
A Theory of Program Comprehension

Joining Vision Science and Program Comprehension

Yann-Gaël Guéhéneuc

Ptidej Team

École Polytechnique de Montréal

and Université de Montréal

Montreal, Quebec, Canada

guehene@iro.umontreal.ca

October 13, 2008

In theory, there is no difference between theory and practice. But,

in practice, there is.

Jan L. A. van de Snepscheut

1

Abstract

There exists an extensive literature on vision science, on the one

hand, and on program comprehension, on the other hand. However,

these two domains of research have been so far rather disjoint. Indeed,

several cognitive theories have been proposed to explain program com-

prehension. These theories explain the processes taking place in the

software engineers’ minds when they understand programs. They ex-

plain how software engineers process available information to perform

their tasks but not how software engineers acquire this information.

Vision science provides explanations on the processes used by people

to acquire visual information from their environment. Joining vision

science and program comprehension provides a more comprehensive

theoretical framework to explain facts on program comprehension, to

predict new facts, and to frame experiments. We join theories in vi-

sion science and in program comprehension; the resulting theory is

consistent with facts on program comprehension and helps in predict-

ing new facts, in devising experiments, and in putting certain program

comprehension concepts in perspective.

2

1 Introduction

Joining vision science and program comprehension provides a theoretical

framework to explain how software engineers understand programs and, thus,

to explain known facts, to predict new facts, and to set up experiments on

program comprehension.

In the recent year, the domain of cognitive informatics as emerged to

study the internal processing mechanisms of the human brain and their appli-

cations in computing. Cognitive informatics is intrinsically multi-disciplinary

and unites researchers in several domain of research such as cognitive science,

cybernetics, and software engineering. In particular in software engineering,

it could bring interesting advances that could explain the mechanisms trough

which software engineers understand, write, and debug programs. Therefore,

it encompasses the domain of program comprehension.

Program comprehension is the domain of software engineering that seeks

to explain how software engineers understand programs [34], i.e., how they

obtain a mental representation of a program structure and function [26].

Facts and laws of program comprehension lie at the heart of almost every

software related activities, from development to maintenance, deployment,

and use. Many studies on program comprehension have been published in the

literature. However, understanding program comprehension requires more

than just knowing facts; it requires a theory.

Our research concerns situations in which expert software engineers read-

3

ily recognise well-known patterns (any kind of patterns) in a program model,

while novice software engineers only perceive their constituents. Figure 1

shows a subset of a UML class diagram. (We cloud class names for the sake

of explanation). The question is: What is the structure and function that

an expert software engineer recognises instantly in that diagram and that a

novice software engineer does not? (The curious reader may take few seconds

to study the class diagram.) An expert software engineer could recognise that

the classes follow the solution of the Composite design pattern [13, p. 163],

thus assigning the function of representing part–whole hierarchies, while a

novice software engineer only sees a hierarchy of four classes, some opera-

tions, and an aggregation relationship. (Compare with the solution of the

Composite design pattern in Figure 4). We attempt to explain this differ-

ence in comprehension between expert and novice software engineers with a

theory.

Existing cognitive theories1, such as Brooks’ [6], von Mayrhauser’s [42],

Pennington’s [30], Soloway et al.’s [38], provide explanations on the short-,

long-, and working-memories used, on the cognitive internal processes at

play, and on the internal and external knowledge incorporated and con-

structed during program comprehension. Other authors, such as Minsky [24],

Rich and Waters [31], and Soloway [37] theorise the cognitive internal rep-

resentation of knowledge through the concepts of frames, plans, and chunks.

1We use the term “theory” instead of the occasional term “model” (see for example
von Mayrhauser’s integrated model [42]) to prevent confusion with program models.

4

However, no existing theory of program comprehension explains well the dif-

ference between expert and novice software engineers, in particular wrt. the

use of patterns.

Our approach to explain the previous difference recognises the importance

of sight during program comprehension and consists in describing the infor-

mation flow from graphical program models (texts or diagrams) to cognitive

internal processes and memories, using vision science. Vision science is an

interdisciplinary domain of cognitive science, which provides a framework for

understanding vision in terms of phenomena of visual perception, the nature

of optical information, and the physiology of the visual nervous system [28, p.

5]. It does not “analyse the sociocultural basis of the staggering amount of

functional information people learn about familiar” items2 but focuses “on

the more perceptually relevant question of how sighted people manage to

perceive an [item]’s functional significance by looking” [28, p. 409]. The-

ories of vision science explain the capabilities of the human visual system

to acquire visual information and to provide this information to cognitive

internal processes and memories. Therefore, we develop a theory of program

comprehension including the processes of acquiring and comprehending infor-

mation through sight, by drawing inspiration from theories of vision science

and of program comprehension. This vision–comprehension theory relates

vision processes, cognitive internal processes, and memories, during program

2We use the term “item” instead of the more common term “object” to distinguish
between visual objects and objects in object-oriented programming languages.

5

A

+moveBy(dx : int, dy : int) : void

D

+moveBy(dx : int, dy : int)

+add(aA : A) : A
+remove() : A

B C

Figure 1: What is the structure and function that an expert software engineer
recognises instantly in this subset of a UML class diagram of a well-known
program and that a novice software engineer does not? How does the recog-
nition happen?

comprehension, and brings together data and methodology of program com-

prehension and vision science. We show that this theory is consistent with

known facts, we explain certain trends in program comprehension, and we

propose possible theoretical and experimental falsification studies.

In Section 2, we introduce related work on theories of software engineer-

ing, of program comprehension, and of vision science. In Section 3, we present

the rationale for developing a theory of program comprehension. In Section

4, we detail the theory and its philosophy, premises, context, and scope. In

Section 5, we show that the theory explains known facts, while in Section

6 we discuss trends in program comprehension. In Section 6.4, we propose

falsification experiments. Finally, in Section 7, we conclude and introduce

future work.

6

2 Related Work

2.1 What are Theories?

A theory is an integrated set of statements—hypotheses—about the prin-

ciples that organises and explains known facts and that makes predictions

about new facts possible. It must be an internally consistent minimal set of

hypotheses from which to derive explanations of known facts and testable

predictions of new facts. A theory helps in understanding a domain by ex-

plaining a list of “Why is it so?” questions [11, p. 7] [27].

2.2 Theories in Software Engineering

The domain of software engineering possesses theories but existing theories

[11] do not explain well known facts, due to the relatively recent existence

of this domain, the complexity of the phenomena, and the lack of agreed

upon formalisms and notations. Endres and Rombach [11] gather many

facts, laws, and theories. However, we disagree with the authors calling their

findings “theories”. Indeed, their theories are more like laws, because they

only explain one (or few) facts at a time, they do not generalise well, and

they use many hypotheses with respect to the principle of Ocam’s razor.

Empirical studies are recognised as essential to understand phenomena

with which software engineering deals, thanks to the work of precursors,

such as Vic Basili [5]. Empirical studies are based on the classical cycle:

observations (facts), laws, theories. Many facts have been recorded through

7

empirical studies and some laws have been proposed. Yet, few theories have

been derived to explain these facts and laws and to predict news facts. Some

researchers argue that current empirical studies focus too much on generali-

sation and not enough on theory building [17].

Another reason for the inadequacy of theories is the lack of frameworks

in which to set up experiments and with which to interpret results. Indeed,

theories are an invaluable help in setting up experiments to observe facts

(dis)proving the laws and theories. (For example, since Albert Einstein pro-

posed his theories of quantum physics, physicists used this framework to set

up experiments to prove or to disprove the theories, to obtain and to explain

new facts.)

2.3 Theories in Program Comprehension

We decompose the domain of program comprehension in three lines of re-

search: (1) acquisition of data from programs, for example through static

or dynamic or documentation analyses; (2) study of the broader context in

which program comprehension takes place, i.e., the software engineers’ ac-

tivities, the organisational and social contexts of their activities; and, (3)

development of theories based on the understanding of the software engi-

neers’ use of extracted data in a given context.

8

2.3.1 Data Acquisition

The rich literature on program comprehension focused early on the problems

of obtaining data from software artifacts (static and dynamic data, features,

documentation and other repositories), see for example [1,39]. It also tackles

the means to represent and to communicate this data, using various tech-

niques from text-based editors to 3D interactive dynamic environments, such

as [36]. This literature is essential to understand what kind of data software

engineers have at their disposal to comprehend programs.

2.3.2 Context

Less work study the contexts in which the program comprehension activ-

ity takes place. Murphy et al. [25] attempt to distinguish, to describe, and

to identify recurring patterns in the software engineers daily activities. Al-

though not related to program comprehension explicitly, their work brings

insight in the program comprehension activity, because program comprehen-

sion is part of all but the most basic software engineering activities. Thus,

this line of research is important to generalise claims in program comprehen-

sion. Indeed, generalising claims is difficult because no complete taxonomy

of the software engineers’ activities exist. However, the authors do not frame

their experiments in a particular theory of software development and, thus,

run the risk to perform unfocused experiments.

9

2.3.3 Theories

Few theories of program comprehension have been proposed in the literature.

We introduce two theories which are compared in more details with our the-

ory in Section 6. The first theory, proposed by Brooks [6], describes program

comprehension as a process of building a sequence of knowledge domains,

bridging the gap between problem domain and program execution. A suc-

cession of knowledge domains describes a software engineer’s comprehension

of a program.

The second theory, developed by von Mayrhauser [42], is an integrated

theory describing the processes taking place in the software engineers’ minds

during program comprehension, as a combination of top-down and bottom-

up comprehension processes, working with a common knowledge base. This

integrated theory accounts for the dynamics of forming and of abstracting a

mental representation of a program.

These precursor theories are invaluable and we draw much inspiration

from their insights. However, none of these theories explain and use the

processes of acquisition of the information by the software engineers through

their senses.

2.4 Theories in Vision Science

Vision science is the domain of computing science interested in the under-

standing of people’s vision system. Vision science collects facts on vision,

10

formulate laws from these facts, and devise theories explaining these laws

and facts. With these theories, vision scientists have been able to predict

new facts successfully and to refine their theories.

Vision science possesses many theories to explain colour vision, spatial

vision, perception of motion and events, as well as eye movements, visual

memory, and visual awareness. To the best of our knowledge, Palmer’s book

presents the most complete and in-depth coverage of vision theories, cast in

the information processing paradigm [28]. For the sake of brevity, we intro-

duce theories of vision science along with relevant references while presenting

the vision–comprehension theory in Section 4.

11

3 Rationale of the Theory

Our theory recognises software engineers as human beings. We believe that

the physical and cognitive characteristics of software engineers are impor-

tant because they use all of their senses and cognitive capabilities when they

comprehend a program, in particular sight. Indeed, when comprehending a

program, software engineers read documentation and source code and they

visualise all kinds of program models. The preeminence of sight is corrobo-

rated by the extensive literature on visualisation for program comprehension.

Yet, to the best of our knowledge, no previous theory of program compre-

hension recognised the importance of sight explicitly.

We build on vision science and on program comprehension theories to

propose a theory of program comprehension accounting for the acquisition

and for the use of visual information by software engineers. This theory is

based on theories in vision science but does not contradict existing theories

of program comprehension, such as Brooks’ [6] and von Mayrhauser’s [42]:

It extends these existing theories to provide explanations on the acquisition

of information.

Section 2 highlights the importance of theories to explain known facts

and to predict new facts. In addition, a theory is useful to frame efforts

to automate the program comprehension activity. Indeed, as Marr points

out, once a “theory for a process has been formulated, algorithms for imple-

menting it may be designed, and their performance compared with that of

12

the human” processor [23, p. 331]. Thus, our theory could help in devising

(semi-)automated algorithms to comprehend programs and to help software

engineers in comprehending programs.

Finally, our theory will help in devising experiments to answer questions

related to the program comprehension activity through sight. Without theo-

ries on program comprehension, “the danger is that questions are not asked

in relation to a clear [theory].” [23, p. 349] and, thus, provide answers lacking

focus and generality.

4 Vision–Comprehension Theory

4.1 Philosophy

The program comprehension activity requires information contained in a pro-

gram source code and documentation. But this information is not sufficient

for comprehending a program. The tasks at hand (why is the program being

studied), the context of the activity (where, for what purpose is the pro-

gram studied), and the experience of the software engineers (with software

engineering, program comprehension, and the studied program) are required

additional sources of information. Thus, software engineers contribute infor-

mation during the program comprehension activity. We take a constructivist

stance, like Floyd [12] for software development, in which comprehension

is constructed from external and internal information, without emphasising

formalisation at the expense of communication, learning, and evolution.

13

4.2 Premises

We cast our theory within the information processing paradigm, in which the

human brain is seen as a computational processor. This paradigm is built

on the similarity between cognitive psychology and computers and belongs

to the objectivist tradition [19, p. 99].

We use the meta-theoretical analysis of the information processing paradigm

proposed by Palmer and Kimchi [29], which makes different assumptions on

the informational description, the recursive decomposition, and the physical

embodiment of cognitive processes in the human brain: Cognitive processes,

such as visual perception or program comprehension, are processes trans-

forming input information in output information. They can be decomposed

in a number of cognitive processes linked by a flow diagram. They are em-

bodied in the behaviour of the physical human brain in which they take

place.

Thus, assume that software engineers focus their attention on the pro-

gram model that they comprehend and we describe visual perception and

the program comprehension activity with processes acting on different rep-

resentations of information from the program model.

We also consider a theory of reinforcement learning [40] to explain the

behaviour of certain processes with respect to the amount of processing re-

quired to perform the program comprehension activity.

14

4.3 Context

We develop our theory in the context of a growing need to understand pro-

gram comprehension to reduce maintenance cost and to develop tools to

support program comprehension, see for example the extensive literature on

software visualisation.

Our theory relates to on-going research on alternative visualisation tech-

niques to represent program models graphically, for example using adjacency

matrices [14] or 3D representations [36], to map and to ensure the traceabil-

ity of mappings between source code and higher-level abstractions, such as

design patterns [2] or features [3].

4.4 Scope

We limit the scope of our theory to software engineers engaged in a program

comprehension activity. Software engineers must be using sight in normal

functional conditions to comprehend program models, other modalities are

not accounting for (although they might influence the activity). The program

models can be represented in any form, either textual, graphical (bi- or tri-

dimensional), including static, dynamic, and–or other kinds of data.

15

4.5 Definition

We decompose the recognition of items during program comprehension in

several processes acting on different representations3 of a program model.

Figure 2 shows the sequence of processes and the flow of data among these.

Although we believe that the following theory provides a source of ex-

planations for the program comprehension activity, beyond its details, this

theory is interesting for bridging vision science and program comprehension

and for integrating early stages of comprehension (vision) with later stages

(cognition [6, 42], see also Section 6).

• Retinal Image. The program comprehension activity begins with a

retinal image of a program model which a software engineer is observ-

ing. The retinal image may originate from any program model, either

a textual representation, a UML-like diagram. . .

• Image-based Stage. The retinal image is analysed to extract spatial

features from its structure, such as edges, lines, and textures. This

process produces a set of visual elements: edges, bars, and blobs [23].

• Surface-based Stage. The visual elements from the previous process

are interpreted in terms of visible surfaces in a 3D space. The process

produces local pieces of oriented surface [22].

3We use “representations” to denote cognitive internal representations of a program
model and “models” to denote program models, such as code source text, UML diagrams.

3Boxes represent image representations, circles are processes, arrows describe informa-
tion flow, dotted lines show decompositions. Absence of representations between processes
does not preclude existence but simplifies the flow.

16

Retinal Image

Image-
based
Stage

Surface-
based
Stage

Item-
based
Stage

Region
Analysis

Figure/
Ground

Distinction

Visual
Interpo -

lation

Group-
ing

Category
-based
Stage

Object
Representations

Category
Representations

Compa -
rison

Decision

Central
Execu -

tive

Articulatory
Loop

Long-term
Memory

Pa
st

 K
no

w
le

dg
e

Pa
st

 K
no

w
le

dg
e

/ C
on

te
xt

ua
l E

ff
ec

ts

Items
(Visuo-spatial Scratch Pad)

Episodic
Memory

Procedural
Memory

Semantic
Memory

Working
Memory

Figure 2: Theory3 of program comprehension through vision.

17

• Item-based Stage. This process concerns the perceptual organisa-

tion of the visual elements (including local pieces of oriented surface)

in items, see [28, p. 254]. We decompose this process in four sub-

processes:

– Region Analysis. This sub-process analyses visual elements to

identify regions in the image structure. A region is a bounded 2D

area that constitutes a subset of the image. Different principles

direct region analysis, such as connectedness, segmentation, and

texture segregation.

– Figure/Ground Distinction. Once regions are identified, this

sub-process decomposes regions in two categories: figures and

ground. Figures are parts of the image close to the observer,

with a bounded contour defining their shapes. Ground is the part

of the image farther from the observer, extending behind and not

shaped by a contour.

– Visual Interpolation. This sub-process interpolates the hidden

parts of identified regions from their visible parts to allow the

visual system to perceive partly-occluded visual elements.

– Grouping. This sub-process groups previously identified visual

elements in coherent items. It uses laws of grouping, such as

proximity, similarities of colour, size, orientation, and common

fate. It also uses past knowledge stored in long-term memory to

18

perform the grouping: From now on, the reader shall always see

the use of the Composite design pattern in Figure 1.

• Category-based Stage. Grouping visual elements in items is not yet

sufficient to allow comprehension. The items must be categorised to dis-

tinguish their different functions. We follow the theoretical approach of

indirect perception of function, which decomposes in two sub-processes:

Comparison and Decision. Following Rosch’s theory [33], we assume

that memory stores exemplars of items, represented by prototypes, with

which to assign identified items to categories.

– Comparison. This sub-process uses past knowledge and con-

textual effects to compare identified items with known items, ac-

counting for the context in which items are identified. Items may

belong to several categories (or to no category).

– Decision. Then, this sub-process decides the categories to which

the items belong, typically using a maximum-over-threshold rule.

• Working Memory. The previous processes produce a representation

in which the various items composing the program model have been

identified and categorised. This representation is handled by the Work-

ing Memory, which is similar to short-term memory but possesses an

important internal structure [4]. The Working Memory decomposes in

a Central Executive process interacting with the Visuo-spatial Scratch

Pad, the Articulatory Loop, and the Long-term Memory.

19

– Central Executive. The central executive process performs cog-

nitive tasks, such as comprehension, problem solving, and memo-

risation tasks. It works closely with the two following memories.

– Visuo-spatial Scratch Pad and Articulatory Memories.

This visuo-spatial scratch pad stores visual/spatial information

while the articulatory loop stores verbal information. Other kinds

of memories may exist for other modalities. These memories play

the role of cache with respect to long-term memory, being faster

and easier to access by the Central Executive.

– Long-term Memory. The central executive process also inter-

acts with long-term memory. Long-term memory is composed of

three memories: episodic, procedural, and semantic, which we de-

scribe in the context of program comprehension.

– Episodic Memory. The episodic memory stores information on

items and events part of the software engineer’s life history. It

stores domain and functional knowledge learned by the software

engineer during apprenticeship and program knowledge learned

during program comprehension.

– Procedural Memory. The procedural memory stores informa-

tion about skills and procedures to perform actions. It contains

the software engineer’s knowledge about programming and strate-

gies for program comprehension [42].

20

– Semantic Memory. Finally, the semantic memory stores in-

formation concerning knowledge of concepts, such as in an ency-

clopedia. This memory stores the visual appearances of proto-

typical objects and categories, such as architectural, design, and

implementation prototypes. It also stores knowledge domains [6]

(acquired through sight or built by the Central Executive).

This theory describes the program comprehension activity from a Reti-

nal Image generated by a graphical representation of a program model to

the Central Executive, which performs the comprehension activity. Before

discussing the theory in Section 6, we use it to explain some known facts.

21

5 Explanations of Known Facts

5.1 Why are Patterns so Important?

Patterns, such as idioms [7], design patterns [13], or architectural patterns

[20], have been quickly and widely adopted by the software engineering com-

munity. In particular, the design patterns described by Gamma et al. [13]

stirred much interest in the software engineering community as a way to

document and to reuse good practices in design [7].

The development of a “pattern community” led to a large body of litera-

ture on pattern categorisation, formalisation, application, and identification.

In this literature, many claims about patterns have been made, in partic-

ular regarding the usefulness of patterns to ease program comprehension.

The claim on the usefulness of patterns is the main assumption (although

often implicit) in research on pattern recovery, in particular design pattern

recovery, including work by this author. This claim states that patterns ease

program comprehension because software engineers recognise immediately

certain patterns in program models as performing functions. Although this

claim is sensible, it has never been explained theoretically. We provide an

explanation, with our theory, on the usefulness of two kinds of patterns as

examples: idioms and design patterns.

22

final Iterator iterator = aList.iterator();
while(iterator.hasNext()) {

final Object o = iterator.next();
...

}

Figure 3: Example of the Iterator idiom.

5.1.1 Idioms

Idioms are patterns at the programming language level. Recovery of idioms,

i.e., grouping program statements in idioms, has been subject of many work

very early, for example the Programmer’s Apprentice [31].

The code excerpt in Figure 3 shows the Iterator idiom of Java. A soft-

ware engineer, who knows this idiom, would recognise the function of the

statements instantly and would focus on the use of the list elements rather

than on the means to iterate over these elements. We consider three cases to

explain the recognition of the function of the statements:

• The Software Engineer Does Not Know the Idiom. A software

engineer who has never been confronted to the Iterator idiom would

be able to extract from the textual representation shown on Figure 3

its different statements through the Image- and Surface-based Stages.

Without previous knowledge of the idiom, Long-term Memory would

be unable to provide past knowledge to the Grouping and Comparison

sub-processes. The statements composing the representation would be

analysed by the Central Executive, which would infer and store their

23

function in Semantic Memory, as Object Representation.

• The Software Engineer Does Not Know the Idiom but Has

Encountered its Use. The software engineer would extract the state-

ments through the Image- and Surface-based Stages. During the Item-

based Stage, the Grouping sub-process would group the statements re-

lated to the idiom, based on information on the idiom previously stored

as an Object Representation. The Category-based Stage would use this

information to compare the grouping with previous groupings, to de-

cide their similarity, and to retrieve their function. Information on the

function of the statements (along with information on the statements

themselves) would go to Working Memory, thus easing the compre-

hension activity by supplying directly the Central Executive with the

function of the statement. The Central Executive, on seeing the same

group another time, may promote the group from Object Representa-

tion to Category Representation [40].

• The Software Engineer Knows the Idiom. Again, the software

engineer would extract the statements through the Image- and Surface-

based Stages. The Grouping sub-process would group the statements

related to the idiom, based on the information on the idiom stored

in the Semantic Memory as Category Representation. The Category-

based Stage would use the grouping and information from the Category

Representation to assign a function immediately, thus easing the use of

24

the grouping during program comprehension by the Central Executive.

Thus, we explain the usefulness of idioms: The knowledge of idioms eases

program comprehension by providing the Central Executive with the function

of a group of statements directly, without requiring further processing from

the Central Executive to identify its function.

5.1.2 Design Patterns

Design patterns, like idioms, are claimed to ease program comprehension.

They have been specifically targeted towards software engineers to provide

“good” solutions to recurring design problems [13]. To the best of our knowl-

edge, there exists no attempts to prove or disprove these claims but through

case studies, see for example [43].

We see design motifs—solutions of design patterns—as prototypes that

can be used in the progrram comprehension activity of micro-architectures—

subsets of a program design—directly. We believe that design motifs are

identical or closed to the prototypes in a software engineer’s memory. A

software engineer who knows design motifs would recognise their structure

and function directly, such as in Figure 1 with the Composite design pattern.

We consider three cases to explain the comprehension of micro-architectures:

• The Software Engineer Does Not Know Design Patterns. A

software engineer with no knowledge of design patterns would extract

the constituents of the micro-architecture presented in Figure 1 through

25

the Image- and Surface-based Stages. Long-term Memory could not

provide the Item- and Category-based Stages with past knowledge and,

thus, Working Memory would perform a time- and resource-consuming

analysis of the constituents to identify their function.

• The Software Engineer Knows an Unused Design Pattern. A

software engineer with knowledge of design patterns not used in the

micro-architecture is in a position similar to the one above. The infor-

mation provided by the Long-term Memory to the Grouping and Com-

parison sub-processes of the Item- and Category-based Stages would

help neither in grouping the constituents nor in categorising the micro-

architecture. Again, the Central Executive would be responsible for

inferring the function of the constituents.

• The Software Engineer Knows the Used Design Pattern. Knowl-

edge of the design pattern which motif is used to implement a micro-

architecture decreases the work load on the Working Memory. A soft-

ware engineer would extract the constituents of the micro-architecture

through the Image- and Surface-based Stages. The Grouping sub-

process would group these constituents using the knowledge of the

similar prototypical design motif. Then, the Comparison sub-process

would use this information and the knowledge on the prototype to pro-

vide the function of the micro-architecture to the Working Memory

directly, thus easing program comprehension.

26

Thus, we can explain the quick and wide adoption of design patterns and

the attention paid to their literary form: The synthetic, prototype-based,

descriptions of design patterns are usable directly in the Item- and Category-

based Stages of program comprehension through sight, decreasing the work

load on the Working Memory and, thus, easing the program comprehension

activity.

5.1.3 Practical Considerations

The statement composing an idiom or the constituents of a micro-architecture

similar to a design motif might be scattered across a graphical program model

and can be even in non-displayed parts of the model. It is important to iden-

tify the constituents forming these patterns and to bring these constituents

visually together to help software engineers in using design motifs to com-

prehend the model.

Kosslyn [18] performed several experiments validating the picture metaphor:

These experiments revealed a highly linear relationship between response

times and distances between pairs of items in an image. Thus, graphi-

cally grouping constituents of patterns help in understanding their functions

through the Grouping and Comparison sub-processes as well as navigating

in the program model by minimising the dwell time of eye movements among

constituents. Kosslyn’s experiments and our theory are consistent in justi-

fying experimentally and theoretically the benefits of software visualisation

techniques, in particular UML-like diagram layout algorithms (for exam-

27

ple [10]) and alternative visualisation techniques (see Subsection 5.4)

5.1.4 Conclusion

Our theory explains the importance of patterns: Patterns reduce the amount

of processing required by the Central Executive to comprehend the functions

of subsets of program models. It provides explanations on the quick and

wide adoption of patterns by practitioners due to their usefulness during the

program comprehension activity.

Also, our theory provides explanations on the advantages of expert soft-

ware engineers over novice software engineers: Expert software engineers

have read and understood much larger quantities of information related to

program implementation (source code) and design (models such as UML

class diagrams). They increased the number of prototypical patterns stored

in their Semantic Memory. Our theory provides a theoretical basis to the

idea that reading and understanding other software engineers’ program is

beneficial.

Finally, our theory provides explanations on the importance of “good”

graphical program models. Graphical models are important because they

facilitate the Grouping and Comparison sub-processes. It enforces the idea

of standardised models of source code (either textual or graphical), because

these models are closer to the prototypical models (in kinds and in forms)

stored in Semantic Memory.

28

5.2 Why are Packages and Composite States so Im-

portant?

Packages in graphical program models, such as UML class diagrams, and

composite states in UML state diagrams are believed to ease program com-

prehension. Serrano et al. [35] propose a study on packages for modelling

data warehouses and Cruz-Lemus et al. [8] a study on program comprehen-

sion using composite states, which tend to show that, indeed, packages and

composite states ease program comprehension.

We can explain theoretically the results of these studies in a similar fash-

ion as we explained the importance of patterns. Packages (composite states,

respectively), when used adequately, are groups describing sets of functions.

A software engineer, while studying a program model, would extract infor-

mation on the packages through the Image- and Item-based Stages. The

Item- and Category-based Stages would not need to use past knowledge on

individual constituents because packages are recognised as a single item (in

opposition to the package constituents, that would be recognised as a set of

items to be grouped). Information on the packages would go to the Work-

ing Memory. The individual constituents of the packages would never be

processed independently, thus reducing the required processing resource and

time and easing program comprehension.

However, the usefulness of packages and of composite states has not yet

been successfully proven empirically. We believe that absence of experimental

29

proofs results from a lack of theoretical framework in which to cast experi-

ments. Our theory provides an experimental framework in which to devise

experiments based solely on studying composite states and packages during

program comprehension, wrt. other factors such as tool support, software

engineers’ experience.

5.3 Why do Bounded Information ease Program Com-

prehension?

Gail et al. [25] present a study of software engineers’ tasks, based on the

monitoring and recording of the tasks during daily work. Tasks are composed

in task structures. The authors claim that task structures help in reducing

software engineers’ time and effort to find relevant information by reducing

the amount of displayed data, by bounding queries, and by performing queries

automatically. However, they do not cast their claims within a theoretical

framework of program comprehension to justify what information software

developers need, when they need it, and how they use it. Thus, they do

not explain why well-defined task structures would actually ease software

engineers’ activities. The benefits of task structures remains hypothetical

until generalisable empirical proofs are provided.

We can explain why the use of task structures could indeed reduce soft-

ware engineers’ time and effort to perform their program comprehension ac-

tivity by presenting data in a readily processable way—close to prototypes

30

that software engineers have in memory. Moreover, the data embedded in

task structures could be used along with the idea of parallel processing and

visual pop-out [41], to provide software engineers with visual clues on impor-

tant information.

5.4 Why do Alternative Visualisation Techniques ease

Program Comprehension?

Ghoniem et al. [14] realise an experiment on adjacency matrices, assessing

their usefulness for different comprehension activities with respect to node–

link diagrams.

An adjacency matrix represents the relationships between sets of items.

An adjacency matrix is only limited by the characteristics of the display, while

a node–link diagram is limited also by the characteristics of the displayed

network.

The authors conclude that adjacency matrices have several benefits (in

time and in accuracy wrt. graph size and density) over nodes–links diagrams

to estimate numbers of nodes and links, to find connected, specified, and

neighbouring nodes and links, but not to find a path between nodes.

We explain the differences between adjacency matrices and nodes–links

diagrams in three ways. First, estimation and finding activities requiring

software engineers to distinguish nodes are performed with adjacency matri-

ces easily because nodes–links diagrams require more processing during the

31

Item- and Category-based Stages, in particular during Region Analysis, due

to the cluttering of the diagrams.

Second, finding specific nodes and links is faster and more accurate with

adjacency matrices because software engineers only need to recognise the

node number, which is performed easily by the visual system or to put in

correspondence two nodes, which is performed by the visual system efficiently.

Finally, finding a path between nodes is difficult for the visual system

using adjacency matrices because the software engineers must focus their

attention on several different parts of the matrices, thus losing their focus in

the transition from one node to another, while in nodes–links diagrams, they

follow links among nodes, thus keeping their focus.

32

6 Discussions

6.1 Theoretical Bias

We postulated that we ease program comprehension by reducing the amount

and the time of processing required by software engineers’ minds to compre-

hend program models. Thus, we assume from the start that the information

processing paradigm is correct because we assume that the program com-

prehension activity depends on the characteristics of the processes used to

perform this activity.

This assumption biases our theory because we develop our theory using

the information processing paradigm. However, to the best of our knowledge,

the information processing paradigm has never been successfully challenged

yet. In the domain of vision science, Gibson [15] is the principal opponent of

the information processing paradigm. We could envision program compre-

hension theories based on Gibson’s approach to vision but we favour building

on the extensive literature related to the information processing paradigm.

6.2 Level of Abstraction

The information processing paradigm used to describe the processes involved

in program comprehension also helps in defining the concept of level of ab-

straction precisely.

Given the information obtained through a program comprehension ac-

tivity using the vision system, the level of abstraction of a program model

33

qualifies the amount of processing required to obtain this information from

the model. Thus, for a same information provided to the Central Executive,

a program model at a low-level of abstraction requires more processing (in-

cluding from the Central Executive) than a program model at a higher-level

of abstraction.

We illustrate this definition of the level of abstraction with Figures 1 and

3. A typical implementation of the Composite design motif uses the Itera-

tor idiom in D.moveBy(int,int) to apply recursively the A.moveBy(int,int)

method on the stored instances of A (or of its subclasses). A software engi-

neer cannot obtain easily information on the structure and function of the

Composite design motif through the statements in Figure 3 (even with its

complete implementation), while this information is obtained directly from

the program model in Figure 1. The program model in Figure 1 is at a

higher level of abstraction than that in Figure 3 because the former requires

less processing to obtain a given information.

Previous work providing program models at a higher level of abstraction

than source code through static, dynamic, or semantic analyses could be

assessed using this definition of the level of abstraction for comparison and

for evaluation of their algorithms and of the resulting program models.

6.3 Comparison with Existing Theories

Our theory does not infirm Brook’s precursor theory of program compre-

hension as a succession of refined knowledge domains. Indeed, our theory

34

explains the acquisition of knowledge domains by software engineers through

vision and their uses by the Grouping and Comparison sub-processes and

by the Central Executive, from the Semantic Memory. Thus, we build on

Brooks’ theory by incorporating seamlessly the idea of knowledge domain

as part of the Semantic Memory. A detailed study of their differences and

similarities could lead to their fusion in one complete theory.

Von Mayrhauser’s theory [42] (“integrated model” based on previous the-

ories, such as Litovsky’s) is a complete theory of program comprehension,

accounting for top–down and bottom–up comprehension strategies, and pro-

gram knowledge. Our theory does not challenge von Mayrhauser’s theory be-

cause it provides explanations on the acquisition of program models through

vision before any comprehension strategies is applied. It uses ideas from von

Mayrhauser’s theory to account for the behaviour Central Executive and for

the use of past knowledge in the Grouping and Comparison sub-processes.

Also, we do not assume that the objective of comprehension is to understand

a program completely, as highlighted by von Mayrhauser. Thus, the two

theories are complementary and explain different parts of the program com-

prehension activity. They could be merged to detail the complete program

comprehension activity.

6.4 Falsifications

Attempts to falsify a theory are important for its refinement.

35

6.4.1 Theoretical Falsification

We propose three possible directions for falsifying our theory theoretically.

First, our constructivist stance could be disputed and other philosophical

stances could be used for software development and program comprehension,

which would frame these activities better.

Second, we cast our theory in the information processing paradigm, but

other paradigms could be envisioned to build program comprehension the-

ories. Although we do not believe that an ecological paradigm, such as

proposed by Gibson [15], could be used in program comprehension easily, re-

search is needed to study other paradigms to progress in the understanding

of program comprehension.

Finally, the flow of data among processes, in the definitions of the (inter-

mediary) representations and of the processes, must be detailed. We adapted

theories of vision science in one consistent whole without overloading the re-

sulting theory with detailed explanations. We favoured a more descriptive

approach to parallel the program comprehension activity and the theory. Fur-

ther studies could prove parts of (or all of) our theory wrong, thus advancing

the understanding of the program comprehension activity.

6.4.2 Experimental Falsification

Experimental falsification of our theory includes devising experiments to dis-

prove, for example, the flow of data among processes, the use of past knowl-

edge during the Grouping and Comparison sub-processes, or the usefulness

36

of these sub-processes for program comprehension. Experimental falsifica-

tion could be based on introspection: observation of one’s own conscious

experience while comprehending programs. However, cognitive psychology

rejects introspection [9] as a valid method of investigation (except through

the “think-aloud” protocol [21]). Thus, we propose to observe software en-

gineers engaged in program comprehension.

Progress in non-intrusive monitoring of human behaviour allows to mon-

itor external activities of software engineers involved in a program compre-

hension activity. We plan to use video-based eye tracking systems to as-

sess the pertinence of design pattern identification for program comprehen-

sion. Video-based eye tracking systems allow to follow software engineers’

eye movements while looking at a program model [16]. We will assess design

pattern identification, on the one hand, and the use of these patterns during

program comprehension, on the other hand, to improve current techniques

of design pattern identification and of representations of micro-architectures

similar to design motifs.

First, we will use a video-based eye tracking systems to study software

engineers’ eye movements on the constituents of program models (for exam-

ple, UML-like class diagrams) and the dwell time on individual constituent

(classes or relationships) to assess the identification of patterns. The hy-

pothesis is that novice software engineers do not identify patterns in pro-

gram models and, thus for a set of identical comprehension tasks, navigate

through the models quite differently than expert software engineers. The

37

Composite

+remove(c : Component)
+add(c : Component)

+getChild(i : int)

+operation()

Component

+operation()

Leaf

+operation()

Client

Figure 4: Original class diagram of the Composite design pattern [13, p.
163].

expected conclusion is that expert software engineers identify patterns in

program models, while novice software engineers do not, thus needing more

time to comprehend models.

Second, we will study the use of identified patterns. Given a program

model and a set of clearly identified patterns, we will compare software en-

gineers’ eye movements when performing different program comprehension

tasks, distinguishing software engineers with and without pattern knowledge.

The hypothesis is that pattern knowledge eases the program comprehension

activity by allowing expert software engineers to focus their attention (eye

movements) on constituents inside or outside of the identified patterns in-

stead of navigating among all their constituents. The expected conclusion is

that expert software engineers benefit from their knowledge of patterns by fo-

cusing their attention relatively to these patterns. This conclusion could also

be in agreement with the idea of intentionally-ignored information validated

by Rock and Gutman [32] experimentally.

38

7 Conclusion and Future Work

We proposed a theory of program comprehension to explain the differences

between expert and novice software engineers, in time and in effort, to per-

form program comprehension, in particular with patterns. This theory draws

on the extensive literature in vision science and on previous theories of pro-

gram comprehension. It is cast in the information processing paradigm and

explains known facts on program comprehension, such as the importance of

idioms, patterns, packages, composite states, and alternative graphical mod-

els, in terms of internal cognitive representations and processes. It provides a

framework for concepts of program comprehension, such as level of abstrac-

tion, and for falsification studies, both theoretically and experimentally.

This theory is a step to explain the program comprehension activity and

may be inadequate for some aspects of the activity. We humbly hope that

our theory will foster new research as stepping stone towards more accurate

explanations. Future work includes a detailed study of the internal cognitive

representations used by the processes, their forms and their characteristics.

It also includes a closer comparative study (and possibly fusion) of our theory

with von Mayrhauser’s and Brooks’. We shall also perform falsification ex-

periments using video-based eye tracking systems. Finally, other modalities

should be studied, such as hear. Other future work also includes developing

our theory to integrate negative facts found in the program comprehension

domain, i.e., facts that contradicted the hypotheses of the researchers that

39

studied them. Integrating such “negative” facts would help develop a theory

that is more robust to contradicting facts.

40

Acknowledgements

The author thanks Naouel Moha, Victor Ostromoukhov, and Duc-Loc Huynh

deeply for the fruitful discussions.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley, 1st edition, January 1974.

[2] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, and Narendra

Jussien. Instantiating and detecting design patterns: Putting bits and pieces

together. In Debra Richardson, Martin Feather, and Michael Goedicke, edi-

tors, Proceedings of the 16th Conference on Automated Software Engineering,

pages 166–173. IEEE Computer Society Press, November 2001.

[3] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature identification: A novel

approach and a case study. In Tibor Gyimóthy and Vaclav Rajlich, editors,

Proceedings of the 21st International Conference on Software Maintenance,

pages 357–366. IEEE Computer Society Press, September 2005. Best paper.

[4] Alan D. Baddeley and Graham Hitch. Working memory. In Gordon Bower,

editor, The Psychology of Learning and Motivation, volume 8, pages 47–90.

Academic Press, 1974.

[5] Barry Boehm, Hans Dieter Rombach, and Marvin V. Zelkowitz. Foundations

of Empirical Software Engineering: The Legacy of Victor R. Basili. Springer-

Verlag, 1st edition, September 2005.

41

[6] Ruven Brooks. Using a behavioral theory of program comprehension in soft-

ware engineering. In Maurice V. Wilkes, Lazlo Belady, Y. H. Su, Harry

Hayman, and Philip Enslow, editors, Proceedings of the 3rd International

Conference on Software Engineering, pages 196–201. IEEE Computer Society

Press, May 1978.

[7] James O. Coplien. Idioms and patterns as architectural literature. IEEE

Software Special Issue on Objects, Patterns, and Architectures, 14(1):36–42,

January 1997.

[8] José A. Cruz-Lemus, Marcela Genero, M. Esperanza Manso, and Mario Pi-

attini. Evaluating the effect of composite states on the understandability of

UML statechart diagrams. In Lionel Briand, editor, Proceedings of the 8th In-

ternational Conference on Model Driven Engineering Languages and Systems.

Springer-Verlag, October 2005.

[9] Knight Dunlap. The case against introspection. Psychological Review, 19:404–

413, 1912.

[10] Holger Eichelberger and Jürgen Wolff von Gudenberg. On the visualization

of Java programs. In Stephan Diehl, editor, Proceedings of the 1st inter-

national seminar on Software Visualization, pages 295–306. Springer-Verlag,

May 2002.

[11] Albert Endres and Dieter Rombach. A Handbook of Software and Systems

Engineering. Addison-Wesley, 1st edition, March 2003.

42

[12] Christiane Floyd. Human Questions in Computer Science, chapter 1, pages

15–27. Springer Verlag, March 1992.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,

1st edition, 1994.

[14] Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola. A com-

parison of the readability of graphs using node-link and matrix-based repre-

sentations. In Matt Ward and Tamara Munzner, editors, Proceedings of the

10th symposium on Information Visualisation, pages 17–24. IEEE Computer

Society Press, October 2004.

[15] James Jerome Gibson. The Perception of the Visual World. Greenwood

Publishing Group, hardcover edition, December 1950.

[16] Yann-Gaël Guéhéneuc, Stefan Monnier, and Giuliano Antoniol. Evaluating

the use of design patterns during program comprehension – experimental set-

ting. In Giuliano Antoniol and Yann-Gaël Guéhéneuc, editors, Proceedings of

the 1st ICSM workshop in Design Pattern Theory and Practice. IEEE Com-

puter Society Press, September 2005. In the pre-proceedings.

[17] Magne Jørgensen and Dag I. Sjøberg. Generalization and theory-building in

software engineering research. In Stephen Linkman, editor, Proceedings of the

8th international conference on Empirical Assessment in Software Engineer-

ing, pages 29–36. IEEE Computer Society Press, May 2004.

43

[18] Stephen M. Kosslyn. Scanning visual images: Some structural implications.

Perception and Psychophysics, 14:90–94, 1973.

[19] Roy Lachman, Janet L. Lachman, and Earl C. Butterfield. Cognitive Psy-

chology and Information Processing: An Introduction. Lawrence Erlbaum

Associates, Publishers, 1st edition, June 1979.

[20] Nicole Lévy and Francis Losavio. Analyzing and comparing architectural

styles. In Raul Monge and Marcello Visconti, editors, Proceedings of the

19th international Conference of the Chilean Computer Science Society. IEEE

Computer Society Press, November 1998.

[21] Clayton Lewis. Using the “thinking-aloud” method in cognitive interface

design. Technical Report RC9265, IBM T.J. Watson Research Center, 1982.

[22] David Marr. Representing visual information. In Allen R. Hanson and Ed-

ward M. Riseman, editors, Computer Vision Systems, pages 61–80. Academic

Press, 1978.

[23] David Marr. Vision: A Computational Investigation into the Human Repre-

sentation and Processing of Visual Information. Henry Holt & Company, 1st

edition, June 1982.

[24] Marvin Minsky. A framework for representing knowledge. Technical Report

Memo 306, MIT AI Laboratory, June 1974.

[25] Gail C. Murphy, Mik Kersten, Martin P. Robillard, and Davor Čubranís. The

emergent structure of development tasks. In Andrew P. Black, editor, Pro-

44

ceedings of the 19th European Conference on Object-Oriented Programming,

pages 33–48. Springer-Verlag, July 2005.

[26] Raquel Navarro-Prieto. The Role of Imagery in Program Comprehension:

Visual Programming Languages. PhD thesis, University of Granada, 1998.

[27] Allen Newell. You can’t play 20 questions with nature and win. In W.G.

Chase, editor, Visual Information Processing. Academic Press, 1973.

[28] Stephen E. Palmer. Vision Science: Photons to Phenomenology. The MIT

Press, 1st edition, May 1999.

[29] Stephen E. Palmer and Ruth Kimchi. The information processing approach

to cognition. pages 37–77. Lawrence Erlbaum Associates Publishers, 1986.

[30] Nancy Pennington. Stimulus structures and mental representations in ex-

pert comprehension of computer programs. Journal of Cognitive Science,

19(3):295–401, July 1987.

[31] Charles Rich and Richard C. Waters. The Programmer’s Apprentice. ACM

Press Frontier Series and Addison-Wesley, 1st edition, January 1990.

[32] Irvin Rock and Daniel Gutman. The effect of inattention on form perception.

Journal of Experimental Psychology: Human Perception and Performance,

7:275–285, 1981.

[33] Eleanor H. Rosch. On the internal structure of perceptual and semantic

categories. In Timothy E. Moore, editor, Cognitive Development and the

Acquisition of Language, pages 111–144. Academic Press, 1973.

45

[34] Spencer Rugaber. Program comprehension. Encyclopedia of Computer Sci-

ence and Technology, 35(20):341–368, 1995.

[35] Manuel Serrano, Rafael Romero, Juan Carlos Trujillo, and Mario Piat-

tini. The advisability of using packages in data warehouse design. In Fer-

nando Brito e Abreu, Coral Calero, Michele Lanza, Geert Poels, and Houari A.

Sahraoui, editors, Proceedings of the 9th workshop on Quantitative Approaches

in Object-Oriented Software Engineering, pages 118–128. CRIM, Montreal,

July 2005.

[36] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Metrics based refac-

toring. In Pedro Sousa and Jürgen Ebert, editors, Proceedings of the 5th

Conference on Software Maintenance and Reengineering, pages 30–38. IEEE

Computer Society Press, March 2001.

[37] Elliot Soloway. Learning to program = Learning to construct mechanisms

and explanations. Communications of the ACM, 29(9):850–858, September

1986.

[38] Elliot Soloway, Jeannine Pinto, Stanley Letovsky, David Littman, and Robin

Lampert. Designing documentation to compensate for delocalized plans.

Communication of the ACM, 31(11):1259–1267, November 1988.

[39] Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison

Wesley, 1st edition, May 2003.

[40] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. MIT Press, 1st edition, March 1998.

46

[41] Anne Triesman. Preattentive processing in vision. Computer Vision, Graph-

ics, and Image Processing, 31(2):156–177, August 1985.

[42] Anneliese von Mayrhauser. Program comprehension during software mainte-

nance and evolution. IEEE Computer, 28(8):44–55, August 1995.

[43] Peter Wendorff. Assessment of design patterns during software reengineering:

Lessons learned from a large commercial project. In Pedro Sousa and Jürgen

Ebert, editors, Proceedings of 5th Conference on Software Maintenance and

Reengineering, pages 77–84. IEEE Computer Society Press, March 2001.

47

