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École de Technologie Supérieure

Montreal, Quebec, Canada

Loı̈c Madern
Polytech Nice Sophia

Biot, Provence-Alpes-Côte d’Azur, France
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École de Technologie Supérieure

Montreal, Quebec, Canada
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Abstract—The software industry is currently moving from
monolithic architectures into microservice-based architectures,
which involve independent, reusable, and fine-grained services.
However, the lack of understanding of the core concepts of
microservice architectures may lead to poorly designed systems
that include microservice antipatterns. These microservice an-
tipatterns may affect the quality of services and hinder the
maintenance and evolution of the systems. The specification and
detection of microservice antipatterns could help in evaluating
and assessing the design quality of the systems. Several research
works studied patterns and antipatterns in microservice-based
systems but the automatic detection of these antipatterns is still
in its infancy. We propose MARS (Microservice Antipatterns
Research Software), a fully-automated approach supported by a
framework for specifying and identifying microservice antipat-
terns. Using MARS, we specify and identify 16 microservice
antipatterns in 24 microservice-based systems. Results show that
MARS can effectively detect microservice antipatterns with an
average precision of 82% and a recall of 89%. Thus, our
approach can help developers assert and improve the quality
of their microservices as well as adopt good practices.

Index Terms—Microservices; Antipatterns; Detection; Mainte-
nance

I. INTRODUCTION

Microservices have already become the prevailing architec-
tural style used in industry. Several major actors in the soft-
ware industry, such as Netflix and Amazon, already adopted
this architectural style. A microservice is defined as a service
with a single responsibility or business function, running in its
own process, communicating through lightweight mechanisms,
and managed by a single team [1]. In terms of communica-
tion, microservices commonly employ Representational State
Transfer (REST) Application Programming Interfaces (APIs)
and message brokers.

The popularity of this architectural style still grows thanks
to the dynamic and distributed nature of microservices, which
(1) offers greater agility and operational efficiency and (2)
reduces the complexity of deploying and scaling systems wrt.
monolithic applications [2].

However, the lack of understanding of the core concepts
of microservice architectural style and consensual definitions
of its founding principles may lead to the introduction of
“poor” solutions to recurring problems in the design and
implementation of microservices, called antipatterns [3]. These
antipatterns may impact the quality of the microservices
and the systems using them [4]. Indeed, Pulnil et al. [5]
showed that the presence of microservice antipatterns nega-
tively impacts the quality of microservice-based systems and
that refactoring such antipatterns improves many software
quality attributes, such as the understandability, modularity,
and fault tolerance of microservice-based systems. Moreover,
having cyclic dependencies between microservices can lead
to maintenance issues, because a failure in one of the cyclic-
dependent microservices will lead to a failure in the other
microservices involved in this cyclic dependency [6]. Also,
having cyclic dependencies between microservices may hinder
their scaling and independent deployment [6]. As another
example, shared persistence (e.g., sharing the same database
between microservices) increases coupling between microser-
vices through the same data, which consequently reduces
microservices independence and impedes their deployment [6].
Despite the importance and extensive usage of microservices,
no automated approach for the detection of microservice
antipatterns has been proposed so far.

We propose MARS, a tool-based approach to specify and
detect microservice antipatterns. We rely on a metamodel
that includes the data needed to specify and apply detection
rules on the source code of microservice-based systems. Using
MARS, we specify 16 antipatterns and detect their occurrences
within 24 microservice-based systems. We perform a manual
validation of the detected occurrences to compute precision
and recall. Our results show that MARS allows us to specify
and detect microservice antipatterns with an average precision
of 82% and a recall of 89%. Thus, we propose a highly
automated approach and a large-scale study to specify and
detect microservice antipatterns, which paves the way for fu-



ture practical and research applications, like the improvements
of the designs and implementations of microservices.

This paper reads as follows: Section II describes previous
work and a catalogue of microservice antipatterns. Section
III presents our approach for antipatterns detection and the
detection rules. Section IV details our study while Section V
describes its results and Section VI discusses them. Section
VII describes the threats to the validity of our work. Finally,
Section VIII concludes with future work.

II. BACKGROUND

A. Catalogue
We now present a catalogue of several microservice antipat-

terns built through a systematic literature review (SLR) [7].
The detailed process of the creation of this catalogue is
described in detail in our prior work [8]. Essentially, we
identified 1,195 papers through a query in major scientific
databases. We then applied several inclusion and exclusion
criteria (e.g., exclude papers not written in English and papers
not related to microservice antipatterns) to obtain a total of
27 papers that pertained to microservice antipatterns. We also
manually analysed 67 open-source systems [9] to assess the
concrete presence of the 16 antipatterns identified in the SLR.
This analysis informs our understanding of the antipatterns
and how they could be detected in practice.

In this paper, we consider the following 16 antipatterns,
which we choose because they can be detected in the source
code of microservice-based systems.

1) Wrong Cuts (WC). This antipattern consists of mi-
croservices organised around technical layers (business,
presentation, and data) instead of functional capabilities,
which causes strong coupling among microservices and
impedes the delivery of new business functions.

2) Cyclic Dependencies (CD). This antipattern occurs
when multiple microservices are co-dependent circularly
and, thus, no longer independent, which goes against the
very definition of microservices.

3) Mega Service (MS). This antipattern appears when a
microservice provides multiple business functions. A
microservice should be manageable by a single team
and pertaining to a single business function.

4) Nano Service (NS). This antipattern results from a too
fine-grained decomposition of a system, i.e., when one
business function requires many microservices to work
together.

5) Shared Libraries (SL). This antipattern relates to the
sharing of libraries and files (e.g., binaries) by multiple
microservices, which breaks their independence as they
rely on a single source to fulfil their business function.

6) Hard-coded Endpoints (HE). This antipattern relates
to URLs, IP addresses, ports, and other endpoints being
hard-coded in the source code of microservices and–or
configuration files, which interferes with load balancing
and deployment.

7) Manual Configuration (MC). This antipattern happens
with configurations that must be manually pushed in

some microservice. Microservice-based systems evolve
rapidly and their management should be automated,
including their configuration.

8) No Continuous Integration (CI) / Continuous Deliv-
ery (CD) (NCI). Continuous integration and delivery
are important for microservices to automate repetitive
steps during testing and deployment. Not using CI/CD
undermines the microservice architectural style, which
encourages automation wherever possible.

9) No API Gateway (NAG). This antipattern occurs when
consumer applications (mobile applications, etc.) com-
municate directly with microservices and must know
how the whole system is decomposed and manage
endpoints and URLs for each microservice.

10) Timeouts (TO). This antipattern happens when timeout
values are set and hard-coded in HTTP requests, which
leads to unnecessary disconnections or delays.

11) Multiple Service Instances per Host (MSIH). This
antipattern happens when multiple microservices are
deployed on a single host (e.g., container, physical
machine, virtual machine), which prevents their inde-
pendent scaling and may cause technological conflicts
inside the host.

12) Shared Persistence (SP). This antipattern happens when
multiple microservices share a single database: they no
longer own their data and cannot use the most suitable
database technology for their business function.

13) No API Versioning (NAV). This antipattern happens
when no information is available about a microservice
version, which can break changes and force backward
compatibility when deploying updates.

14) No Health Check (NHC). This antipattern describes
microservices that are not periodically health-checked.
Unavailable microservices may not be noticed and cause
timeouts and other errors.

15) Local Logging (LL). This antipattern results from mi-
croservices having their own logging mechanism, which
prevents the aggregation and analyses of their logs and
the monitoring and recovery of systems.

16) Insufficient Monitoring (IM). This antipattern relates
to microservice systems performances/failures that are
not tracked and cannot be used to maintain systems.

B. Related Work

The work presented in this paper relies on concepts related
to the maintenance support for microservice-based systems
through the specification and the detection of microservice an-
tipatterns. Therefore, we provide in this section an overview of
existing approaches on (1) antipattern detection in software en-
gineering, (2) the specification of microservice (anti)patterns,
and (3) the detection of microservice antipatterns.

a) Antipatterns detection in software engineering:
Antipatterns in multiple fields and programming paradigms
have been studied in the literature. DECOR [10], for example,
allows the automatic detection of object-oriented code smells
and antipatterns in object-oriented code sources, like Java.



PAPRIKA [11] and ADOCTOR [12] allow the detection of
antipatterns in Android mobile applications. In the following,
we focus on the literature related to microservice antipatterns.
Several research works exist on microservice antipatterns but
only a few propose approaches for their detection.

b) Specification of microservice (anti)patterns: Pahl
and Jamdi [13] conducted a systematic literature review of
21 works on a microservice design published between 2014
and 2016. They proposed a characterisation framework and
used it to study and classify the works. They showed a
lack of research tools supporting the design of microservice-
based systems and concluded that research on microservice
architecture is novel. We concur with their conclusion and
confirm that there is a lack of specification and detection of
microservice antipatterns in the literature.

Zimmerman [14] studied the literature and identified seven
microservice principles. He compiled some practitioners’
questions and derived several research topics related to the
differences between SOA and the microservice architectural
style. He concluded that microservices are not entirely new but
qualify as a special implementation of the SOA paradigm. Still,
we argue that the microservice architectural style is subject
to particular antipatterns and requires dedicated detection
approaches.

Marquez and Astudillo [15] extended their previous
work [16] to propose a catalogue of microservice architec-
tural patterns. They provided a list of technologies to build
microservice-based systems with these patterns. They also
studied the distribution of these patterns in thirty open-source
projects relying on a manual analysis of their source code
to assess the state of usage of microservices patterns. They
found that developers use only a few architectural patterns
broadly and that most of the analysed systems rely on SOA
and not microservice-specific patterns. What differentiates our
work from this study is that we focus on the specification
and identification of microservice antipatterns by providing
a tool, MARS that automatically detects their presence in
microservice-based systems.

Taibi et al. [6] introduced a catalogue and a taxonomy of
microservice antipatterns based on a literature review and bad
practices experienced by 27 practitioners while developing
microservice-based systems. They identified 20 organisational
and technical antipatterns. They studied and reported the harm-
fulness level of each antipattern. They concluded that split-
ting a monolithic system into microservices is a critical and
challenging problem. They also concluded that microservices-
specific antipatterns can hinder the maintenance and evolution
of microservice-based systems. Finally, unlike our work, this
study does not provide any automated approach to detect
occurrences of microservice antipatterns in existing systems.
They only provide a taxonomy of microservice antipatterns
and discuss their harmfulness according to practitioners’ ex-
periences.

c) Detection of microservice antipatterns: Microservice
antipatterns have been discussed in the literature but few
works exist on their automatic detection. To the best of our

knowledge, only Borges and Khan [17], Walker et al. [18], and
Pigazzini et al. [19] proposed algorithms to detect antipatterns
in microservice-based systems automatically.

Pigazzini et al. [19] extended the existing tool Arcan
developed for architectural smells detection to explore mi-
croservices architectural antipatterns. They validated their tool
using five open-source microservice-based systems manually
by computing the accuracy of the detection results. They
detected three antipatterns: cyclic dependencies, shared per-
sistence, and hard-coded endpoints [19]. For instance, they
detect circular dependencies between microservices by relying
on a depth-first search in microservices call graph. In contrast,
MARS only detects direct circular dependencies between pairs
of microservices. Although in our work we rely on similar
detection rules for detecting shared persistence and hard-coded
endpoints, we cover more antipatterns and validate our tool on
more microservice-based systems.

Borges and Khan [17] proposed an algorithm for detecting
five microservice antipatterns relying on static analysis. We
cover in common only two antipatterns, which are API ver-
sioning and hard-coded endpoints. While they applied their
algorithm on one open-source microservice-based system and
discussed some improvements, we built our approach for 16
microservices and studied their prevalence in 24 microservice-
based systems.

Walker et al. [18] proposed revision-NOSE to detect an-
tipatterns in microservice-based systems. Their approach de-
tects 11 antipatterns, using a software architecture recovery
approach [20]–[22]. This approach first analyses microservices
individually, then groups them to build a graph on which it
performs the detection. The authors validated their approach
on two microservice-based systems. While they share eight
microservice antipatterns with our approach, our detection
methods differ for some of them. For example, although they
define the no API gateway antipattern in their work, they
reported that their tool only generates a warning message for
recommending the usage of API Gateway when the number
of microservices exceeds 50, without explicitly detecting the
antipattern itself. In contrast, our approach detects the presence
of this antipattern regardless of the number of microservices
in the system being analysed.

Furthermore, similar to Pigazzini et al. [19], they detected
circular dependencies between microservices by applying a
depth-first search on the call graph of the system being
analysed. However, we detect cyclic dependencies between
pairs of microservices as mentioned above. Also, they rely
on microservices bytecode and analyse the parameters of the
methods used to communicate with other microservices. In
contrast, MARS analyses the source code, deployment files,
configuration files, and environment files of microservice-
based systems to identify hard-coded IP addresses, port num-
bers, and–or URLs, providing a more complete approach. In
the case of the shared libraries antipattern, they only compared
the names of libraries used by different microservices and did
not exclude local libraries, potentially leading to less precise
detection. In contrast, MARS detects shared libraries between



microservices and excludes local libraries, allowing for more
accurate detection. We compare the results of revision-NOSE
with MARS systematically, and we provide detailed results in
Section V-B.

We provide significant contributions in our paper compared
to existing works on microservices antipatterns detection [17]–
[19]. First, we introduce MARS, a highly automated tool that
relies on a novel metamodel for detecting 16 microservice
antipatterns. We should note that we collected in our prior
work [8] these antipatterns based on two methods: (1) a com-
prehensive and diverse literature review, and (2) the manual
analysis of 64 microservice-based systems. Additionally, the
MARS metamodel is generalizable, language- and technology-
agnostic, and applicable to any type of microservice-based
system. Second, we conducted the largest empirical analysis
to date on microservices antipatterns by automatically and
accurately detecting 16 microservice antipatterns with an av-
erage precision of 82% and a recall of 89%. We validated the
detection results of MARS on a dataset of 24 microservice-
based systems, the largest validation dataset when compared
to existing works [17]–[19]. Finally, our validation is repro-
ducible and publicly available to enable new research to build
upon our work. We are sharing our detection tool as well as our
ground truth, which includes 172 instances of microservices
antipatterns manually detected by two of the authors, as we
will detail in Section IV-A.

III. APPROACH

We now present MARS, a fully automatic approach and
tool to detect the antipatterns described in Section II. Figure 1
summarises our method of detecting microservice antipatterns.
It shows that MARS takes as input a microservice-based
system or a list of microservices (either as Git repositories or
local folders). Then, it extracts, from each microservice, the
data necessary to perform the detection of the antipatterns,
which is reified using a dedicated metamodel. Finally, it
applies dedicated detection algorithms on a model of the
system that conforms to the metamodel to detect occurrences
of each specified antipattern.

A. Metamodel Definition

We created a metamodel to describe the data needed to
apply our detection algorithms, which includes data about the
system, its Git repository, its individual microservices, their
dependencies, source code, environment files, configuration
files, deployment files, docker images, databases as well as
HTTP requests and imports.

This metamodel allows our detection algorithms to have
access to relevant data while being independent of its sources.
It also allows for avoiding parsing the source code of the
systems and eases the evolution of MARS by introducing new
constituents in the metamodel and the algorithms to detect new
antipatterns. It also allows our algorithms to be as independent
as possible of any particular technologies for example, by
abstracting dependencies using the Dependency constituent,
whether they come from Gradle, Maven, etc.

Figure 2 illustrates the metamodel constituents and their
relationships. Each constituent of the metamodel is necessary
for the detection of one or more antipatterns. For example, the
Configuration constituent is used to detect hard-coded
endpoints by searching URLs inside configuration files, along
with the Code and the Dependency constituents.

The System constituent is the root of a model, it is built
either by importing a Git Repository (which is an optional
constituent) or by analysing a microservice-based system on
the local file system.

A System knows about two sets of constituents:
(1) Microservice and (2) Dependency. The
Microservice constituent represents an actual
microservice in the microservice-based system. It contains
data about this microservice, e.g., the number of files and
LOCs (e.g., used to detect mega service and nano service).

The Dependency constituent is used by both System and
Microservice because it is common to have dependency
files (e.g., Gradle, Maven) at both levels of a system hierarchy.
It contains data about the dependencies of a system or a
particular microservice.

The Configuration constituent stores data gathered
from the various configuration files of a microservice. It
allows searching for data only in configuration files, such as
framework-related variables or enabled/disabled features.

The Environment constituent stores data about environ-
ment variables, typically their names and values, which are
commonly used to dynamically inject variables into a system.

The Deployment constituent holds data about deploy-
ment configurations and mechanisms. It abstracts Docker files,
docker-compose files, and custom deployment files added by
developers. It points to an Image (e.g., for Docker) and–
or Server (e.g., for Amazon ECS), containing data about
these particular deployment targets. They allow identifying
microservices by extracting the Images from which they are
derived.

The Code constituent contains data about the source code of
a microservice to allow MARS to retrieve source-code parts. It
is the most commonly used constituent to detect microservice
antipatterns. It includes:

1) Source files: a dictionary of source-file names and paths
used to filter test files, for example, which are not
relevant for detection.

2) Imports: list of all the import statements in source files.
3) HTTP: list of all HTTP requests in the source code.
4) Database: list of database queries and “create” state-

ments as well as data-source paths.
5) Call-graph: a call graph of the source code generated

with a static code analysis tool, Understand1.

B. Detection Rules

For each antipattern, we defined a set of detection rules to
detect their occurrences in a given microservice-based system.
We provide a textual description of these rules as well as

1https://www.scitools.com
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their pseudo-code and the constituents of the metamodel used
by these rules. Not all constituents are visible in the provided
pseudo-code (for a matter of simplicity). Nonetheless, we
clearly specify for each rule the list of the metamodel
constituents used in the detection of each antipattern.

1) Wrong Cuts (WC). Microservices have one file type in
the source code. An example would be a microservice
containing only presentation code connecting to a mi-
croservice containing only business logic code. We rely
on file extensions, contents, and languages to identify
this antipattern.
Required constituents: Microservice and Code.

f r o n t e n d l a n g u a g e s : a l i s t t h a t c o n t a i n s f r o n t e n d
e x t e n s i o n l a n g u a g e s
t h r e s h o l d f r o n t e n d f i l e s : a t h r e s h o l d f o r t h e
a l l o w e d p e r c e n t a g e o f f r o n t e n d l a n g u a g e s
in a m i c r o s e r v i c e (80% in our s t u d y )

1 def WrongCut ( M i c r o s e r v i c e MicroS ) :
2 e x i s t = f a l s e
3 c p t = 0
4 f o r e x t e n s i o n in f r o n t e n d l a n g u a g e s :
5 f o r f i l e in MicroS . Code . s o u r c e f i l e s :
6 i f e x t e n s i o n in f i l e :
7 c p t += 1
8 i f c p t > t h r e s h o l d f i l e s *

MicroS . Code . s o u r c e f i l e s . s i z e :
9 e x i s t = t r u e

10 re turn e x i s t



2) Cyclic Dependencies (CD). We use the call graph of the
microservice-based system, which we analyse to detect
circular dependencies among microservices.
Required constituents: Microservice, Code, Depen-
dency, Import, Call Graph.

i sConnec t edTo ( ) : a f u n c t i o n t h a t v e r i f i e s t h e
e x i s t e n c e o f a d i r e c t dependency between
two m i c r o s e r v i c e s .

1 def C y c l i c D e p e n d e n c i e s ( M i c r o s e r v i c e MicroSA ,
M i c r o s e r v i c e MicroSB )

2 re turn i sConnec t edTo ( MicroSA , MicroSB )
AND isConnec t edTo ( MicroSB , MicroSA )

3) Mega Service (MS). A mega service supports multiple
business functionalities and, thus, is potentially large
compared to microservices that do not have this antipat-
tern. MARS detects the presence of mega services by
counting the lines of code and the number of files within
a microservice. These numbers should be greater than
certain thresholds also specified by an expert.
Required constituents: Microservice, Code.

1 def MegaServ ice ( M i c r o s e r v i c e microS ) :
2 e x i s t = f a l s e
3 i f LOCs ( microS . Code ) > t h re sho ld LOCs
4 e x i s t = t r u e
5 re turn e x i s t

4) Nano Service (NS). A nano service is a fine-grained mi-
croservice that provides only a part of business function-
ality in a microservice-based system. This antipattern
generally results from a too-fine-grained decomposition
of the system. Nano services are, by their very definition,
small and MARS detects their presence through the
analysis of the lines of code and the number of files
within a microservice. The number of files and lines of
code should not exceed specific thresholds that must be
specified by an expert.
Required constituents: Microservice, Code.

1 def NanoServ ice ( M i c r o s e r v i c e MicroS ) :
2 e x i s t = f a l s e
3 i f LOCs ( MicroS . Code ) < t h re sho ld LOCs AND
4 NumFiles ( MicroS . Code ) < t h r e s h o l d f i l e s :
5 e x i s t = t r u e
6 re turn e x i s t

5) Shared Libraries (SL). Some source files, libraries, or
other artefacts of one microservice are used by other
microservices.
Required constituents: Microservice, Code, Depen-
dency, Import.

1 def S h a r e d L i b s ( M i c r o s e r v i c e [ ] m i c r o s e r v i c e s ) :
2 s h a r e d l i b s = [ ]
3 l i b s = [ ]
4 f o r each ms in m i c r o s e r v i c e s :
5 f o r each dep in ms . d e p e n d e n c i e s :
6 i f l p i b s . c o n t a i n ( dep ) AND

! s h a r e d l i b s . c o n t a i n ( dep ) :
7 s h a r e d l i b s . add ( dep )
8 e l s e :
9 l i b s . add ( dep )
10 re turn s h a r e d l i b s . l e n g t h > 1

6) Hard-Coded Endpoints (HE). REST API calls inside
some source code, deployment files, configuration files,
or environment files contain hard-coded IP addresses,
port numbers, and–or URLs. Hard-coded endpoints may
also be present when no discovery service is used.
Required constituents: Microservice, Code, HTTP, Con-
figuration, Environment, Deployment, Dependency.

s e r v i c e d i s c o v e r y t o o l s : a l i s t t h a t c o n t a i n s
names o f e x i s t i n g s e r v i c e d i s c o v e r y t o o l s

1 def Hard − c o d e d E n d p o i n t s ( System aSystem ) :
2 i f ! i n t e r s e c t ( aSystem . d e p e n d e n c i e s ,

s e r v i c e d i s c o v e r y t o o l s ) :
4 p o t e n t i a l h a r d −coded = t r u e
5 i f p o t e n t i a l h a r d −coded :

f o r each ms in aSystem . m i c r o s e r v i c e s :
6 i f h a s u r l s ( ms . C o n f i g u r a t i o n )
7 OR h a s u r l s ( ms . Code )
8 OR h a s u r l s ( ms . Envi ronment )
9 OR h a s u r l s ( ms . Deployment ) :
10 l i s t u r l s . append ( ms . Code . HTTP)
11 re turn l i s t u r l s

7) Manual Configuration (MC). Microservices have their
own configuration files. No microservice is responsible
for configuration management. No configuration man-
agement tools are present in the dependencies of the
system. The detection algorithm for this antipattern
works as follows:
Required constituents: Microservice, Code, Configura-
tion, Environment, Dependency.

d e f i n e d c o n f i g l i b s : a l i s t t h a t c o n t a i n s names
o f e x i s t i n g s e r v i c e c o n f i g u r a t i o n l i b r a r i e s

1 def M a n u a l C o n f i g u r a t i o n ( System aSystem ) :
2 e x i s t = f a l s e
3 f o r each c l in d e f i n e d c o n f i g l i b s :
4 i f ! aSystem . d e p e n d e n c i e s . c o n t a i n ( c l )

AND l e n g t h ( aSystem . C o n f i g u r a t i o n ) > 0 :
5 e x i s t = t r u e
6 f o r each ms in aSystem . m i c r o S e r v i c e s :
7 i f ! ms . d e p e n d e n c i e s . c o n t a i n ( c l )

AND l e n g t h ( ms . C o n f i g u r a t i o n ) > 0 :
8 e x i s t = t r u e
9 re turn e x i s t

8) No CI/CD (NCI). Configuration files and ver-
sion control repositories do not contain continuous
integration/delivery-related information. We rely on an
extensible list of CI/CD tools to perform our analysis.
Required constituents: Microservice, Code, Depen-
dency, GitRepository.

d e f i n e d c i l i b s : a l i s t of names o f
e x i s t i n g CI /CD t o o l s
d e f i n e d c i f o l d e r s : a l i s t of names o f
e x i s t i n g CI /CD c o n f i g u r a t i o n f o l d e r s
( e . g . , . c i r c l e c i , . t r a v i s c i )

1 def NoCICD ( System aSystem ) :
2 e x i s t = t r u e
3 f o r each ms in aSystem . m i c r o s e r v i c e s :
4 i f i n t e r s e c t ( ms . d e p e n d e n c i e s ,

d e f i n e d c i l i b s ) :
5 e x i s t = f a l s e
6 i f e x i s t :
7 i f Regex match ( d e f i n e d c i f o l d e r s ,



aSystem . G i t R e p o s i t o r y :
8 e x i s t = f a l s e
9 re turn e x i s t

9) No API Gateway (NAG). Source code does not contain
signatures of common API gateway implementations
(e.g., Netflix Zuul). No frameworks or tools related to
API gateways are present in the dependencies of the
microservices.
Required constituents: Microservice, Dependency.

a p i g a t e w a y l i b s : a l i s t of names o f API ga teways

1 def NoApiGeteway ( System aSystem ) :
2 e x i s t = t r u e
3 f o r each a g l in a p i g a t e w a y l i b s :
4 i f aSystem . d e p e n d e n c i e s . c o n t a i n ( a g l ) :
5 e x i s t = f a l s e
6 f o r each ms in aSystem . m i c r o S e r v i c e s :
7 i f ms . d e p e n d e n c i e s . c o n t a i n ( a g l ) :
8 e x i s t = f a l s e
9 re turn e x i s t

10) Timeouts (TO). Timeout values are present in REST
API calls. No signatures of common circuit breaker
implementations (e.g., Hystrix) are present in the source
code. No circuit breaker is present in the dependencies
of the microservices.
Required constituents: Microservice, Code, Depen-
dency.

l i s t c i r c u i t b r e a k e r s : a l i s t t h a t c o n t a i n s c i r c u i t
b r e a k e r s l i b r a r i e s

1 def Timeouts ( M i c r o s e r v i c e MicroS ) :
2 re turn ( MicroS . d e p e n d e n c i e s

NOT IN l i s t c i r c u i t b r e a k e r s
AND i n t e r s e c t ( F a l l b a c k , MicroS . Code ) )

OR i n t e r s e c t ( Timeout , MicroS . Code )

11) Multiple Service Instances Per Host (MSIPH). The
system does not use deployment technologies, such as
Docker Compose. A single deployment file exists in the
source code and deploys the whole system.
Required constituents: Microservice, Deployment, Im-
age, Server, Environment, Configuration.

1 def M u l t i p l e S e r v i c e I n s t a n c e P e r H o s t ( System aSystem ) :
2 n o d o c k e r f i l e = 0
3 s y s t e m h a s d o c k e r = f a l s e
4 i f ( c o n f f i l e in aSystem . c o n f i g f i l e s )

. c o n t a i n ( docker −compose . yml ) :
5 s y s t e m h a s d o c k e r = t r u e
6 f o r each ms in aSystem . m i c r o s e r v i c e s :
7 i f l e n g t h ( ms . Deployment . d o c k e r f i l e s )<1:
8 n o d o c k e r f i l e +=1
9 re turn NOT s y s t e m h a s d o c k e r AND

n o d o c k e r f i l e >=
l e n g t h ( aSystem . m i c r o s e r v i c e s )

12) Shared Persistence (SP). Microservices share data-
source URLs. A single database is created by the system
and multiple microservices use this database.
Required constituents: Microservice, Code, Database,
Image.

1 def S h a r e d P e r s i s t e n c e ( M i c r o s e r v i c e [ ] m i c r o s e r v i c e s ) :
2 s h a r e d d a t a b a s e s = [ ]
3 d a t a b a s e s = [ ]

4 f o r each ms in m i c r o s e r v i c e s :
5 f o r each db in ms . Code . DataBase :
6 i f d a t a b a s e s . c o n t a i n ( db ) AND

! s h a r e d d a t a b a s e s . c o n t a i n ( db ) :
7 s h a r e d d a t a b a s e s . add ( db )
8 e l s e :
9 d a t a b a s e s . add ( db )
10 re turn l e n g t h ( s h a r e d d a t a b a s e s ) > 1

13) No API Versioning (NAV). Endpoints and URLs do
not contain version numbers. No version information is
present in the configuration files.
Required constituents: Microservice, Code, Configura-
tion.

1 def HasNoApiVers ioning ( System aSystem ) :
2 n o a p i v e r s i o n i n g = 0
3 h a s a p i v e r s i o n i n g = f a l s e
4 f o r each ms in aSystem . m i c r o s e r v i c e s :
5 i f NOT ms . C o n f i g u r a t i o n

. c o n t a i n ( ’ a p i V e r s i o n ’ ) :
6 n o a p i v e r s i o n i n g +=1
7 f o r each f i l e in aSystem . c o n f i g f i l e s :

i f f i l e . c o n t a i n ( ’ a p i V e r s i o n ’ ) :
8 h a s a p i v e r s i o n i n g = t r u e
9 re turn NOT h a s a p i v e r s i o n i n g AND

n o a p i v e r s i o n i n g
>= l e n g t h ( aSystem . m i c r o s e r v i c e s )

14) No Health Check (NHC). No “health check” or
“health” endpoint exists. No common implementation
of health checks is used (e.g., Springboot Actuator).
Required constituents: Microservice, Code, Configura-
tion, Image, Dependency.

h e a l t h c h e c k t o o l s : a l i s t of h e a l t h − check l i b r a r i e s

1 def HasNoHealthCheck ( System aSystem ) :
2 n o h e a l t h c h e c k = t r u e
3 number ms wi thout hc = 0
4 f o r each dp in aSystem . d e p e n d e n c i e s :
5 i f h e a l t h c h e c k t o o l s

. c o n t a i n ( dp ) :
6 n o h e a l t h c h e c k = F a l s e
7 f o r each ms in aSystem . m i c r o s e r v i c e s :
8 f o r each dp in ms . d e p e n d e n c i e s :
9 i f ! h e a l t h c h e c k t o o l s

. c o n t a i n ( dp ) :
10 number ms wi thout hc += 1
11 re turn n o h e a l t h c h e c k AND

l e n g t h ( number ms without hc ) > 0

15) Local Logging (LL). We detect this antipattern by
checking if there is (1) no distributed logging in the
dependencies and–or (2) no common logging microser-
vice. Each microservice has its own log file paths.
Required constituents: Microservice, Dependency.

l i s t l o g g i n g l i b s : l i s t of l o g g i n g l i b r a r i e s

1 def Loca lLogg ing ( System aSystem ) :
2 e x i s t = t r u e
3 f o r each l l in l i s t l o g g i n g l i b s :
4 i f aSystem . d e p e n d e n c i e s . c o n t a i n ( l l ) :
5 e x i s t = f a l s e
6 f o r each ms in aSystem . m i c r o S e r v i c e s :
7 i f ms . d e p e n d e n c i e s . c o n t a i n ( l l ) :
8 e x i t = f a l s e
9 re turn e x i t



16) Insufficient Monitoring (IM). We detect this antipat-
tern by looking for a monitoring framework or library
in the microservice dependencies (e.g., Prometheus).
Required constituents: Microservice, Code, Depen-
dency.

l i s t m o n i t o r l i b s : l i s t of m o n i t o r i n g l i b r a r i e s

1 def I n s u f f i c i e n t M o n i t o r i n g ( System aSystem ) :
2 e x i s t = t r u e
3 f o r each ml in l i s t m o n i t o r l i b s :
4 i f aSystem . d e p e n d e n c i e s . c o n t a i n ( ml ) :
5 e x i s t = f a l s e
6 f o r each ms in aSystem . m i c r o S e r v i c e s :
7 i f ms . d e p e n d e n c i e s . c o n t a i n ( ml ) :
8 e x i t = f a l s e
9 re turn e x i s t

C. Implementation

We implemented MARS using a variety of frameworks and
libraries to detect antipatterns in microservice-based systems.
We used Python scripts to parse the source code of each
microservice and create a model of the system. We relied on
several libraries such as glob2 and javalang3.

We retrieved each constituent of the metamodel by applying
two types of parsers: regex-based regular expressions and the
javalang library using an AST tree. MARS relies on regex-
based regular expressions to extract the http, databases, config-
uration, environment constituents. The javalang parser is used
to retrieve some code-related data, such as lists of methods
and imports. We also used the Python library dockerfile-parse4

to retrieve all the images and docker files used by a system.
Finally, we identified dependencies among services using
Bibliothecary library5, which parses dependency manifests.

We released MARS as an open-source project, whose source
code and other artefacts are available online6. MARS was
built to be extensible. We developed MARS on a technology-
agnostic metamodel to support multiple programming lan-
guages, technologies, and tools. For example, the search for
libraries in MARS uses a configuration file in which devel-
opers can specify the libraries that they want to consider. To
support the analysis of microservice-based systems written in
different programming languages (e.g., Go, JavaScript, Perl),
we only must add dedicated parsing tools and customise our
parsing methods to extract the required data (e.g., methods, de-
pendencies, HTTP requests, database queries) for instantiating
MARS metamodel. All the other functionalities in MARS will
remain unchanged because the detection of antipatterns relies
on analysing models that conform to MARS metamodel.

D. Building a Model from Source Code

To generate models that conform to the MARS metamodel,
we develop and use various tools to extract the needed data to
instantiate and relate to each constituent of the metamodel. As

2https://docs.python.org/3/library/glob.html
3https://pypi.org/project/javalang/
4https://pypi.org/project/dockerfile-parse/
5https://github.com/librariesio/bibliothecary
6https://github.com/LoicMadern/MARS

explained in Section III-A, the System constituent represents
the system as a whole and is the root of a model. The
microservices defined in the project are extracted from the
project root, assuming that each microservice is a folder inside
the project root. Each Microservice object contains a name,
the global number of lines of code (extracted using cloc7), the
main programming language (extracted using enry8), and sub-
constituents (Configuration, Environment, Deployment and
Code).

We extract configuration data for each microservice by pars-
ing commonly-used configuration files (Spring app.properties,
config.xml, *.conf, etc.). The parsing depends on the type of
files. Currently, MARS includes a parser for Spring config-
uration files, even though other types of configuration files
are partly supported. The same process of parsing is used to
instantiate the Environment and Deployment constituents.

The source code of a project is parsed using a combination
in order to extract various pieces of data: method names,
comments, imports, HTTP requests, and database calls. We
also search for HTTP URLs and database credentials and
statements in configuration files, deployment scripts, and en-
vironment files during parsing, using regular expressions.

We describe in the following a running example of the
detection of the timeouts antipattern in a microservice-based
system. MARS takes as input the git repository of the system
to analyse and extract from the project root the corresponding
files. We start by manually excluding folders that are not rele-
vant (e.g., monolith version of the system, third-party folders).
We then parse the source files and generate the metamodel
of the system. We also use a static code analysis tool, e.g.,
Understand, to generate the call graph of the system and
instantiate the related constituents and add them to the model.
We then apply the detection rule of the timeouts antipattern
(Section III-B) to detect its occurrences. This antipattern uses
specifically the Dependency and Code constituents of the
metamodel. The Dependency constituent is used to search
if any circuit breaker tool is used in the system. The Code
constituent is used to search for keywords and methods, such
as “timeouts” and “fallback” in the source code. We combine
the search results of both constituents and check if there is no
dependency on any circuit breaker and if a fallback method
is used in the system or if a timeout value is specified in the
source code or configuration files. Based on the output of the
rules, MARS indicates if the antipattern is present or not in
the targeted system.

IV. STUDY DESIGN

We now discuss the design of a study to validate our
approach. We applied MARS on a set of microservices-based
systems and compared the detected antipattern occurrences
against ground truth, i.e., instances of the antipatterns found
manually in the systems. We describe in the following our
dataset and how we built the ground truth.

7https://github.com/AlDanial/cloc
8https://github.com/src-d/enry



A. Dataset

We apply MARS on 24 microservice-based systems writ-
ten in Java. These systems are taken from a dataset of
microservice-based systems available online [9]. As men-
tioned in Section II-A, we manually analysed in our prior
work [8], a dataset of 67 open-source microservice projects—
implemented with different programming languages—to build
our catalogue of microservice antipatterns and assess how
they are implemented in practice. We relied on this dataset
because (1) it is the state-of-the-art dataset of microservice-
based systems widely used in the literature [9], (2) it is
open-source, and (3) it contains microservice-based systems
of different sizes and types (i.e., industrial as well as demo
systems). In our work, we considered only microservice-based
systems written in Java, we also excluded toy systems (with
only one microservice), and, thus, retained from this dataset 24
Java-based microservices systems that are described in Table I.
Figures 3 and 4 show the numbers of files and lines of codes
of the systems respectively, plotted on a logarithmic scale for
the sake of clarity.

The source code of any microservice-based system contains
developer-written code, artefacts, and third-party dependencies
and libraries. Including third-party code would produce mis-
leading results. Therefore, we pre-processed our dataset and
excluded such code from our analysis by filtering dependency
folders, e.g., node modules, Maven folders, composer vendor
directories, etc.

Fig. 3. Distribution of dataset number of files on a logarithmic scale

Fig. 4. Distribution of dataset number of lines of code on a logarithmic scale

System # Micro. # Files # LOC Version date
Spring Netflix OSS 3 17 443 07-18-2017
FTGO 9 257 8239 06-02-2021
LakeSide Mutual 9 424 89477 03-14-2022
Spring Petclininc 3 25 795 04-15-2022
Freddy’s BBQ 6 35 1752 06-04-2017
Spring cloud Movie 4 33 885 04-11-2017
Piggymetrics 4 88 3176 11-15-2022
Tap And Eat 6 31 576 01-04-2017
E-commerce 3 24 756 06-07-2017
Consul 3 38 1750 09-28-2020
Microservice Demo 3 38 1766 09-17-2020
Qbike 5 77 2057 06-03-2019
Spring cloud Microservice 9 21 673 03-23-2017
CQRS Microservice Sampler 3 26 1028 10-30-2016
Spring boot Microservices 2 4 116 10-11-2018
Cloud Strangler example 3 30 932 03-07-2019
Micro company 17 244 90315 07-10-2020
MicroService 13 42 1052 02-09-2018
MicroService Kubernetes 3 38 1640 12-04-2020
TeaStore 3 62 5073 04-20-2022
Warehouse Microservice 6 222 4623 03-03-2018
Apollo 9 68 29510 06-21-2022
Delivery System 2 14 537 11-08-2017
Ticket-Train 45 1258 180338 09-02-2021

TABLE I
NUMBER OF MICROSERVICES, FILES AND LOCS SOURCE CODE PER

SYSTEM

B. Ground Truth
To build a ground truth of instances of the antipatterns, two

of the authors independently analysed each microservice-based
system in the dataset to find all instances of all antipatterns.
After independently collecting instances of the antipatterns,
the two authors compared their findings. In case of a dis-
crepancy, a third author was responsible for reconciling the
two other authors’ findings. Thus, three authors were involved
in the manual identification and validation of the antipattern
instances. The two authors agreed on most instances and
the third author only validated five instances, which were all
related to the nano and mega services because their detection
relies on thresholds that can be difficult to assess manually.
To make our ground truth easily accessible to the research
community, we have made it available online9. The ground
truth comprises all instances of microservice antipatterns that
we manually identified through our manual analyses.

V. STUDY RESULTS

This section presents the results and observations after
performing our study. For each microservice antipattern, we
report the precision and recall of their detection and provide a
concrete example of one of its occurrences within one of the
microservice-based systems. We calculated the precision and
recall values for each of the detected antipatterns as follows,
with AP meaning “antipattern”:

Precision =
|{existing APs} ∩ {Detected APs}|

|{Detected APs}|
(1)

Recall =
|{Existing APs} ∩ {Detected APs}|

|{Existing APs}|
(2)

9https://github.com/LoicMadern/MARS/blob/main/groundtruth.xlsx



Antipattern
System Precision (P)

& Recall (R) WC CD MS NS SL HE MC NCI NAG TO MSIPH SP NAV NHC LL IM

Spring Netflix OSS P - - - - - - - 1/1 - - - - 1/1 - 1/1 -
R - - - - - - - 1/1 - - - - 1/1 - 1/1 -

FTGO P - 1/1 - - - 3/3 1/1 - - 1/1 - 0/1 - - - -
R - 1/1 - - - 3/3 1/1 - - 1/1 - - - - - -

LakesideMutual P 3/3 - - - - - 1/1 1/1 1/1 - - - - - 0/1 0/1
R 3/3 - - - - 0/2 1/1 1/1 1/1 - - - - - - -

Spring Petclinic P - - 0/1 - - - - 0/1 - - - - 0/1 - - -
R - - - - - - - - - - - - - - - -

Freddys BBQ P - - 1/1 - - 3/3 0/1 1/1 1/1 - 1/1 - 1/1 1/1 1/1 -
R - - 1/1 - - 3/3 - 1/1 1/1 - 1/1 - 1/1 1/1 1/1 -

Spring Cloud Movie P - 1/1 - - - - - 1/1 - - 1/1 - 1/1 1/1 - -
R - 1/1 - - - 0/1 - 1/1 - - 1/1 - 1/1 - - -

Piggymetrics P - - 0/1 - - - - 1/1 - - - - 1/1 - - 0/1
R - - - - - 0/2 - 1/1 - - - - 1/1 - - -

Tap And Eat P - - - - - - - 1/1 1/1 - - - 0/1 1/1 1/1 -
R - - - - - - - 1/1 1/1 - - - - 1/1 1/1 -

E-Commerce P - - - - - - - 1/1 1/1 - - - 1/1 - 1/1 1/1
R - - - - - - - 1/1 1/1 - - - 1/1 0/1 1/1 1/1

Consul P - - - - - 1/1 1/1 1/1 1/1 - - - 1/1 - - -
R - - - - - 1/1 1/1 1/1 1/1 - - - 1/1 - - -

Microservice Demo P - - - - - - 1/1 1/1 1/1 - - - 1/1 - 1/1 0/1
R - - - - - 0/1 1/1 1/1 1/1 0/1 - - 1/1 - 1/1 -

Qbike P - - - - - - - 1/1 - - 1/1 2/2 - 1/1 - -
R - - - - - 0/3 - 1/1 - - 1/1 2/2 0/1 1/1 - -

Spring Cloud Microservice P - - - - - - - 0/1 - - - - - - - -
R - - - 0/2 - 0/3 - - - - - - 0/1 0/1 - -

Cqrs Microservice Sampler P - - - - - - - 1/1 0/1 - - - 1/1 - 1/1 1/1
R - - - - - 0/1 - 1/1 - - - - 1/1 - 1/1 1/1

Spring Boot Microservices P - - 1/1 - - - 1/1 1/1 0/1 - 1/1 - - - 1/1 1/1
R - - 1/1 - - - 1/1 1/1 - - 1/1 - 0/1 0/1 1/1 1/1

Cloud Strangler Example P 1/1 - 0/1 - - - - 1/1 - - - 2/2 1/1 1/1 0/1 -
R 1/1 - - - - - - 1/1 - - - 2/2 1/1 1/1 - -

Micro Company P - - 1/1 0/2 - - - 1/1 - - - - - - 0/1 -
R 0/1 - 1/1 0/1 - - - 1/1 - - - - 0/1 - - -

MicroService P - - - - - 0/2 - 1/1 1/1 - - - 0/1 - - -
R - - - - - - - 1/1 1/1 - - - - - - -

Microservice Kubernetes P - 2/2 - - - 0/2 1/1 1/1 1/1 - - - 1/1 - 1/1 1/1
R - 2/2 - - - - 1/1 1/1 1/1 - - - 1/1 - 1/1 1/1

TeaStore P - 1/1 0/1 - - 0/1 1/1 1/1 1/1 1/1 - - - 1/1 0/1 1/1
R 0/1 1/1 - - - - 1/1 1/1 1/1 1/1 - - 0/1 1/1 - 1/1

Warehouse Microservice P - 2/2 - 0/1 - - - 1/1 - - - - - - - -
R - 2/2 - - - - - 1/1 - - - - 0/1 - - -

Apollo P - - 1/1 0/2 2/2 - 0/1 0/1 1/1 1/1 - - - 1/1 - -
R - - 1/1 - 2/2 - - - 1/1 1/1 - - - 1/1 - -

Delivery System P - - 1/1 - - - - 0/1 0/1 - - - 1/1 1/1 1/1 1/1
R - - 1/1 - - 0/1 - - - - - - 1/1 1/1 1/1 1/1

Ticket-Train P 1/1 - 1/1 15/19 1/1 20/26 1/1 0/1 0/1 - - - - - - -
R 1/1 - 1/1 15/15 1/1 20/20 1/1 - - - - - - - - -

Precision Ratio 5/5 7/7 6/10 15/24 3/3 27/38 8/10 18/23 10/14 3/3 4/4 4/5 11/14 7/8 9/13 6/9
Percentage 100.00% 100.00% 60.00% 62.50% 100.00% 71.05% 80.00% 78.26% 71.43% 100.00% 100.00% 80.00% 78.57% 87.50% 69.23% 66.67%

Recall Ratio 5/7 7/7 6/6 15/18 3/3 27/41 8/8 18/18 10/10 3/4 4/4 4/4 11/17 7/10 9/9 6/6
Percentage 71.43% 100.00% 100.00% 83.33% 100.00% 65.85% 100.00% 100.00% 100.00% 75.00% 100.00% 100.00% 64.71% 70.00% 100.00% 100.00%

TABLE II
DETECTION RESULTS OF MARS, - STANDS FOR NO OCCURRENCES DETECTED BY MARS AND REPORTED IN THE GROUND TRUTH.

The precision of the detection of our tool is satisfying as it
varies between 60% and 100% with an average of 82%. The
recall value is also satisfying as it varies from 64% to 100%
with an average of 89%. These precision and recall values
confirm the effectiveness of MARS to detect the selected
antipatterns. Table II and Figure 5 describe the detailed results
of our study.

A. Detection Results of MARS
After applying MARS to the 24 microservice-based systems

we analysed, we obtained promising results. Specifically,
MARS accurately identified all instances of the shared li-
braries, multiple service instances per host, and circular de-
pendencies antipatterns, demonstrating its effectiveness in de-
tecting some of the most common antipatterns in microservice
architectures. Furthermore, the tool achieved high precision
and recall in identifying wrong cuts, manual configurations,
no CI/CD, no API gateway, timeouts, and shared persistence
antipatterns. While these results are encouraging, we observed
that MARS generated a higher number of false positives when
detecting the seven remaining microservice antipatterns in our
catalogue. In the following, we present a comprehensive analy-
sis of MARS detection results for each antipattern, along with
corresponding examples and prevalence rates of antipatterns
observed in our dataset.

1. Wrong Cuts (WC)
Our evaluation of MARS showed that it achieved high

precision (100%) and recall (71.42%) rates in detecting wrong

cuts in microservices. We missed detecting two occurrences
of wrong cuts due to the subjectivity in defining such an
antipattern and our choice of thresholds. As shown in Table II
and Figure 5, we found that only a few systems (5/24) in our
dataset contained occurrences of wrong cuts. Thus, we can
conclude that the majority of the microservice-based systems
analysed in our study decompose their microservices in an
appropriate manner.

Example: In LakeSide Mutual, microservices are organ-
ised according to their technical layers (i.e., presentation or
business) instead of their business capabilities. The system
includes microservices such as customer-self-service-frontend
and customer-self-service-backend. Our detection rule identi-
fied frontend microservices by identifying a large number of
web interface-related files (e.g., .js, .vue, .html, .json, and .css).

2. Circular Dependencies (CD)

MARS accurately detected all microservice circular depen-
dencies in our dataset, achieving 100% precision and recall.
However, it should be noted that MARS only detects direct
circular dependencies between pairs of microservices due to
the NP-hard nature of detecting cycles in call graphs. This
antipattern was observed in a small fraction of systems (5/25)
in our dataset.

Example: The Warehouse microservice system shows in-
terdependence between product-catalog-service and account-
service. Class instantiations from both microservices packages
contribute to this interdependence.



Fig. 5. Comparison between MARS results and ground truth analysis results

3. Mega Service (MS)

MARS performed well in detecting mega services, with
60% precision and 100% recall. However, it occasionally
misclassified microservices as mega services due to threshold
limitations. As shown in Figure 5, only 25% of the systems
in our dataset had mega services.

Example: In the Apollo system, the average lines of
code per service is 7,315, while the apollo-portal microservice
stands out with 43,700 lines of code. With six times the
average lines of code, it is identified as a mega service within
the system.

4. Nano Service (NS)

MARS performed well in detecting nano services, with a
precision of 62.5% and a recall of 83.3%. However, false
positives occurred due to specialised microservices in the
systems analysed. Determining nano service classification is
subjective and requires domain expertise. Notably, only 13%
of the systems in our dataset contained nano services.

Example: In the Ticket-Train system, MARS identified
the microservice ts-train-service as a nano service because it
has a few files (10) with a few lines of code (537).

5. Shared Libraries (SL)

MARS effectively detects shared libraries in microservices,
achieving 100% precision and recall. Our evaluation revealed
this antipattern in just 2 out of 24 systems, aligning with
the “share nothing” principle of microservice architecture,
which discourages sharing libraries and other artefacts among
microservices.

Example: In the Ticket-train system, the
org.microservices dependency was shared among 16
microservices, such as ts-common, ts-admin-order-service,
and ts-admin-route-service.

6. Hard-coded Endpoints (HE)
MARS effectively detected hard-coded endpoints in our

dataset, with 71.05% precision and 65.85% recall. It identified
27 occurrences but missed some due to URL format variability
and their dynamic construction. Detecting all hard-coded end-
points is challenging with static analysis alone. Furthermore,
despite service discovery being commonly used, half of the
analysed systems still had instances of this antipattern.

Example: In the FTGO system, no discovery tool is
used. MARS found three hard-coded endpoints in the ftgo-
api-gateway service, as shown in Figure 6.

Fig. 6. Hard-coded example in FTGO application in ftgo-api-gateway.yml
file

7. Manual Configuration (MC)
We found that MARS effectively detects the manual config-

uration antipattern with 80% precision and 100% recall. How-
ever, there were two false positives caused by configuration-
related libraries in systems’ dependencies that were not used
for microservices configuration. We observed that 33% of the
analysed systems rely on manual configuration, despite the
availability of configuration management frameworks.

Example: In the Consul system, the microservice-consul-
demo-catalog microservice declares two configuration files
without any configuration tool: application.properties and
bootstrap.properties.



8. No CI/CD (NCI)

MARS effectively detects the No CI/CD (NCI) antipattern,
with 78.26% precision and 100% recall. However, it falsely
identifies this antipattern in only three projects, as CI/CD
tool usage is often visible only in the production environment
of microservices-based systems. For example, in the “Ticket-
Train system”, MARS did not detect CI/CD tool usage initially,
but manual analysis of GitHub releases revealed its presence.
Overall, only 35% of the analysed systems use CI/CD in their
development pipelines.

Example: In the Micro Company system, MARS found
no continuous integration tool like Travis, Jetkins, etc.

9. No API Gateway (NAG)

We found that MARS effectively detects the occurrence of
this antipattern with a precision of 71.43% and a recall of
100%. We observed that 42% of the studied microservice-
based systems use API gateways. Despite their advantages,
some developers of the systems in our dataset did not use API
gateways, possibly due to the additional complexity introduced
by their use. The nature of the systems in our dataset (non-
commercial or industrial systems) could also explain this
observation.

Example: MARS has not found any API gateway in the
Micro company system. The architecture of this system has
been designed without any API gateway.

10. Timeouts (TO)

MARS effectively detects the timeout antipattern in
microservice-based systems, achieving a precision rate of
100% and a recall rate of 75%. However, one instance of this
antipattern was not detected due to the system’s use of unsup-
ported implementation (timeouts in Java annotations). We also
found that the timeout antipattern was only present in 17%
of the systems we analysed. Furthermore, we observed that
developers tended to prioritise fault tolerance and resilience
by using circuit breakers rather than specifying timeout values
when invoking microservices.

Example: In the FTGO system, we found a hard-coded
timeout in the configuration file of the ftgo-application-lambda
microservice. We can see this instance on Line 6 of Figure 7,
where a timeout parameter has been set to 35.

Fig. 7. Timeouts example in FTGO application in serverless.yml file

11. Multiple Service Instances per Host (MSIPH)
We found that MARS performed well in detecting the

MSIPH antipattern, with a precision and recall of 100%. We
observed that only 17% of the microservice-based systems
analysed in our study use a unique host for deploying their
microservices. This practice enhances scalability and allows
for multiple versions of the same microservice to be run
simultaneously.

Example: MARS detected the presence of this antipat-
tern in the Qbike system, in which five microservices were
deployed on the same host.

12. Shared Persistence (SP)
For the shared persistence antipattern, MARS achieved

a precision of 80% and a recall of 100%. It successfully
detected a shared database among five microservices in FTGO
(Eventuate). However, we didn’t include it in the ground truth
because the shared database was used for event sourcing.
This antipattern appeared in only 8% of the systems in our
dataset, suggesting that developers prioritise microservices’
independent data management over shared databases.

Example: In the Cloud Strangler system, MARS found
that one MySQL database was shared by two microservices:
profile-service and user-service.

13. No API Versioning (NAV)
Our evaluation showed a precision of 78.57% and a recall

of 64.71% in detecting no API versioning using MARS. We
observed that only 25% of the microservice-based systems in
our dataset implemented API versioning. This could be due
to the perceived complexity of implementing versioning or
because the systems’ requirements do not necessitate such a
feature.

Example: We detect this antipattern in the Piggymetrics
system. No implementation of API versioning was found in
such a system.

14. No Health Check (NHC)
Based on our evaluation, MARS effectively detects the no

health check antipattern, with 88.89% precision and 66.67%
recall. Surprisingly, 42% of systems in our dataset neglect
periodic health checks for their microservices. This omission
increases the risk of system failures and unavailability, em-
phasising the need for incorporating health checks as a critical
aspect of microservice design and deployment.

Example: We detected this antipattern in the Freddys
BBQ system. We did not find any health check in the services:
microsec-admin-portal, microsec-common, microsec-custom-
registry, microsec-customer-portal, and the system itself.

15. Local Logging (LL)
The detection results of MARS were satisfactory for the

local logging antipattern, with a precision of 69.23% and a
recall of 100%. We observed that this practice is relatively
spread across systems: 38% of the analysed microservice-
based systems use local logging mechanisms, which should



be avoided because they prevent tracing failures among mi-
croservices.

Example: The antipattern has been detected neither by
MARS nor in the ground truth in the Spring Netflix OSS
system. The system does not contain any logging tool.

16. Insufficient Monitoring (IM)
MARS detected the insufficient monitoring antipattern with

a precision of 66.67% and a recall of 100%. We observed that
the wrongly detected occurrences of insufficient monitoring
by MARS are due to the presence of monitoring tools in
some microservice-based systems that are not listed in MARS
configuration files. Finally, we saw that 75% of the systems
in our dataset use monitoring tools which is crucial to trace
issues as soon as possible.

Example: No monitoring tool has been identified by
MARS in the Microservice Kubernetes system. The system
has no monitoring tool, such as Grafana, Zipkin, or Heapster.

B. Comparison With A Baseline Approach

We compared the detection results of MARS with revision-
NOSE [18], a tool for detecting microservice antipatterns
based on static analysis of source code. We selected this tool
because it is open-source, supports analysis of microservice-
based systems implemented in Java, and covers 11 microser-
vice antipatterns, eight of which are common with MARS.
We considered only the antipatterns that are common to the
two tools and tried to replicate MSA-NOSE’s results on the
Ticket-Train system since it is already included in our dataset.

We found that MSA-NOSE detected only occurrences of
the shared libraries and no API versioning antipatterns. We
observed for shared libraries an average detection precision of
1.5% and a recall of 100%. The tool generated a high number
of false positives when detecting shared libraries because it
only compares the names of the list of libraries used by
different microservices, and does not exclude local libraries of
which the source code or runtime assets are duplicated in the
repositories of microservices. Additionally, we observed for
no API versioning an average detection precision of 57% and
recall of 47%. For this antipattern, we found that MSA-NOSE
only examines the files of each microservice, rather than the
entire system’s configuration files, resulting in relatively low
precision and recall. We conclude that MARS clearly out-
performs MSA-NOSE in detecting microservice antipatterns.
MARS does not only detect more accurately shared libraries
and no API versioning than MSA-NOSE but also covers more
microservice antipatterns.

C. Performance Analysis

To evaluate the scalability and efficiency of our approach,
we performed both a theoretical and an empirical analysis of
the time complexity of MARS. The theoretical analysis of the
time complexity of our approach considers the computational
complexity of its key functions, including the model
generation and detection rules. Such theoretical analysis aims
to evaluate the scalability of MARS on large systems, since

large and/or industrial Java microservice-based systems are
not accessible to allow the testing of the scalability of our
tool. The empirical evaluation focuses on the execution time
of MARS and its evolution to evaluate the efficiency of our
approach when the number of microservices, lines of code,
or files in a system increases.

Time Complexity Analysis. Our analysis shows that the time
complexity of MARS is O(n(k+m)), where n is the number
of microservices in the system, m is the maximum number
of dependencies of the microservices, and k the maximum
number of files in each microservice. We note that the time
complexity of antipatterns detection functions dominates the
overall time complexity, as they involve the analysis of the
dependencies and configuration files of all microservices.
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Our analysis demonstrates that the time complexity of our
approach grows linearly with the number of microservices
in the system being analysed. This growth pattern indicates
that our approach is scalable and can be applied to large
microservice-based systems. Our approach can efficiently eval-
uate industrial-scale microservice-based systems, as it scales
with the size of the system. Details of our time complexity
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analysis, including the time complexity of each function, can
be found in the replication package provided with our paper10.
Execution Time Analysis. To complement our theoretical
analysis, we conducted an empirical analysis of the execution
time of MARS on the microservice-based systems. We studied
the impact of factors such as the number of microservices,
lines of code, and files on the efficiency of MARS in detecting
microservice antipatterns. We executed MARS four times and
calculated the average execution time for each system in our
dataset. This analysis demonstrated that MARS can detect
antipatterns efficiently, with execution times ranging from
0.005 seconds to 0.05 seconds on average. The results of
our analysis are presented in Figures 8, 9, and 10. These
figures show that MARS scales well with the number of
microservices, lines of code, and files in the systems. This
empirical analysis also provides evidence of the efficiency and
scalability of MARS in detecting microservice antipatterns.

VI. DISCUSSIONS

A. Other Observations

Regarding hard-coded endpoints and timeouts, some
microservice-based systems use particular communication pro-
tocols that intrinsically lead to the occurrence of these an-
tipatterns. In particular, the use of the MQTT communication
protocol [23] or CQRS architectural pattern 11, typically using
RabbitMQ as in CQRS Microservice Sampler system12, im-
plies that endpoints must be hard-coded towards the MQTT
broker and that timeouts are handled by the broker. Hence,
MARS detects occurrences of these two antipatterns although
they are not really due to the microservices themselves but the
chosen communication protocols. Even the two state-of-the-art
microservice antipatterns detection approaches [18], [19], have
their limitations when it comes to effectively identifying hard-
coded endpoints and timeouts. For example MSA-NOSE [18]
is constrained by specific frameworks and faces challenges
in capturing dynamically derived configurations. On the other

10https://github.com/LoicMadern/MARS/blob/main/MarsTimeComplexity.txt
11https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
12https://github.com/benwilcock/cqrs-microservice-sampler

hand, the regex-based approach employed by Pigazzini et
al. [19] can miss variations and produce false positives. These
limitations highlight the need for further improvement in
detecting and addressing the presence of hard-coded endpoints
and timeouts in microservice-based systems.

Regarding no health check, it is possible that some
microservice-based systems may use some frameworks (i.e.
Kubernetes [24] and Openliberty [25]) that, by default, enable
this check. In such a case, MARS may have detected an
occurrence of this antipattern although, by default into the
framework, the health check is enabled. Future work includes
improving MARS to consider the idiosyncrasies and default
behaviour of different frameworks. However, it is worth men-
tioning that existing approaches for detecting microservice
antipatterns [17]–[19] have not addressed the identification of
this particular antipattern, which is one of the contributions of
our work.

In some microservice-based systems, we observed that an
antipattern may be both present and not present, which we call
a “Schrödinger occurrence” [26]. A Schrödinger occurrence
occurs, in particular, when repositories include both local and
multi-host deployment or monolithic and service-based version
of a system, e.g., the repositories of LakeSide Mutual (deploy-
ment) and of Micro Company (monolithic and microservice-
based versions). For repositories containing both monolithic
and microservice-based versions, we excluded from these
repositories the folders containing the monolithic versions
because they are irrelevant for MARS.

Finally, we observed some implementations of
microservice-based systems that were “erroneous”. For
example, LakeSide Mutual contains a discovery service but
some of its services use hard-coded endpoints. In such a
case, MARS reports occurrences of the hard-coded endpoint
antipattern while they are due to developers’ overlooking
some configurations rather than to a poor design.

Similarly to existing studies [3], [18], we did not rely on the
microservice coupling to detect wrong cuts in microservice-
based systems. Although the presence of wrong cuts in mi-
croservices potentially increases the coupling between asso-
ciated microservices, this does not necessarily imply that all
highly-coupled microservices will exhibit such an antipattern.
Indeed, we observed in our dataset that highly-coupled mi-
croservices may occur for other reasons such as the centrality
and importance of a microservice business functionality or
the presence of mega-microservices. Thus, we relied on an
analysis of the distribution of file extensions, content, and
programming languages in microservices to identify wrong
cuts (i.e., mono-layered services).

Given that determining the optimal size for a microservice
is a complex endeavour, influenced by factors like functional
cohesion, detecting mega and nano services becomes subjec-
tive as it relies on manual specification of thresholds that can
vary from one expert and one system to another [27]. Thus,
we recommend creating boxplots of the number of lines of
code and of files in the system being analysed. An expert
can thus visualise their distributions and determine appropriate



thresholds based on the quartiles of the boxplots. We will
automate the detection of such antipatterns and automatically
set appropriate thresholds in our detection rules in future work.

We validate MARS on 24 open-source systems, including
one industrial microservice-based system (Apollo). Practition-
ers could use MARS for the analysis of their microservice-
based systems. Indeed, for some antipatterns, such as WC,
MS and NS, MARS does not need to analyse the entire
microservice-based system to detect their occurrences. MARS
only must parse the list of URLs to the related distributed
microservices repositories. It will then extract all the metadata
required to detect antipatterns. In future work, we plan to
deploy MARS as a service that can be accessed remotely,
facilitating its use by both researchers and practitioners. We
also plan to conduct additional experiments on larger and
more complex microservice-based systems to validate our the-
oretical analysis of the scalability of MARS and demonstrate
the practicality and efficiency of our approach for industrial
microservices systems.

B. Limitations of MARS

Our microservice antipattern identification approach, while
effective, does have limitations that should be acknowledged.
One of these limitations pertains to the identification of
the circular dependency antipattern. In fact, unlike existing
approaches in the literature [18], [19], MARS detects circular
dependencies only between pairs of microservices. While this
is important, it is worth noting that there may be cases where
circular dependencies involve more than two microservices.
Our current approach does not capture such complex circular
dependencies involving three or more microservices. We aim
as future work to address this limitation and improve MARS to
detect circular dependencies involving multiple microservices.

Additionally, it is worth noting that the identification of
certain antipatterns, such as local logging and insufficient mon-
itoring, heavily depends on the specification of a list of related
libraries. This aspect introduces another limitation to our ap-
proach. However, existing approaches for detecting microser-
vice antipatterns [17]–[19] have not considered the identifica-
tion of those antipatterns. Nevertheless, we have made a novel
contribution by incorporating the detection and the analysis
of local logging, insufficient monitoring and no health check
within our approach. Furthermore, distributed logging and
monitoring tools may be configured when the microservice-
based system is deployed and may not be explicit in the
configuration or dependency files. Even if distributed logging
and monitoring tools exist in the deployment infrastructures
(e.g., Kubernetes), MARS will only detect occurrences of
local logging and insufficient monitoring antipatterns when it
cannot find dependencies to logging or monitoring tools in the
source code of the microservice-based system. MARS has this
limitation because we have no visibility into the deployment
infrastructure of the microservice-based systems. MARS only
statically analyses the source code of microservice-based sys-
tems, independently of their deployment infrastructures. Still,
reporting the presence of these antipatterns as detected by

MARS would encourage developers to perform a more in-
depth investigation of logging and monitoring tools in their
deployment infrastructures.

Finally, certain antipatterns, such as wrong cuts, nano and
mega services, require the specification of thresholds for their
identification. The determination of the optimal size for a
microservice is challenging. It involves various factors such as
functional cohesion, service autonomy, scalability, maintain-
ability, and deployment flexibility [27]. Finding the right bal-
ance and size for microservices requires careful consideration
and understanding of the context. Considering this complexity,
our approach relies on expert customisation to set thresholds
for detecting antipatterns related to microservices sizes. We
acknowledge that this reliance on expert customisation in-
troduces subjectivity and requires domain expertise, thereby
posing a limitation [27]. As part of our future work, we intend
to explore automated techniques that can assist in determining
these thresholds. By leveraging automated approaches, we aim
to reduce the reliance on manual customisation and human
expertise, thereby improving the objectivity and scalability of
our antipattern identification process.

C. Implications For Researchers and Practitioners

This study provides a comprehensive approach for specify-
ing and detecting antipatterns in microservice-based systems,
which can benefit both researchers and practitioners interested
in improving the quality of microservice-based systems. By
identifying the presence of antipatterns and evaluating the
adoption of microservice-related best practices, MARS enables
practitioners to pinpoint areas for improvement and perform
necessary refactorings as needed. These refactorings may
include changes to the source code of individual microservices
or the implementation of monitoring, CI/CD, or health check
tools to enhance system performance and resilience.

By analysing the systems in our dataset, we have identified
several recommended practices that developers tend to ignore
in microservice-based systems. Notably, we found that API
versioning, CI/CD, health checks, and API gateways are often
ignored, while circular dependencies among microservices are
avoided, and libraries, as well as databases, are not shared
among microservices. These observations are preliminary but
provide valuable insights into developers preferences and
practices in microservice architecture. They can also serve
as a starting point for further research to understand why
certain practices are favoured over others and how to address
the challenges associated with adopting best practices in
microservices. Some of these observations are consistent with
the findings of a recent industrial survey on microservice-
based systems [28], which reported that developers tend to
avoid sharing databases between microservices. However, it
was also found that health checks for microservices and API
gateways are commonly used in industrial microservice-based
systems [28]. To confirm and expand on our findings, we
recommend performing further analyses on larger datasets and
conducting interviews with developers to gain a more nuanced
understanding of their perspectives and experiences.



Following this work, we raise several recommendations,
both for developers of microservice-based systems and for re-
searchers in the field of microservices-based architectures and
their antipatterns. First, several technologies and concepts used
in microservices bring excessive complexity in comparison to
the problem(s) that they solve in certain contexts. This is the
case, for example, with API gateways [3]. It is common in
the industry to view this design pattern as bringing unhelpful
complexity below a certain number of microservices. Indeed,
some existing studies [3], [18] reported that developers could
adequately manage up to 50 distinct microservices without
needing to rely on an API gateway in the microservice-based
system. It would be interesting for researchers to study the
impact of the complexity added by an API gateway in a small
system compared to direct communication with microservices.
However, it is always preferable to design a microservices-
based system by following as many best practices as possible
if it is undeniably likely to grow in the future.

Second, we recommend automating as many tasks as possi-
ble in the microservice-based system development processes,
because automation is a fundamental tenet of microservices
and many of their advantages rely on automation. We recom-
mend automation of testing, configuration, deployment, and
monitoring for increased agility and responsiveness.

Third, finally, we recommend the logging and tracking of
all information and events emitted by microservices, not only
to improve the discovery of errors and failures but also their
correction and the building of knowledge bases to prevent their
future reproduction.

VII. THREATS TO VALIDITY

We now discuss threats to validity of our study.
a) Construct Validity: The detection rules that we used

to detect antipatterns have been specified according to our
interpretation of the antipatterns. Indeed, they are based on
the practices within the development community, the analysis
of microservices, and our own experience and understanding.
We tried to minimise any bias and we mitigated this bias by
carefully considering previous work [8], describing the rules in
this paper, and providing an open-source implementation of all
antipatterns detection rules to allow their update, refinement,
and comparison.

Although we extensively reviewed the literature to identify
the most common antipatterns in microservice-based systems,
other antipatterns may exist, which we did not include in
our study. MARS should allow specifying other antipatterns,
which we consider as future work. Others can also use MARS
to specify the same and–or other antipatterns. We provide
MARS, its implementation, and our rules, as open-source6.

b) Internal Validity: All three authors were involved in
identifying manually and independently potential occurrences
of the microservices in the 24 systems before reconciling them
to obtain a ground truth for the validation. We thus tried to
remove any bias towards our rules. Also, we release the ground
truth online6 so that other researchers can vet and use it.

c) External Validity: Microservice-based systems are
volatile. They can be built using multiple technologies, de-
ployed on multiple hosts, and changed easily [29]. Although
we tried to identify and consider the most common technolo-
gies for microservices in MARS, we considered only Java
microservices. We also may have omitted some other tech-
nologies. We minimised this threat by building and providing
a tool that can be extended with more parsers.

The limited number of detected microservice antipatterns
may threaten the generalizability of our results. However,
it is important to highlight that our study represents the
most extensive empirical analysis conducted to date on the
detection of microservice antipatterns. In our research, we
used automated techniques to accurately detect a total of 16
distinct microservice antipatterns within a dataset consisting
of 24 microservice-based systems. These systems exhibited
172 occurrences of microservice antipatterns, which consti-
tute the largest validation dataset when compared to existing
works [17]–[19]. To mitigate this threat, we also considered
diverse microservice-based systems of different sizes. We aim
as future work to consider more systems and identify a larger
spectrum of microservice antipatterns occurrences.

We relied on lists of dependencies and frameworks to
identify some antipatterns. We chose these lists by considering
the most widely-used technologies to develop microservices.
We do not pretend to have exhaustive lists. To mitigate this
threat, MARS can include and use other additional lists to
cover more tools and frameworks.

Even though configuration files are generally written in
JSON, XML, or YAML file formats, they can also be written in
programming languages, such as Java, which may lead MARS
to not consider a file as a configuration file and exclude it. We
reduced this threat by relying on file extensions and also on
the file names and their content to do the classification.

VIII. CONCLUSION

We proposed MARS, a tool-based approach to automati-
cally detect antipatterns in microservice-based systems. We
provide (1) an extensible and technology-agnostic metamodel
for detecting microservices antipatterns, and (2) an accurate
and open-source tool that we empirically validated on 24
microservice-based systems using a ground truth of 172 oc-
currences of microservice antipatterns.

Manual validation of the detected occurrences showed that
MARS allowed us to specify and detect microservice antipat-
terns with an average precision of 82% and a recall of 89%.
Our work is useful to both practitioners and researchers. It
provides the first complete approach for specifying and de-
tecting microservice antipatterns and can be used as guidance
to assess the quality of microservice-based systems.

As future work, we plan to focus on improving the de-
tection of specific antipatterns, such as circular dependencies,
and expanding our analysis to identify additional antipatterns
and examine their prevalence in existing microservice-based
systems. Thus, we could recommend to developers and re-
searchers good and bad practices to consider when developing



microservice-based systems. We also want to empirically and
quantitatively study the presence of microservice antipatterns
in a larger dataset and study their impact on maintenance.
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