolution of monolithic applica-
tions as microservices. In 2016 XLII Latin American Comput-
ing Conference (CLEI), pages 1–11. IEEE, 2016.

[50] Davide Taibi and Kari Systä. From monolithic systems to
microservices: A decomposition framework based on process
mining. In 8th International Conference on Cloud Computing
and Services Science, CLOSER, 2019.

[51] Adambarage Anuruddha Chathuranga De Alwis, Alistair Bar-
ros, Artem Polyvyanyy, and Colin Fidge. Function-splitting
heuristics for discovery of microservices in enterprise systems.
In International Conference on Service-Oriented Computing,
pages 37–53. Springer, 2018.

[52] Luís Nunes, Nuno Santos, and António Rito Silva. From a
monolith to a microservices architecture: An approach based
on transactional contexts. In European Conference on Soft-
ware Architecture, pages 37–52. Springer, 2019.

[53] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane,
Christophe Dony, and Rahina Oumarou Mahamane. Re-
architecting oo software into microservices. In European Con-
ference on Service-Oriented and Cloud Computing, pages 65–
73. Springer, 2018.

[54] Deborah Hix and H Rex Hartson. Developing user interfaces:
ensuring usability through product & process. John Wiley &

19



Sons, Inc., 1993.
[55] Mathias Weske. Business process management architectures.

In Business Process Management, pages 333–371. Springer,
2012.

[56] Anisha Vemulapalli and Nary Subramanian. Transforming
functional requirements from uml into bpel to efficiently de-
velop soa-based systems. In OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems",
pages 337–349. Springer, 2009.

[57] Joseph Schmuller. Sams teach yourself UML in 24 hours. Sams
publishing, 2004.

[58] Scott W Ambler. The object primer: Agile model-driven de-
velopment with UML 2.0. Cambridge University Press, 2004.

[59] Manuj Aggarwal and Sangeeta Sabharwal. Test case genera-
tion from uml state machine diagram: A survey. In Computer
and Communication Technology (ICCCT), 2012 Third Inter-
national Conference on, pages 133–140. IEEE, 2012.

[60] Timothy C Lethbridge, Janice Singer, and Andrew Forward.
How software engineers use documentation: The state of the
practice. IEEE Software, 20(6):35–39, 2003.

[61] Encarna Sosa, Pedro J Clemente, José M Conejero, and
Roberto Rodríguez-Echeverría. A model-driven process to
modernize legacy web applications based on service oriented
architectures. In 2013 15th IEEE International Symposium
on Web Systems Evolution (WSE), pages 61–70. IEEE, 2013.

[62] Sean Bechhofer. Owl: Web ontology language. In Encyclopedia
of Database Systems, pages 2008–2009. Springer, 2009.

[63] Feng Chen, Zhuopeng Zhang, Jianzhi Li, Jian Kang, and
Hongji Yang. Service identification via ontology mapping.
In 2009 33rd Annual IEEE International Computer Software
and Applications Conference, volume 1, pages 486–491. IEEE,
2009.

[64] Shuxin Zhao, Elizabeth Chang, and Tharam Dillon. Knowl-
edge extraction from web-based application source code: An
approach to database reverse engineering for ontology develop-
ment. In 2008 IEEE International Conference on Information
Reuse and Integration, pages 153–159. IEEE, 2008.

[65] Harry M Sneed. Integrating legacy software into a service
oriented architecture. In Software Maintenance and Reengi-
neering, 2006. CSMR 2006. Proceedings of the 10th European
Conference on, pages 11–pp. IEEE, 2006.

[66] Marko Balabanović and Yoav Shoham. Fab: content-based,
collaborative recommendation. Communications of the ACM,
40(3):66–72, 1997.

[67] Garrett Birkhoff. Lattice theory, volume 25. American Math-
ematical Soc., 1940.

[68] George Gratzer. Lattice theory: First concepts and distributive
lattices. Courier Corporation, 2009.

[69] Rui Xu and D. Wunsch. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, May 2005.

[70] Bernhard Ganter. Two basic algorithms in concept analysis.
Formal Concept Analysis, pages 312–340, 2010.

[71] Rudolf Wille. Restructuring lattice theory: an approach based
on hierarchies of concepts. In Ordered sets, pages 445–470.
Springer, 1982.

[72] Anil K Jain. Data clustering: 50 years beyond k-means. Pat-
tern recognition letters, 31(8):651–666, 2010.

[73] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical ag-
glomerative clustering method: which algorithms implement
ward’s criterion? Journal of classification, 31(3):274–295,
2014.

[74] George Feuerlicht et al. Understanding service reusability. In
International Conference Systems Integration. Department of
Information Technologies and Czech Society for Systems Inte-
gration, 2007.

[75] Ville Alkkiomäki and Kari Smolander. Anatomy of one service-
oriented architecture implementation and reasons behind low
service reuse. Service Oriented Computing and Applications,
10(2):207–220, 2016.

[76] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and
Zahir Tari. Coupling metrics for predicting maintainability

in service-oriented designs. In 2007 Australian Software Engi-
neering Conference (ASWEC’07), pages 329–340. IEEE, 2007.

[77] Thomas Erl. Service-oriented architecture, volume 8. Pearson
Education Incorporated, 2005.

[78] Renuka Sindhgatta, Bikram Sengupta, and Karthikeyan Pon-
nalagu. Measuring the quality of service oriented design. In
Service-Oriented Computing, pages 485–499. Springer, 2009.

[79] Michael Bell. SOA modeling patterns for service oriented dis-
covery and analysis. John Wiley & Sons, 2009.

[80] Anas Shatnawi, Hudhaifa Shatnawi, Mohamed Aymen Saied,
Zakarea Al Shara, Houari Sahraoui, and Abdelhak Seriai. Iden-
tifying software components from object-oriented apis based on
dynamic analysis. In Proceedings of the 26th Conference on
Program Comprehension, pages 189–199. ACM, 2018.

[81] Thomas Erl. SOA Principles of Service Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2007.

[82] Shy Cohen. Ontology and taxonomy of services in a service-
oriented architecture. The Architecture Journal, 11(11):30–35,
2007.

[83] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA:
service-oriented architecture best practices. Prentice Hall Pro-
fessional, 2005.

[84] Bashar Al Ani and Youcef Baghdadi. A taxonomy-centred
process for service engineering. International Journal of Com-
puter Applications in Technology, 52(1):1–17, 2015.

[85] Qing Gu and Patricia Lago. Service identification methods:
a systematic literature review. In Towards a Service-Based
Internet, pages 37–50. Springer, 2010.

[86] Masahide Nakamura, Hiroshi Igaki, Takahiro Kimura, and
Ken-ichi Matsumoto. Extracting service candidates from pro-
cedural programs based on process dependency analysis. In
Services Computing Conference, 2009. APSCC 2009. IEEE
Asia-Pacific, pages 484–491. IEEE, 2009.

[87] Kathy Charmaz and Liska Belgrave. Qualitative interviewing
and grounded theory analysis. The SAGE handbook of inter-
view research, pages 347–365, 2012.

[88] Rosane S Huergo, Paulo F Pires, Flavia C Delicato, Bruno
Costa, Everton Cavalcante, and Thais Batista. A system-
atic survey of service identification methods. Service Oriented
Computing and Applications, 8(3):199–219, 2014.

[89] René Boerner and Matthias Goeken. Service identification
in soa governance literature review and implications for a
new method. In Digital Ecosystems and Technologies, 2009.
DEST’09. 3rd IEEE International Conference on, pages 588–
593. IEEE, 2009.

[90] Dominik Birkmeier, Sebastian Klöckner, and Sven Overhage.
A survey of service identification approaches-classification
framework, state of the art, and comparison. Enterprise
Modelling and Information Systems Architectures, 4(2):20–36,
2015.

[91] Xia Cai, Michael R Lyu, Kam-Fai Wong, and Roy Ko.
Component-based software engineering: technologies, devel-
opment frameworks, and quality assurance schemes. In Soft-
ware Engineering Conference, 2000. APSEC 2000. Proceed-
ings. Seventh Asia-Pacific, pages 372–379. IEEE, 2000.

[92] Tassio Vale, Gustavo Bittencourt Figueiredo, Eduardo San-
tana de Almeida, and Silvio Romero de Lemos Meira. A study
on service identification methods for software product lines. In
Proceedings of the 16th International Software Product Line
Conference-Volume 2, pages 156–163. ACM, 2012.

[93] Ali Taei Zadeh, Muriati Mukhtar, Shahnorbanun Sahran, and
Mahmood Reza Khabbazi. A systematic input selection for
service identification in smes. Journal of Applied Sciences,
12(12):1232–1244, 2012.

[94] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Ste-
fan Wagner. From monolith to microservices: a classifica-
tion of refactoring approaches. In International Workshop
on Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment,
pages 128–141. Springer, 2018.

[95] Basel Bani-Ismail and Youcef Baghdadi. A literature review

20



on service identification challenges in service oriented architec-
ture. In International Conference on Knowledge Management
in Organizations, pages 203–214. Springer, 2018.

[96] Basel Bani-Ismail and Youcef Baghdadi. A survey of exist-
ing evaluation frameworks for service identification methods:
towards a comprehensive evaluation framework. In Interna-
tional Conference on Knowledge Management in Organiza-
tions, pages 191–202. Springer, 2018.

[97] Simin Cai, Yan Liu, and Xiaoping Wang. A survey of ser-
vice identification strategies. In Services Computing Con-
ference (APSCC), 2011 IEEE Asia-Pacific, pages 464–470.
IEEE, 2011.

[98] Dominik Birkmeier and Sven Overhage. On component identi-
fication approaches–classification, state of the art, and compar-
ison. In Component-Based Software Engineering, pages 1–18.
Springer, 2009.

[99] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff,
Howard Lipson, and Jeromy Carriere. The architecture trade-
off analysis method. In Proceedings. Fourth IEEE Interna-
tional Conference on Engineering of Complex Computer Sys-
tems (Cat. No. 98EX193), pages 68–78. IEEE, 1998.

[100] RL Nord et al. Integrating the quality attribute workshop
(qaw) and the attribute-driven design (add) method. inf. téc.
Technical report, CMU/SEI-2004-TN-017, Software Engineer-
ing Institute–Carnegie Mellon . . . , 2004.

[101] Robert L Nord, Mario R Barbacci, Paul Clements, Rick Kaz-
man, and Mark Klein. Integrating the architecture tradeoff
analysis method (atam) with the cost benefit analysis method
(cbam). Technical report, Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst, 2003.

21


	Introduction
	Research questions
	Outline

	Search methodology
	RQ1: What are the inputs used by SIAs?
	Executable Models
	Source Code
	Databases
	Test Cases

	Non-executable Models
	Runtime Artifacts
	Model Artifacts

	Domain Artifacts
	Documentation
	Human Expertise
	Ontologies


	RQ2: What are the processes followed by SIAs?
	Techniques of SIAs
	Wrapping
	Genetic Algorithms
	Formal Concept Analysis
	Clustering
	Custom Heuristics
	General Guidelines

	Quality of Identified Services
	Quality Requirements
	Quality Metrics

	Directions of SIAs
	Analyses Types

	Automation of SIAs

	RQ3: What are the outputs of SIAs?
	Service Architecture
	Service Types

	RQ4: What is the usability of SIAs?
	Validation
	Accuracy/Precision
	Tool Support
	Result Quality
	Usability

	Taxonomy and Validation
	Methodology
	Preparation of the Survey
	Selection of the Participants
	Administering the Survey
	Validation of the Survey
	Validation of the Taxonomy

	Participants
	Validation Results

	Discussions
	Inputs
	Processes
	Outputs
	Usability

	Related Work
	Conclusion and Future Work

