
Specification and Detection of
Business Process Antipatterns

Francis Palma1,2, Naouel Moha1, and Yann-Gaël Guéhéneuc2

1 Département d’informatique, Université du Québec à Montréal, Canada
moha.naouel@uqam.ca

2 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca

Summary. Structured business processes (SBPs) are now in enterprises
the prominent solution to software development problems through or-
chestrating Web services. By their very nature, SBPs evolve through
adding new or modifying existing functionalities. Those changes may
deteriorate the process design and introduce process antipatterns—poor
but recurring solutions that may degrade processes design quality and
hinder their maintenance and evolution. However, to date, few solutions
exist to detect such antipatterns to facilitate the maintenance and evo-
lution and improve the quality of process design. We propose SODA-BP
(Service Oriented Detection for Antipatterns in Business Processes), sup-
ported by a framework for specifying and detecting process antipatterns.
To validate SODA-BP, we specify eight antipatterns and perform their
detection on a set of randomly selected 35 SBPs form a corpus of more
than 150 collected processes from an open-source search engine. Some
of the SBPs were modified by adding, removing, or modifying process
elements to introduce noise in them. Results shows that SODA-BP has
an average detection precision of more than 75% and recall of 100%.

Key words: Business process, Antipatterns, Specification, Detection

1 Introduction

BPMN (Business Process Model and Notation) [1] is broadly used by business
analysts for modeling workflows using a graphical notation. BPEL4WS (Business
Process Execution Language for Web Services) [2] provides an executable form
for graphical process models and is now the de-facto standard to implement
structured business processes (SBPs) on top of Web services technology.

Like any other software artefacts, SBPs may evolve, i.e., changes may take
place (1) by modifying the existing tasks and–or adding new tasks or elements (2)
by modifying the flow in the processes. This evolution of SBPs may deteriorate
their designs over time and introduce poor but recurring solutions to process
design problems—process antipatterns. Process antipatterns describe common
design problems in SBPs that may hinder their maintenance and evolution and
result in poor quality of design (QoD) [3].

2 Palma et al.

Fig. 1: Deadlock Through Decision-Join Pair

The Deadlock Through Decision-Join Pair [3] as shown in Figure 1 using the
IBM WebSphere Business Modeling notation1 is a common process antipattern
where a decision node may appear before a join gateway. This structure leads
to a deadlock: the decision always triggers a single output while the join waits
for inputs on all of its branches. Alternatively, as a variant of this antipattern, if
a task produces two alternative outputs, i.e., behaves like an exclusive decision,
and the following task requires both the outputs as its input, then there is also
a deadlock. The presence of such antipatterns in SBPs degrades the QoD and
may hinder their maintenance and evolution. Therefore, for SBPs, the automatic
detection of such antipatterns is an important activity by assessing their design
(1) to ease their maintenance and evolution and (2) to improve their QoD.

In the literature, a number of process antipatterns in graphical process mod-
els [3–6] have been defined and several approaches have been proposed to analyse
and detect those antipatterns [7–13]. To date, however, the detection of antipat-
terns in structured processes still did not receive much attention. The approaches
dedicated to graphical process models from the literature cannot be exploited
for SBPs due to several conceptual differences [14]. The transition from graph-
oriented BPMN to block-structured BPEL4WS is not isomorphic, prone to se-
mantic ambiguities, differ in representing some constructs, and are implemented
with two different classes of language.

We introduced an approach in our previous work [14] for detecting process
antipatterns in SBPs. We presented seven antipatterns using if-then inference
rules and performed the detection of two antipatterns on three example pro-
cesses. In this paper, we provide a complementary approach called SODA-BP
(Service Oriented Detection for Antipatterns in Business Processes) supported
by an underlying framework, SOFA (Service Oriented Framework for Antipat-
terns) to specify and detect process antipatterns. We also define a specification
language after a thorough domain analysis of process antipatterns from the lit-
erature [3–6]. SODA-BP relies on this specification language to specify process
antipatterns in terms of metrics, process elements, and–or constructs.

To validate our approach, first, we specify process antipatterns using our
defined domain specific language. Then, we implement their detection algorithms
following the specified rules, and, finally, we apply those algorithms on several
SBPs, which, in turn, return identified antipatterns. Our detection results show
the effectiveness of SODA-BP: it can detect eight process antipatterns with an
average precision of more than 75% and with a recall of 100% in 35 processes.

1 http://www-03.ibm.com/software/products/en/modeler-advanced

Specification and Detection of Process Antipatterns 3

Thus, compared to our previous work [14], the main contributions of this
paper are: (1) the definition of a rule-based domain specific language to specify
process antipatterns, (2) the definition of ten new business process-specific met-
rics, (3) the specification of eight process antipatterns from the literature [3–6]
using the defined language, (4) the extension of the SOFA framework by adding
ten process-specific metrics from its early version [15] to allow the detection of
process antipatterns, and, finally, (5) the validation of SODA-BP for eight pro-
cess antipatterns on a set of 35 BPs randomly-selected form a corpus of more
than 150 collected processes from an open-source search engine.

The rest of the paper is organised as follows. Section 2 discuses the moti-
vation. Section 3 briefly describes the contributions from the literature on the
specification and detection of process antipatterns. Section 4 presents our ap-
proach SODA-BP, while Section 5 presents its validation along with detailed
discussions. Finally, Section 6 concludes the paper and sketches future work.

2 Motivation

A typical business-driven development starts with modeling process tasks and
later aims at their technical implementations. Thus, models are the central arte-
fact in any development project and are used to map business requirements and
information technology (IT).

Modeling phase is the primary step where business analysts visually model
business processes, i.e., using BPMN notations [1]. At this step, the models
describe the workflow of the processes but do not contain all the information
to execute them. In the next step, the execution logic or code to orchestrate
predefined services is derived from those design models, e.g., using BPEL4WS [2],
which is the standard executable language for interactions among Web services.
Antipatterns in a business process can be introduced in the two steps discussed
before: (1) due to the Business-IT gap, i.e., when desired user requirements may
not properly be achieved by the services during service development step; and (2)
due to the IT-IT gap, i.e., during the process implementation step where some
technical limitations may hinder the appropriate translation of business models
into executable and logically composed services chain in the form of tasks.

From Graph-based Business Models to Executable Processes: Business
analysts mostly rely on BPMN-models to transform user requirements into work-
flow models trying to reflect users’ business goals as well as to guide in-house
developers for the technical parts. The BPMN specification [1] provides an in-
formal and partial mapping of such graph-based models to executable concrete
processes. Therefore, developers must take caution while writing the structured
SBPs because there exist some significant conceptual differences between graph-
ical process models and executable processes. Here, among many, we list some of
conceptual differences that may lead to the introduction of antipatterns: (1) The
transition from workflow models to executable processes is not isomorphic and
prone to semantic ambiguities, which may cause the loss of design considerations;
(2) Workflow models and executable processes originate from different sources

4 Palma et al.

(i.e., users and business analysts vs. technical analysts) and are employed at
different stages of the BP management life cycle; (3) Workflow models and ex-
ecutable processes differ in representing some significant constructs and control
flows. For example, block-structured executable processes and graph-oriented
models differ in representing loops, splits, joins, conditions, and goto; and (4)
The transformation between artefacts, i.e., from workflow models to executable
processes, is mostly performed manually by the architects and developers, which
creates higher risk of introducing design anomalies.

Therefore, process antipatterns exist and will likely be introduced and must
be detected as early as possible.

3 Related Work

The literature has already a rich catalog of antipatterns defined by the process
modeling community [3–6], with some analysis and detection approaches [7–13],
most of which deal with graphical models.

For example, Onoda et al. [4] described a set of five deadlock antipatterns.
Later, Maruta et al. [9] proposed detection algorithms for those antipatterns.
With a focus on the quality of process modeling, Persson et al. [5] and Stirna
et al. [6] discussed 13 antipatterns with their possible causes and impacts and
presented them as common mistakes that the modelers should avoid. Koehler and
Vanhatalo [3] also reported 14 antipatterns in IBM WebSphere process models,
while Laue and Awad [12] proposed the first visualisation approach of process
antipatterns after detecting them in graphical models and argued that visualising
the antipatterns can ease their understanding and correction.

Gruhn and Laue [10] employed a heuristic-based approach to detect mod-
eling antipatterns. By translating different elements of graphical models into
Prolog facts and rules, the authors detected modeling errors that may hinder
the soundness and correctness of the models (e.g., deadlocks). Instead of us-
ing Prolog, Trčka et al. [11] described eight process antipatterns using temporal
logic. Finally, relying on Petri nets, Awad et al. [8] performed the detection and
correction of data-flow anomalies in graphical process models. Ouyang et al. [16],
using the Petri nets, mainly focused on the reachability and message-consuming
activity analysis.

Based on these previous works, the gaps in the literature can be summarised
as follows: (1) the approaches to detect antipatterns were studied mostly for
graphical models, while the structured business processes (SBPs) were not con-
sidered, i.e., a concrete approach for specifying and detecting process antipat-
terns in SBPs is lacking and (2) diverse runtime quality aspects, e.g., availability
or response time of involved Web services were not considered, those can be
computed by concretely executing the SBPs. We plan to perform such dynamic
analysis of SBPs as one of our future works.

Considering the conceptual differences between graph-oriented BPMN and
block-structured BPEL4WS representations discussed in [14], the detection ap-
proaches discussed above dedicated to graphical process models are not applica-
ble to the structured processes.

Specification and Detection of Process Antipatterns 5

4 The SODA-BP Approach

We consequently developed the SODA-BP approach (Service Oriented Detec-
tion for Antipatterns in Business Processes) dedicated to structured business
processes (SBPs). SODA-BP involves three steps:
Step 1: Specification of Process Antipatterns – In this step, we identify rele-
vant properties of process antipatterns that we use to define a domain-specific
language (DSL). We use this DSL to specify process antipatterns based on rules.
Step 2: Generation of Detection Algorithms – This step involves the generation of
detection algorithms from the specifications in the former step. In this paper, we
performed this step by implementing concretely the algorithms in conformance
with the rules specified in Step 1. We plan to automate this step in the future.
Step 3: Detection of Process Antipatterns – In the last step, we apply the imple-
mented detection algorithms from Step 2 on SBPs to detect and report process
antipatterns.

The next sections present the first two steps in details. The last step is
discussed in Section 5, where we report the validation of SODA-BP.

4.1 Specification of Process Antipatterns

To specify process antipatterns, we carried out a thorough domain analysis of
antipatterns for SBPs by investigating their definitions and descriptions from
the literature, namely [3–6, 11, 17]. After the domain analysis, we identified all
the quantifiable properties related to each antipattern, which include all static
properties related to process design, e.g., presence of fork, merge, gateways, in-
puts, and outputs, etc. In general, we can easily identify those static properties
from the abstract processes. Those properties play a key role and are sufficient
in defining a DSL, which allows engineers to specify antipatterns in the form of
rules, using their own experience and expertise.

The DSL provides the engineers with a high-level domain-related abstractions
to express various properties of process antipatterns. Indeed, a DSL gives more
flexibility than implementing the ad-hoc detection algorithms by focusing on
what to detect and not how [18]. Other rule-based declarative languages exist,
like the Object Constraint Language (OCL) [19] that describes rules to apply
on Unified Modeling Language (UML) models However, these languages do not
suit our purpose because we specify process antipatterns with a higher level of
abstraction with discrete domain expressiveness.

We define the syntax of our DSL using a Backus-Naur Form (BNF) grammar.
We apply a rule-based technique for specifying process antipatterns, i.e., each
rule card combines a set of rules. Figure 2 presents the grammar of our DSL. A
rule card denoted with RULE CARD includes a name and a rule body (see Figure
2, line 1). The content of the rule card is identified as content rule (line 3), and
may enclose a metric, a process fragment, or even a reference to another RULE -

CARD (lines 3 to 4). A process fragment is the smallest part of a process model
with the arrangement of at least two process elements that modelers place while
modeling the processes [20]. A process fragment (see lines 5 to 7) can be a binary

6 Palma et al.

1 rule card ::= RULE CARD rule cardName {(rule)+};
2 rule ::= RULE ruleName {content rule};
3 content rule ::= metric | process fragment
4 | RULE CARD rule cardName

5 process fragment ::= binary rel | binary rel relType element
6 | element relType binary rel | ruleType operator binary rel
7 | element relType binary rel relType element
8 ruleType ::= ruleName | rule cardName

9 metric ::= id metric comparator num value
10 id metric ::= NICF | NIDF | NII | NIO | NOF | NOM | NUI | NUO | NIU | NIP
11 comparator ::= < | ≤ | = | 6= | ≥ | >

12 binary rel ::= element relType element | element operator element
13 | ruleType operator ruleType | element operator ruleType
14 | ruleType operator element

15 operator ::= AND | OR | NOT
16 relType ::= S:PRECEDE | W:PRECEDE | BACKCONN
17 element ::= PROCESS | FORK | MERGE | JOIN | TASK | S NODE | X DECISION | I DECISION

18 rule cardName, ruleName ∈ string
19 num value ∈ double

Fig. 2: BNF grammar of the DSL of SODA-BP (we show only BP-specific metrics).

relation (binary rel), i.e., a simple relation between two elements (line 12) or can
describe more complex relations by combining different binary rel with other
elements through a relation type, (i.e., relType). A binary rel may also connect
two rules or elements using an operator (line 13). The operator set includes
common logical operators like AND, OR, NOT (line 15). The metric can contain
an id metric compared with a numeric value (line 9). The comparator includes
the common mathematical comparators (line 11). The DSL has three typical
relation types (relType), e.g., a strong or immediate precedence (S:PRECEDE), a
weak precedence (W:PRECEDE), and a back connection (BACKCONN) (line 16). In
W:PRECEDE, an element may not appear right after another element. In contrast,
for a S:PRECEDE, the precedence is with the immediate element. The element
set includes most common modeling elements from a task (TASK) to different
types of decision gateways, such as X DECISION or I DECISION (line 17). Other
elements are FORK, MERGE, JOIN, the stop node (S NODE), etc.

Our metric suite (line 10) currently includes 23 static and dynamic metrics.
The ten newly defined process-specific static metrics are: number of identical
control-flows (NICF), number of identical data-flows (NIDF), number of identical
inputs (NII), number of identical outputs (NIO), number of forks (NOF), number
of merges (NOM), number of unused inputs (NUI), number of unused outputs
(NUO), number of inputs undeclared (NIU), and number of inputs unproduced
(NIP). New metrics can be added in the DSL to specify new antipatterns.

Figure 3 shows the rule card for Deadlock Through Decision-Join Pair [3]
antipattern, introduced in Section 1. When an exclusive decision appears before
a join gateway (or a task), as shown in the rule card: X DECISION S:PRECEDE

(JOIN OR TASK), i.e., an exclusive decision immediately precedes a join (or a
task). Then, this structure in the process may lead to a deadlock because the
exclusive decision always triggers a single output, whereas the immediate join or

Specification and Detection of Process Antipatterns 7

RULE CARD Deadlock {
RULE Deadlock {X DECISION S:PRECEDE (JOIN OR
TASK)};
};

Fig. 3: The Deadlock Through Decision-Join Pair process antipattern.

task in the process requires input on all of its branches. We specify seven other
process antipatterns as shown in Figure 5.

4.2 Generation of Detection Algorithms

The second step involves the implementation of the detection algorithms from the
rule cards specified for each process antipattern. For each process antipattern, we
implement all the related metrics following its specification and implement the
detection algorithm in Java, which can directly be applied on any BP. However,
in the future, we want to automate this algorithm generation process following
a similar technique presented in [15].

4.3 Detection of Process Antipatterns

To ease the detection step, we preprocess the SBPs and generate process struc-
ture trees (PSTs). Such parsing of processes also helps their comprehension and
allows finding reusable sub-processes and applying rules on process trees [21].
For our purpose, we automatically transform the SBPs into more abstract and
simplified PSTs after eliminating inessential process elements and attributes.

Fig. 4: An example process structure tee (PST) of a business process (each node
is preceded by a integer representing the number of instances of that node and
succeeded by another representing number of attributes of a node).

SBPs are complex entities and their sizes cause their structural complexity
to grow further. However, every implementation details are not required for our
analysis since we are interested in the static analysis of SBPs. In fact, we do
not lose any essential process information specific to our rules-based approach,

8 Palma et al.

i.e., all the tasks, input/output data, control-flow information, and so on (see
Figure 4(b)). Subsequently, we automatically generate a final process tree that is
semantically equivalent to the previous tree and are mappable to our language
(see Figure 4(c)). Engineers can use the latter version of the process tree for
further analysis, e.g., for implementing rules to apply on business processes.

Underlying Framework: The SOFA (Service Oriented Framework for An-
tipatterns) framework was originally presented elsewhere [15] supported detect-
ing antipatterns in service-based systems. We further extend the framework to
support the detection of process antipatterns. SOFA itself is developed using
the SCA standards [22] and is composed of several components with distinct
functional supports. The SOFA framework includes several components: (1) the
Rule Specification component for specifying rules, (2) the Algorithm Generation
component for automatically generating detection algorithms based on speci-
fied rules, and (3) the Detection component for applying generated detection
algorithms on the SBPs.

We added a new Process Handler component to SOFA to allow the de-
tection of process antipatterns. The different functionalities performed by the
Process Handler component are: (1) it parses a given process and filter unnec-
essary information for generating a PST, (2) it then maps the abstract process
model to our rule-based language, and (3) uses the Detection component to ap-
ply the detection algorithms on the process trees, which reports the detected
process antipatterns.

We extended the SOFA framework from its early version by adding ten new
business process-specific metrics as described in Section 4.1. Combining those
new metrics and different process elements, we specify eight business process-
specific antipatterns. We list them in Table 1 and show their specifications in
Figure 5. The addition of an antipattern requires the implementation of each of
its metric if it is not already available following its specification. A metric can
be reused for other antipatterns if they share that metric in their specifications.

5 Validation

Through our experiment, we aim to show (1) the generality and extensibility
of our DSL and SOFA framework and (2) the accuracy and performance of the
detection algorithms in terms of precision and recall.

Assumptions: We define three assumptions to evaluate in our experiment:
A1. Generality: The DSL allows the specification of different process antipat-
terns. This assumption supports the applicability of the SODA-BP, which relies
on metric-based rule cards for specifying process antipatterns.
A2. Accuracy: Antipattern detection algorithms have at least a precision of 75%,
and a recall of 100%. Assuming that the antipatterns have a negative impact
on the design, we target a recall of 100% for antipatterns, which ensures that
we do not miss any existing antipatterns. The precision concerns the detection

Specification and Detection of Process Antipatterns 9

accuracy of our specified rules and the corresponding detection algorithms. We
also measure the specificity of our specified rules.
A3. Extensibility: Our DSL and SOFA framework are extensible by adding new
metrics and process antipatterns. Through this assumption, we show that new
antipatterns can be specified by adding new or combining existing metrics, pro-
cess elements, and different operators and comparators, and later, those antipat-
terns can be detected using the extended SOFA framework.

Table 1: Description of the eight process antipatterns.
Cyclic Deadlock through Join-Fork and Join-Decision Pair: A backward connection exists from an
exclusive decision (or a fork) to a join. The join waits for inputs on all of its branches. However,
one of its incoming branches can only receive the input after the join has been executed in the
first cycle, because its input is initiated from an exclusive decision, later in the process. This cyclic
dependency between the join and the decision (or fork), where the join must be executed before
the decision (or fork) may cause a cyclic deadlock [3].

Cyclic Lack of Synchronisation through Merge-Fork Pair: Occurs in the cyclic structures when
backward connections appear in branches that are executed in parallel, which are not synchronised
by a join before the backward connection is added to the process. In such case, each of the backward
connections results from the same fork and ends in a merge located earlier in the process. This
antipattern may result in an infinite iterations of the process [3].

Dangling Inputs and Outputs: The inputs and outputs of an activity or gateway remain unconnected
or unused. Dangling outputs are produced by a task or sub-process, but never used anywhere in the
process. In contrast, dangling inputs might cause deadlocks if the data input of– a gateway or an
activity is never provided, which is required by the process [3].

Deadlock Through Decision-Join Pair: The decision node appears before a join gateway. This struc-
ture leads to a deadlock : the decision triggers a single output, while the join waits for inputs on
all of its branches, but only one input is supplied. Alternatively, if a task produces two alternative
outputs, i.e., behaves like an exclusive decision, and the following task requires both the outputs as
its input, then there is also a deadlock [3].

Lack of Synchronisation through Fork-Merge Pair: The fork-merge pair appears. The fork triggers
output on all of its outgoing branches, while the merge always wait for input on only one of its
incoming connections. Later in the process, another final merge may cause synchronisation problem
because the latter merge requires all the inputs, which are not available yet [3].

Missing Data: Certain data elements are required but were not created or have been deleted. This
may cause deadlock for a certain activity, or even for the whole process depending on the execution
context and the design of the process [11].

Multiple Connections between Activities: The redundant control-flow and–or data-flow connections
exist between tasks. This antipattern has two variants: (i) multiple control-flows between tasks that
increase the process structural complexity, and (ii) multiple data-flow connections of the same type
from a task [3].

Passing Shared Data along Several Branches: Shared inputs or outputs are duplicated along several
branches. Typically, the duplication of outputs or inputs of a task hinders the reusability of a process
fragment. The best practice is to use a fork for distributing single input among the branches and a
join for aggregating unique outputs into a single flow [3].

Subjects: We specify eight process antipatterns by applying our SODA-BP
approach. Table 1 describes those antipatterns collected from the literature [3–
6, 11, 17]. We selected those antipatterns because they were described in the
literature as being most common and frequent. In Table 1, we mark the relevant
properties related to the specification for each antipattern in bold-italics. We
show the specifications and graphical representations of those antipatterns in
Figure 5 using the IBM WebSphere notation1 to ease their understanding.

Objects: Real structured business processes (SBPs) are often not freely avail-
able for validation purposes. We used the ohloh.net portal as our source of SBPs

10 Palma et al.

because it provides a collection of publicly-available processes. That portal fa-
cilitates searching business processes along with their underlying Web services.
We performed the experiment on a set of 35 SBPs randomly-selected form a
corpus of more than 150 collected processes from ohloh.net. The complete set
of analysed SBPs is available online at sofa.uqam.ca/soda-bp/, where we also
detail their modifications.

RULE CARD CyclicDeadlock {
RULE CyclicDeadlock {JOIN:i W:PRECEDE
(X DECISION OR FORK) BACKCONN JOIN:i};
};

RULE CARD CyclicLackOfSynchronisation {
RULE CyclicLackOfSynchronisation
{MERGE:i W:PRECEDE (FORK OR I DECISION)
BACKCONN MERGE:i};
};
RULE CARD DanglingInputs {
RULE DanglingInputs {NUI = 0};
};
RULE CARD DanglingOutputs {
RULE DanglingOutputs {NUO = 0};
};
RULE CARD LackOfSynchronisation {
RULE LackOfSynchronisation {(MultiForkAndMerge AND
MergePrecedence) W:PRECEDE MERGE:i};
RULE MultiForkAndMerge {MultiFork AND MultiMerge};
RULE MultiFork {NOF ≥ 1};
RULE MultiMerge {NOM ≥ 2};
RULE MergePrecedence {FORK W:PRECEDE MERGE:j};
};
RULE CARD MissingData {
RULE MissingData {RequiredInputData AND DanglingInput};
RULE RequiredInputData {UndeclaredData AND UnproducedData};
RULE UndeclaredData {NIU ≥ 1};
RULE UnproducedData {NIP ≥ 1};
RULE DanglingInput {RULE CARD DanglingInputs};
};
RULE CARD MultipleConnection {
RULE MultipleConnection
{MultiControlFlow OR MultiDataFlow};
RULE MultiControlFlow {NICF > 1};
RULE MultiDataFlow {NIDF > 1};
};
RULE CARD PassingSharedData {
RULE PassingSharedData {MultiInput OR MultiOutput};
RULE MultiInput {NII > 1};
RULE MultiOutput {NIO > 1};
};

Fig. 5: Rule cards for different process antipatterns.

Process: We specified the rule cards for eight process antipatterns, implemented
their detection algorithms, and applied those algorithms on the 35 SBPs to
detect any existing antipatterns in two steps. First, we introduced some noise
within the selected SBPs by adding, removing, or changing process elements
to thoroughly validate the detection. The introduction of noise was performed
by two Master students who were not the part of our experiment by adding or
removing variables and parallel or sequence of tasks, and so on. However, they

Specification and Detection of Process Antipatterns 11

made sure such introduction of noise did not affect the stability of the original
processes. Then, we performed detection on the set of 35 SBPs.

We performed the validation of the detection results by analysing the process
elements manually (1) to validate that those process elements are true positives
and (2) to identify false negatives, i.e., occurrences of antipatterns missed in the
SBPs. We used the measures of precision and recall to show our detection accu-
racy. Precision concerns the ratio between the true detected antipatterns and all
detected antipatterns. Recall is the ratio between the true detected antipatterns
and all existing true antipatterns. Two students performed a thorough and inde-
pendent analysis after we provided them with the SBPs and a short description
of each process antipattern. The manual validation of the processes was a labo-
rious task that demanded 30 minutes to an hour per process depending on the
size of the process, for each antipattern.

5.1 Results

Table 2 shows the detailed detection results of the eight process antipatterns. We
found six antipatterns, namely Lack of Synchronisation, Passing Shared Data,
and Dangling Inputs/Outputs, and so on, in 16 processes. In Table 2, we report
the antipatterns in the first column, followed by the list of processes having these
antipatterns in the second. In the third column, we present the metric values and
the different process elements involved in the detected antipatterns in column 4.
Finally, the last two columns report the precision (P) and recall (R). Detailed
detection results are also available online at sofa.uqam.ca/soda-bp/.

5.2 Discussions of the Results

Figure 6(a) graphically shows the detection of the Lack of Synchronisation an-
tipattern in the original version of the auction process. The auction process involves
two forks (NOF=2) and two merges (NOM=2), with the first fork receiving values
from the users through the provide task simultaneously and storing them into
two different variables, i.e., buyerData and sellerData. After the two process
threads merge, there is another parallel invocation of answer task again with
two different parameters, i.e., sellerAnswerData and buyerAnswerData. A syn-
chronisation problem occurs in the first place where the process may not receive
values from the provide task at the same time and the merge may proceed even
with a single response. A good practice to avoid this synchronisation problem
is to use a join gateway instead, considering the operational difference between
the merge and join gateway.

We detected Multiple Connections in the noisy version of loan approval process
(see Figure 6(b) and Table 2) because it contains more than one control-flows
(NICF>1). In Figure 6(b), the same “receive-to-assess” control-flow link was de-
fined with the duplicated transition conditions for the request receiving task,
hence, NICF=2 for “receive-to-assess”. Manual validation confirmed this antipat-
tern detection and thus we had a precision and recall of 100%.

12 Palma et al.

Fig. 6: The detection of Lack of Synchronisation in auction process and nrbc

process; and the detection of Multiple Connections in loan approval process.

The occurrence of Lack of Synchronisation was also detected in the origi-
nal versions of the BuyBook, LoanFlowPlus, and nrbc process. The nrbc process
(see Figure 6(c)) has four forks (NOF=4) and seven merges (NOM=7) within its
full process scope. A synchronisation problem may occur in the beginning of
the process flow with the invocation of comeToAccidentPlace task simultane-
ously with three input variables cometoaccidentplaceDocRequest, cometoac-
cidentplaceFireRequest, and cometoaccidentplaceFPRequest. After those
three threads merge, later in the process, another concurrent execution of two

Specification and Detection of Process Antipatterns 13

Table 2: Details on the eight antipattern detection results for the 35 processes.

Antipatterns Processes Metrics Elements Involved P R

Cyclic Deadlock none detected N/A N/A – –

Cyclic Lack Of
none detected N/A N/A – –

Synchronisation
Dangling Loan NUI=0 “creditRatingInput123” [3/3] [3/3]
Inputs purchaseOrder NUI=0 “shippingRequest1” 100% 100%

SalesforceFlow NUI=0 “output1”

AbsenceRequest NUO=0 “createTaskResponse1”

Dangling FlightBooking NUO=0 “Output2” [4/4] [4/4]
Outputs Loan NUO=0 “creditRatingOutput123” 100% 100%

SalesforceFlow NUO=0 “Output1”

Deadlock none detected N/A N/A – –

auction NOF=2,NOM=2 MergePrecedence=true

BuyBook NOF=1,NOM=3 MergePrecedence=true

LoanFlowPlus NOF=1,NOM=2 MergePrecedence=true

Lack of nrbc NOF=4,NOM=7 MergePrecedence=true [8/8] [8/8]
Synchronisation Travel NOF=1,NOM=2 MergePrecedence=true 100% 100%

AbsenceRequest NOF=1,NOM=3 MergePrecedence=true

GovernanceBPEL NOF=1,NOM=3 MergePrecedence=true

VacationRequest NOF=1,NOM=2 MergePrecedence=true

ClaimsApproval NIU=1,NIP=1,NUI=0 “dummyVar”

Correlation NIU=1,NIP=1,NUI=0
“CorrelationProcess-

Missing Data OperationIn” [5/5] [5/5]
Loan NIU=1,NIP=1,NUI=0 “creditRatingInput123” 100% 100%
purchaseOrder NIU=1,NIP=1,NUI=0 “shippingRequest1”

SalesforceFlow NIU=1,NIP=1,NUI=0 “output1”

Multiple loan approval NICF=2 “receive-to-assess” [2/2] [2/2]
Connections

purchaseOrder NICF=2
“ship-to-invoice” 100% 100%

“ship-to-scheduling”

BuyBook NII=2 “BookRequest”

Passing LoanFlowPlus NII=2 “loanApplication” [3/5] [3/3]
Shared Data Travel NII=2 “FlightDetails” 60% 100%

DILoanService NII=2 “output”

GovernanceBPEL NII=2 “applicationDeployerPL1”

Average 93.3% 100%

control-flows, i.e., Sequence and Doctors follow a final merge. The first merge,
i.e., merge1, may trigger even without the three invocations of the comeToAcci-

dentPlace task having finished. If that happens, the latter concurrent execution
of Sequence and Doctors will not wait and proceed with the consequent execu-
tion, which may lead to a lack of synchronisation at the final merge, i.e., merge7.
The manual analysis confirmed the detection and we thus have a precision and
recall of 100% for the Lack of Synchronisation antipattern.

The Dangling Inputs, Dangling Outputs, and Missing Data antipatterns were
detected in five modified processes. We also detected the Lack of Synchroni-
sation antipattern in three other modified SBPs, namely, AbsenceRequest, Gov-

ernanceBPEL, and VacationRequest. However, we did not detect any occurrences
of three antipatterns within the selected SBPs, namely Cyclic Deadlock, Cyclic
Lack of Synchronisation, and Deadlock.

5.3 Discussions of the Assumptions

Following our detection results, we assess all the three assumptions.

14 Palma et al.

A1. Generality: We specified eight process antipatterns (see Table 1) using
the rule cards (see Figure 5) from the literature [3–6,11,17]. We defined simpler
process antipatterns with few rules, such as Dangling Inputs and Outputs and
Passing Shared Data but also more complex antipatterns with rules combining
metrics and process elements, such as Lack of Synchronisation. Also, we spec-
ified rule cards in combination with other rule cards, such as the specification
of Missing Data antipattern, which includes the Dangling Inputs antipattern.
Similarly, we can specify other antipatterns defined in the literature. Thus, we
can support our first assumption regarding the generality of our DSL.
A2. Accuracy: As shown in Table 2, we obtained an average recall of 100% and
an average precision of 93.3% with the set of 35 SBPs. We also have an average
specificity, i.e., the proportion of true negatives identified correctly, of 99.02%.
Therefore, with an average precision of 93.3%, recall of 100%, and specificity of
99.02%, we positively support our second assumption on the detection accuracy.
A3. Extensibility: We claim that our DSL and SOFA framework are extensible
for new antipatterns. In this paper, with ten new process-specific metrics, we
specified and detected eight process-specific antipatterns using our framework. In
our previous work [15], we specified ten SCA-specific antipatterns using the rule-
based language and detected them in SCA systems using SOFA. The designed
language is flexible enough for integrating new metrics in the DSL. SOFA also
supports the addition of new antipatterns through the implementation of new
metrics. With this extensibility feature of our DSL and the SOFA framework we
support our third assumption.

5.4 Comparison with the State of the Art Approaches

We compare here SODA-BP with 11 state-of-the-art approaches shown in Table
3. Most of the approaches do not support automatic detection of antipatterns,
but the ones that do, focus only on BMPN models and use Petri nets. For
example, Maruta et al. [9] has an accuracy of 100% with five antipatterns, but
the reported results are only for three process models. Gruhn et al. [10] and
Laue et al. [12] have accuracy close to SODA-BP with only six antipatterns after
analysing more than 100 models. In contrast, SODA-BP analyses and performs
detection for eight antipatterns on 35 processes with the accuracy of more than
90%. Overall, considering the trade-off between the number of BP antipatterns
specified and detected and the number of processes analysed, SODA-BP has a
good detection accuracy of more than 90%.

Specification and Detection of Process Antipatterns 15

Table 3: Comparison of SODA-BP with the state-of-the-art approaches.
Perform Number of

Contributions Focus Groups Automatic Patterns / Accuracy
Detection? Antipatterns

Awad et al. [8] Data-flow anomalies × 5 -
Gruhn et al. [10] BPMN soundness properties X 6 98.31%
Koehler et al. [3] BPMN modeling errors × 18 -
Laue et al. [12] BPMN modeling errors X 6 95.41%
Lei et al. [13] Data access exceptions in BPEL × 2 -
Maruta et al. [9] Deadlock patterns in BPs X 5 100%
Onoda et al. [4] Deadlock patterns in BPs × 5 -
Ouyang et al. [16] Reachability analysis × 3 -
Persson et al. [5] Enterprise modeling practices × 13 -
Stirna et al. [6] Enterprise modeling practices × 9 -
Trčka et al. [11] Data-flow errors in models × 9 -
SODA-BP Process antipatterns in BPEL4WS X 8 93.3%

6 Conclusion and Future Work

Structure business processes (SBPs) are now the prominent means to build en-
terprise solutions by orchestrating Web services. The presence of process an-
tipatterns in SBPs may hinder maintenance and degrade their quality of design.
Therefore, the detection of antipatterns is important to maintain and improve
the process quality.

In this paper, we presented the SODA-BP approach to specify and detect
process antipatterns. We specified eight process antipatterns from the literature
to support their detection. Then, we applied SODA-BP on a set of 35 SBPs
randomly-selected form a corpus of more than 150 collected processes from an
open-source search engine, some of which were modified by adding, removing, or
modifying process elements to introduce noise within the models. Results show
that SODA-BP detects process antipatterns with an average precision of more
than 75% and the recall of 100%.

In this paper, we analysed the SBPs statically and currently we are perform-
ing dynamic analyses by executing them to collect their runtime properties. We
plan also to replicate our evaluation of SODA-BP on real SBPs from our indus-
trial partners. Finally, we intend to focus on the automatic correction of process
antipatterns in the future.

Acknowledgment This work is supported by the NSERC grant, a Canada
Research Chair, and a FRQNT grant.

References

1. OMG: (Object Management Group): Business Process Modeling Notation
(BPMN) version 1.2. Technical report, www.bpmn.org (January 2009)

2. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report (2007)

3. Koehler, J., Vanhatalo, J.: Process Anti-Patterns: How to Avoid the Common
Traps of Business Process Modeling. IBM WebSphere Developer Technical Journal
(February 2007)

16 Palma et al.

4. Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.: Definition of Deadlock Patterns
for Business Processes Workflow Models, IEEE Computer Society (1999)

5. Persson, A., Stirna, J.: How to Transfer a Knowledge Management Approach to an
Organization - A Set of Patterns and Anti-patterns. PAKM ’06, Springer-Verlag
(2006) 243–252

6. Stirna, J., Persson, A.: Anti-patterns as a Means of Focusing on Critical Quality
Aspects in Enterprise Modeling. In: Enterprise, Business-Process and Information
Systems Modeling. Volume 29. Springer Berlin Heidelberg (2009) 407–418

7. Dijkman, R., Dumas, M., nuelos, L.G.B., Käärik, R.: Aligning Business Process
Models. In: IEEE International Enterprise Distributed Object Computing Confer-
ence. (September 2009) 45–53

8. Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing Data Anomalies
in Process Models. In: BPM 2009 Workshops. Volume 43., Berlin, Heidelberg,
Springer-Verlag (2010) 5–16

9. Maruta, T., Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.: A Deadlock Detec-
tion Algorithm for Business Processes Workflow Models. In: IEEE International
Conference on Systems, Man, and Cybernetics, Vol 1. (October 1998)

10. Gruhn, V., Laue, R.: A Heuristic Method for Detecting Problems in Business
Process Models. BPM 16 (September 2010) 806–821

11. Trčka, N., van der Aalst, W.M., Sidorova, N.: Data-Flow Anti-patterns: Discovering
Data-Flow Errors in Workflows. CAMISE ’09, Berlin, Heidelberg, Springer-Verlag
(2009) 425–439

12. Laue, R., Awad, A.: Visualization of Business Process Modeling Anti Patterns. In:
Proceedings of the 1st International Workshop on Visual Formalisms for Patterns.
Volume 25. (2010)

13. Lei, K., Zhang, P.P., Lang, B.: Data Access Exception Detecting of WS-BPEL
Process Based on Workflow Nets. In: International Conference on Computational
Intelligence and Software Engineering (CiSE), 2010. (2010) 1–6

14. Palma, F., Moha, N., Guéhéneuc, Y.G.: Detection of Process Antipatterns: A
BPEL Perspective. In Mili, H., Charif, Y., Liu, E., eds.: Proceedings of the 1st
Methodologies for Robustness Injectioninto Business Processes (MRI-BP), IEEE
Computer Society (September 2013) 173–177

15. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.G., Baudry, B.,
Jézéquel, J.M.: Specification and Detection of SOA Antipatterns. In Liu, C.,
Ludwig, H., Toumani, F., eds.: Proceedings of the 10th International Conference
on Service Oriented Computing (ICSOC), Springer (November 2012) Runner-up
best paper. 15 pages.

16. Ouyang, C., Verbeek, E., van der Aalst, W.M., Breutel, S., Dumas, M., ter Hof-
stede, A.H.: WofBPEL: A Tool for Automated Analysis of BPEL Processes. In
Benatallah, B., Casati, F., Traverso, P., eds.: International Conference on Service-
Oriented Computing. Volume 3826 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2005) 484–489

17. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1) (July 2003) 5–51

18. Consel, C., Marlet, R.: Architecturing Software Using A Methodology for Language
Development. Lecture Notes in Computer Science 1490 (September 1998) 170–194

19. Group, O.M.: Object Constraint Language (OCL) (February 2014)
20. Ma, Z., Leymann, F.: A Lifecycle Model for Using Process Fragment in Business

Process Modeling. In: Proceedings of Business Process Modeling, Development,
and Support. (2008)

21. Vanhatalo, J., Vlzer, H., Koehler, J.: The Refined Process Structure Tree. Data &
Knowledge Engineering 68(9) (2009) 793–818 Sixth International Conference on
Business Process Management (BPM 2008) Five selected and extended papers.

22. OASIS: SCA Service Component Architecture - Assembly Model Specification.
Open SOA, www.osoa.org. (March 2007) Version 1.00.

