
An Exploratory Study of Identifier Renamings

Laleh M. Eshkevari
École Polytechnique de Montréal,

Canada

laleh.mousavi-eshkevari@polymtl.ca

Venera Arnaoudova
École Polytechnique de Montréal,

Canada

venera.arnaoudova@polymtl.ca

Massimiliano Di Penta
University of Sannio, Italy

dipenta@unisannio.it

Rocco Oliveto
University of Molise, Italy

rocco.oliveto@unimol.it

Yann-Gaël Guéhéneuc
École Polytechnique de Montréal,

Canada

yann-gael.gueheneuc@polymtl.ca

Giuliano Antoniol
École Polytechnique de Montréal,

Canada

antoniol@ieee.org

ABSTRACT
Identifiers play an important role in source code understand-
ability, maintainability, and fault-proneness. This paper re-
ports a study of identifier renamings in software systems,
studying how terms (identifier atomic components) change
in source code identifiers. Specifically, the paper (i) pro-
poses a term renaming taxonomy, (ii) presents an approxi-
mate lightweight code analysis approach to detect and clas-
sify term renamings automatically into the taxonomy di-
mensions, and (iii) reports an exploratory study of term re-
namings in two open source projects, Eclipse-JDT and Tom-
cat. We thus report evidence that not only synonyms are
involved in renaming but also (in a small fraction) more un-
expected changes occur: surprisingly, we detected hypernym
(a more abstract term, e.g., size vs. length) and hyponym
(a more concrete term, e.g., restriction vs. rule) renamings,
and antonym renamings (a term replaced with one having
the opposite meaning, e.g., closing vs. opening). Despite be-
ing only a fraction of all renamings, synonym, hyponym, hy-
pernym, and antonym renamings may hint to some program
understanding issues and, thus, could be used in a renaming-
recommendation system to improve code quality.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Product Metrics

General Terms
Languages, Human Factors, Experimentation

Keywords
Identifier renaming, software evolution, mining repositories.

1. INTRODUCTION
Identifiers (along with comments) are often the sole re-

liable source of documentation to support everyday devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’11, May 21-22 2011, Honolulu, Hawaii
Copyright 2011 ACM ...$10.00.

opers’ activities. Other forms of documentation are often
scarce (e.g., design documents) or outdated/unappropriate
(e.g., user manuals). In the following, for the sake of sim-
plicity, we refer to the names of any programming entities,
i.e., variables, classes/interfaces, attributes, methods, con-
structors, and formal parameters, as identifiers.

Identifiers reflect the developers’ domain model, experi-
ence, culture, and personal taste. They capture the devel-
opers’ understanding as well as solution space model; they
are intended to convey key information to the reader sup-
porting the program understanding activity. Identifiers are
often composed of elementary terms (English words, abbre-
viations, jargon terms, acronyms) as in getPacketCRC, and
should be consistent and concise [6, 12].

As the source code evolves, identifiers evolve too [1] and
previous work, such as [12, 18], investigated the evolution
of the structure of identifiers, identifier renamings, and the
presence and stability of domain terms [10]. In particular,
identifiers can be renamed while preserving the compilabil-
ity of the system (“rename” refactoring) for various reasons,
including improving consistency, conciseness, code readabil-
ity, and making identifiers follow more closely naming con-
ventions. A modification may consist in adding/removing
terms: e.g., the term role1 is added to the identifier list, thus
the identifier becomes roleList. Also, a term can be changed
into a synonym, e.g., run becomes execute. In some cases an
identifier, or one of the identifier terms, may be changed into
one of its hyponym (i.e., a more specific term, e.g., position
becomes line), hypernym (i.e., a more generic term, e.g.,
statement becomes declarations), or even into its antonym
(contrary, e.g., down becomes up).

All the above changes point to some kind of domain or
program understanding issue. Although the real reasons for
renaming identifiers are privy to developers’ intent and fall
outside the scope of this paper; we study identifier renam-
ings to identify the types of renamings, their frequencies and
locations. We concur with [5, 6] that consistent and concise
identifiers help in program understanding. Indeed, lacking
of consistent and concise identifiers may ultimately lead to
program comprehension problems and increase fault prone-
ness. Synonyms and homonyms may highlight identifiers
lacking consistency and conciseness [12]. Renamings involv-
ing synonyms, hypernyms, hyponyms, and antonyms may
highlight quality issues [12], possible understanding prob-
lems, and point to change- and defect-prone entities.

1All examples are taken from Eclipse-JDT and Tomcat.

1

This paper presents a preliminary investigation of identi-
fier renamings, aiming at characterizing and quantifying re-
namings in two real world systems, Eclipse and Tomcat. We
propose a first taxonomy of renamings, along four orthogo-
nal dimensions: (1) kind of entity whose names changed,
e.g., a method or a local variable; (2) kind of semantic
change, e.g., antonymy; (3) string distance, i.e., textual sim-
ilarity between the terms (before and after renaming); and,
(4) grammatical change, e.g., noun to verb.

The taxonomy is implemented into an approximate light-
weight, scalable, automated approach to identify and cate-
gorize renamings. To identify possible renamings, for each
CVS/SVN change set, we analyze the system before and af-
ter the change, by comparing subsequent file revisions using
diff, and by mapping variable declarations (extracted from
a parse tree) within source code files. This analysis phase is
linear in the size of the system and outputs pairs of possibly
renamed identifiers. To increase the accuracy and minimize
false positives, we further filter out the identified renamings
where the string distance (Levensthein distance) between
the two variables is high and their type is different. Identi-
fier pairs are then split into their respective terms, which are
in turn mapped with one another (before and after renam-
ing). Renamed term pairs are finally automatically classified
according to the proposed taxonomy using an approach re-
lying on the WordNet [20] upper ontology.

The paper also reports an empirical study investigating
renamings taking place over the lives of two widely-used
open-source systems: Eclipse-JDT and Tomcat. We col-
lected about 50,000 file revisions for each systems, for a time
interval of six years and eight years respectively. After de-
tecting renamings, we performed a thorough manual valida-
tion of all the renamings in Tomcat and of a subset of those
in Eclipse-JDT, due to the prohibitively-large number of re-
namings (4,500) in Eclipse-JDT. We report the frequencies
and examples of renamings for the various dimensions of our
taxonomy. We encountered not only renamings intro syn-
onyms but also into hypernyms, hyponyms, and antonyms,
justifying the conjecture that renamings may indeed reflect
changes to the developers’ domain model.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our taxonomy while Section 3 details our re-
naming identification approach. Section 4 presents the two
case studies and Section 5 reports their results while Section
6 discusses the threats to their validity. Section 7 describes
related work. Finally, Section 8 concludes and outlines di-
rections for future work.

2. TERM RENAMING TAXONOMY
This section describes our proposed taxonomy for term

renamings. Since identifiers are composed of terms, they
are renamed by adding/removing terms or changing a term
into another term. Thus, we can see an identifier renam-
ing as a transformation Tr, which itself is a composition
of transformation functions tri, where each tri operates on
terms and maps a term in the original identifier (id1) to a
term in the renamed identifier (id2). After having identifier
and classified term renamings as described in the following,
we would need a mapping from the term-renaming space to
the identifier-renaming space. The identifier-renaming space
may have only one dimension, i.e., a label merging all its
composing terms renamings, or many different dimensions.
In this paper, we study term renamings and we leave the

combination of term renamings as part of our future work.
We define the taxonomy of term renamings along four or-

thogonal dimensions, where each dimension characterizes a
renaming from a different aspect: D1 from the programming
language (in this case object-oriented); D2 from sense rela-
tions, as defined in linguistics; D3 from string distance, as
adopted by researchers in the field of identifier evolution;
and, D4 from grammatical aspects. Each dimension has a
finite set of values described in the following subsections.

2.1 D1: Entity
Renaming an identifier necessarily happens or propagates

to the identifier declaration so that the system still com-
piles. In the case of object-oriented programming, the en-
tity whose identifier is renamed can be the name of a class,
an interface, a field, a method, a constructor, a formal pa-
rameter, or a local variable. All of the above represent the
values of dimension D1. We distinguish the entities being re-
named because their renamings have different impact on the
source code and, consequently, on program comprehension:
while renaming a local variable may help ease the developers’
understanding of one method, renaming a class potentially
means a change to the domain model of the program.

2.2 D2: Semantic
When identifiers are renamed, a few situations may occur.

A term may be added, removed, or changed. When a term
is added or removed, the meaning that this term carries is
added or removed to the identifier. Thus, the first two values
of this dimension are the following:

• Add a meaning;

• Remove a meaning.

When a term is changed, it can either preserve or change
the meaning of the identifier. The following five values con-
sider a renaming when a term is changed.

Keeping the meaning:

• The original and renamed terms have the same mean-
ing. An example is synonymous terms, e.g., create-
DialogFields → createDialogArea. Another example is
terms that are abbreviations/expansions of each other,
e.g., invocationType → invocType. Similarly, fixing a
typographical error will take this value, e.g., getSimi-
lararity → getSimilarity.

• The original and renamed terms hold a generaliza-
tion/specialization relation (hyponym/hypernym), e.g.,
thrownExceptionSize → thrownExceptionLength, and
getAccessRestriction → getAccessRuleSet.

Changing the meaning:

• The renamed term has the opposite meaning of the
original term (antonym), e.g., disableLookups → en-
ableLookups.

• The renamed and the original terms hold a whole part
relation (holonym/ meronym); respective examples are
Point → Line and Line → Point.

• The original and renamed terms have unrelated mean-
ings, e.g., problemsCount → problemLine.

2

2.3 D3: String Distance
This dimension assesses the distance between the original

and renamed terms. One such measure is the Levenshtein
edit distance [15], which we use to compute the number of
editing operations to obtain the renamed from the original
identifier. For example, the Levenshtein edit distance be-
tween house and home is 3, because home is obtained from
house by removing two characters us and adding one m. To
have comparable Levenshtein distances, we use the normal-
ized edit distance (nld) given by:

nld(t1, t2) = levenshtein(t1, t2)/sum(length(t1), length(t2))

where levenshtein computes the Levenshtein distance.
In our empirical study, we consider the distance to be low

if
nld(t1, t2) ≤ 0.40, high otherwise. Corresponding exam-
ples for each value are getUnqualifiedTypeName → getQual-
ifiedTypeName, and fTypeSignature → fTypeName. Also, we
count substitution as an edit operation with cost one (and
not as a deletion followed by an insertion with cost two).

2.4 D4: Grammatical changes
When renaming an identifier, the grammatical type of the

changed term may change, e.g., from a noun to a verb (as
in assignmentImplicitConversion → preAssignImplicitCon-
version), from a noun to an adjective (as in getSelection →

getSelectedObject), or yet again from a verb to a noun (as in
preparedAuthenticate → preparedCredentials). Grammatical
type changes include all combinations of renamings from/to
noun, verb, adverb, adjective. In the case of a term that
does not belong to a dictionary, the value will be none. For
example, the renaming con → connect has value none to
verb.

2.5 Example of Use
We illustrate the use of our taxonomy with an example

from Eclipse. Consider a renaming of a method getField-
sReferencedIn → getFieldReferencesIn. The identifiers are
split into terms: (get, Fields, Referenced, In) and (get, Field,
References, In). We can observe that there are two term re-
namings. The first renaming, Fields → Field, takes the fol-
lowing values on the different dimensions: D1: method, D2:
same meaning, D3: low distance (nld = 0.09), D4: noun
→ noun. The values of the second renaming, Referenced →

References, are: D1: method, D2: same meaning, D3: low
distance (nld = 0.05), D4: adjective → noun.

3. RENAMING IDENTIFICATION AND
CLASSIFICATION APPROACHES

Our approach is composed of several steps. For each
change committed in a SVN/CVS, it considers the system
source code files before and after the change. It then com-
pares files using the diff tool, the output of which it merges
with file-level parse information to locate modified declara-
tions and identify possible renaming pairs. It then filters
renaming pairs to favor precision and reduce the amount of
required manual validation. Finally, after Camel Case split,
it classifies and reports term renamings.

3.1 Identification
To perform a study of identifier renamings, we download

all revisions (belonging to a given time interval of interest)

of each file from the versioning systems of a given system.
Then, for each file fi, we analyze each pair of subsequent
revisions fi,j and fi,j+1 using the approach described below.

Our approach does not perform origin analysis because
there exists already several approaches to identify file renam-
ings, e.g., [3]. We thus focus in the following on renamings
that occur inside a source code file. Thus, the only class
renamings (D1: class) that we detect correspond to inner
classes and–or (non-public) classes declared in a same file.

Our future work includes merging our approach with a
class evolution mapping approach, e.g., [11], to consider
class/file renamings also. In our experience, working at
file-commit level mitigates the class renaming effect as each
change is analyzed at a finer temporal granularity with re-
spect to analyzing releases. For Eclipse, in [11], it was found
that, at release level, class renaming impacts on average less
than 5% of classes if the first Eclipse release was excluded.

3.1.1 Mapping Lines of Code
The first step of our approach maps lines of fi,j into lines

of fi,j+1 using the output of a line differencing tool. Our
approach can use any line-based differencing tool, e.g., the
Unix diff or ldiff [4]. In the next study, we use diff as we
found that it sufficed to track the information of interest.
The approach works as follows:

• if there is a change (lx, ly c lz, lk), all lines in the ranges
x − y are mapped into lines z − k. If the multiplic-
ity is one-to-many, many-to-one, or many-to-many, the
mapping is imprecise. For example, 1c1,2 means that
line 1 is mapped into lines 1 and 2 in the new revision;
then, we keep into account that the subsequent lines
will be shifted (up or down) of z − k− y + x positions;

• if a set of lines is deleted (lx, ly d lz), lines x− y of fi,j

are mapped to “-” in fi,j+1, and the subsequent lines
are shifted up of y − x + 1 positions;

• if a set of lines is added (lx d ly, lz), lines y−z of fi,j+1

are mapped to “-” in fi,j , and the subsequent lines are
shifted down of z − y + 1 positions.

3.1.2 Identifying Declarations
Once we have mapped lines in fi,j and fi,j+1, we iden-

tify declarations contained in both source code files. We
consider (for the Java language) class (CD), interface (ID),
method (MD), formal parameter (PD), field (FD), construc-
tor (COD), and local variable declarations (LVD). We build
a forest of parse trees for the modified files using the ro-
bust, error-tolerant parser of the Eclipse platform. For each
declaration, we identify (i) the line where it occurs, its kind
(CD, ID...), its name (identifier), and type (if any).

Then, we produce a set of likely mappings between decla-
rations by combining the output of this step with the output
of the previous step (line mapping). Given two lines mapped
between fi,j and fi,j+1, e.g., lines 18-21 → lines 20-24, we
map any declaration occurring in the line interval 18-21 of
fi,j into any possible declaration of the same type occurring
in the interval 20-24 of fi,j+1.

3.1.3 Filtering the Results
The mappings produced in the previous step surely con-

tain a high number of false positives, i.e., pairs of identifiers

3

that are not renamings of one another. To reduce this num-
ber, we apply two heuristics to filter the likely mappings:
the type heuristic and the similarity heuristic.

The type heuristic matches FDs, LVDs, or PDs if their
types are the same. The advantage of this heuristic is that
it works well even if the renaming is complete, e.g., foo is
renamed into bar; its disadvantages are that (i) the type of a
variable may change together with it name when a renaming
occurs at the same time as other refactorings and (ii) the
same line may declare more than one variables of the same
type, e.g., String foo, bar;.

The similarity heuristic can be applied to any declaration
to keep only identifier pairs in which, despite the renaming,
the identifiers are still textually similar. The similarity is
computed using nld. This heuristic has the advantages of
(i) working even when the type changes and (ii) resolving
mappings when there are multiple declarations on the same
line. For example, if the line String win, homePtr; of fi,j is
mapped into line String window, homePointer of fi,j+1, then
the inferred renamings will be win → window and homePtr
→ homePointer. The disadvantage of this heuristic is that
it fails to capture renaming of an identifier into a completely
different, unrelated one, e.g., foo into bar.

More effective filtering strategies could be devised, such
as the heuristic suggested in [18], which uses data depen-
dencies. However, as we aim at also tracking methods re-
namings, such a filtering heuristic would require to build
the call graph to inspect and compare call sites of possibly-
renamed methods. Such call graph would, in turn, requires
polymorphism resolution. Accurate and precise call graph
construction for programs of hundreds of thousands of LOCs
is expensive, especially because we must build it for every
CVS/SVN committed transaction. Thus, we leave for fu-
ture work the exploration of the advantages/disadvantages
of such sophisticated heuristics.

3.2 Classification
The classification starts with two identifiers, the original

(id1) and the renamed identifiers (id2), and classifies the
renaming of id1 into id1 as follows.

3.2.1 Identifier Splitting
First, we split both identifiers into their composing terms

and each term is converted into lower cases. For the sake of
simplicity, we used a simple Camel Case splitter, which splits
identifiers considering the Camel Case separator heuristic, as
well as commonly used separators such as the underscore“ ”.
The output of this step is, for each identifier, a list of terms,
i.e., t1,1, t1,2, . . . , t1,n1 and t2,1, t2,2, . . . , t2,n2. For example,
the identifier getBookingInfo is split into get, booking, info.
We could use a more sophisticated identifier separator, such
as Samurai [8] or TIDIER [16]. However, we need in our
context a fast splitter, given the high number of identifiers
to be treated. Also, in our study, we consider only Java sys-
tems, for which a Camel Case splitter exhibits performances
similar to other approaches [16]. Hence, we leave to future
work the use of more sophisticated splitters and their appli-
cations to study renamings in other programming languages
than Java, without much loss of generality but for D1.

3.2.2 Mapping Identifier Terms
The second step aims at mapping the n1 terms of id1 into

the n2 terms composing id2. A term t1,i of id1 is mapped

foreach matchType in (exact, string distance, semantic)
do

for x← 1 to n1 do

if not mapped1[x] then

y1← x, y2← x ;
while y1 > 0 or y2 ≤ n2 do

foreach y in (y1, y2) do

if matching(t1,x,t2,y, matchType) and
not mapped2[y] and y > 0 and y <= n2
then

mapped1[x]← y ;
mapped2[y]← x ;

end

end

y1−−, y2 + + ;

end

end

end

end

Algorithm 1: Term mapping algorithm mapping the n1
terms of id1 into the n2 terms composing id2.

into a term t2,j of id2 according to three criterion: the two
terms match, the terms have a low string distance, or a se-
mantic relation exists between them, as shown in Algorithm
1. The algorithm uses a function matching(t1, t2, matchType)
that, given two terms, returns true if the terms match ac-
cording to the matching criterion specified as third parame-
ter, false otherwise:

1. Exact: if the two strings exactly match.

2. Low string distance: if the two strings have a nld
smaller than or equal to a given threshold.

3. Semantic: if the two strings have any semantic rela-
tion according to the upper ontology WordNet [20]2.
In particular, we consider the two words semantically
related if, by querying WordNet, t1 is synonym, hy-
ponym, hypernym, anyonym, meronym, or holonym
of t2 or, in case none of these relations can be found,
e.g., because one of the two words does not exist in
WordNet, the two words have the same stem accord-
ing to the Porter [21] stemming.

Algorithm 1 builds a mapping of terms of id1 into any (not
yet mapped) term of id2, repeatedly traversing id2 terms,
moving from the position of the term of id1 and using the
exact matching first, then the low string distance matching,
and finally the semantic matching. The last criterion makes
our approach robust by making it able to find relations even
for words that are not contained in the WordNet database
and–or that have simpler relations, such as one term being
the plural or the other.

Finally, our approach excludes terms that are mapped ex-
actly and in the same position in the identifier because we
are interested in renamings. For example, in the identifier re-
naming getFieldsReferencedIn → getFieldReferencesIn, both
identifiers contain get and In that are exact matches and thus
are removed from further consideration. More complicated
cases where the exact match is not encountered in a corre-
sponding position will be considered in future work because
it may require mapping identifiers into sentences.

2http://wordnet.princeton.edu/

4

3.2.3 Classifying Term Renamings
After terms of id1 have been mapped to terms of id2, our

approach classifies the renamings at term level, as:

1. Removed: terms of id1 not mapped into any term of
id2 are classified as removed.

2. Added: terms of id2 not mapped into any term of id1

are classified as added.

3. Matched: terms of id1 mapped into terms of id2 ac-
cording to Algorithm 1 with an exact match.

4. Similar: terms of id1 mapped into terms of id2 ac-
cording to Algorithm 1 with a semantic relation or a
low string distance.

A more sophisticated approach could map sequences of
additions and removals into changes, as the Unix diff does
on source code lines. For example, we treat the renaming
of toStringValue into printValue as the removal of to and
String, and the addition of print, while a diff would see it as
to String being changed into print. However, such a mapping
is out of scope of this paper and we plan to incorporate such
a feature in future work on our renaming classifier.

Finally, our approach classifies similar terms by:

• determining whether the textual similarity is low or
high, according to the nld and the 0.40 threshold;

• determining whether the term has changed its gram-
mar form. We use WordNet to determine the gram-
mar form of each term, whenever possible. WordNet
classifies (n)ouns, (a)djectives, adve(r)bs, and (v)erbs.
In some cases, a term can belong—depending on the
context—to more than one grammar form. In this
case, WordNet returns a set of grammar forms.

• Determining, again using WordNet, the semantic re-
lation between terms, i.e., synonymy, hyponymy, hy-
pernymy, anyonymy, meronymy, or holonymy, and, if
none, whether the two terms have the same stem.

4. EMPIRICAL STUDY
The goal of this study is to perform an exploratory analy-

sis of identifier renamings, with the purpose of understand-
ing when developers rename identifiers, who performs such
renamings, and how identifiers are renamed according to our
taxonomy. The quality focus is code understandability
and maintainability, which, according to previous literature
studies, may depend on the quality of identifiers. The per-
spective is mainly of researchers interested in better under-
standing renaming activities in software project. The con-
text consists on a subset of the history of two open-source
systems, Eclipse-JDT and Tomcat.

Eclipse-JDT is a set of plug-ins that adds the capabili-
ties of a full-featured Java IDE to the Eclipse3 platform.
Tomcat4 is an open source implementation of a servlet con-
tainer and JavaServer page engine. It evolved over the years
to include various features such as load balancing, security
managers, connector to Apache (the main project), virtual
hosting, management, just to mention a few.

3http://www.eclipse.org
4http://tomcat.apache.org/

Table 1: Characteristics of the analyzed systems.

System
Analyzed Files KLOCs Files File Com-
period (range) (range) (total) revisions mitters

Eclipse-JDT 2001–2006 2,089–6,949 205–534 5,758 54,571 50
Tomcat 1999–2006 51–1,099 5–315 12,205 46,498 79

Table 1 reports the main characteristics of the analyzed
systems: the analyzed periods, the system size ranges in
KLOCs, their number of files, the number of files of which
we analyzed the history, the total numbers of analyzed file
revisions, and the total number of committers. Eclipse is
versioned under CVS while Tomcat under SVN.

4.1 Manual Validation of Identifier Mappings
To estimate the precision of our approach in mapping re-

named identifiers, we manually validated all identified re-
namings (after applying type and similarity filters) for Tom-
cat and some of the renamings of Eclipse-JDT. Out of 885
renamings identified for Tomcat, we observed 161 false pos-
itives (18%). We therefore removed them from further anal-
ysis, leaving for Tomcat 724 renamings. For Eclipse-JDT, it
was not possible to perform a thorough manual validation
because we found 4,500 identifier mappings. We measured
17% false positives on a sample of 203 renamings, which
corresponds to a 95% confidence level with a 7% confidence
interval, thus the percentage is consistent with the impreci-
sion found for Tomcat. We did not remove the false positives
form the results reported for Eclipse-JDT, because only a
small subset was manually verified.

4.2 Research Questions
We break down our study into two steps: first, we study

renamings in general i.e., an activity performed during soft-
ware evolution and we seek answers to the following ques-
tions:

• RQ1: When do identifier renamings happen? This
question investigates how identifier renamings are dis-
tributed over time, i.e., if they are spread over time
or if there are specific time periods, e.g., in correspon-
dence of some releases, when renamings are performed.
We compute and analyze, for each system, the number
of renamings performed on a monthly basis.

• RQ2: Who are the developers that mostly perform
identifier renamings? This question investigates whether
there are specific developers that performed most of
the renamings or all developers performed renamings.
We compute the number of renamings performed by
each committer and assess who performed more re-
namings and how many they did.

Then, we study renamings in the context of our taxonomy
and answer the following question:

• RQ3: What kind of changes occur in the terms com-
posing renamed identifiers according to our taxonomy?
This research question goes deeply into the nature of
renamings by classifying renamings according to our
taxonomy and investigating how terms composing iden-
tifiers changed. Its focus is in particular on (i) where
identifier renamings occur (ii) what kind of semantic
changes are performed, (iii) the distance between the
terms before and after a renaming, and (iv) what kind
of grammatical changes are performed.

5

Table 2: Overview of the found identifier renamings.

Eclipse-JDT Tomcat
Total # of found renamings 4,500 885
True positives N/A 724
(percentage) of renaming changes 2,820 (5%) 575 (1%)
(percentage) of files affected 1,334 (23%) 396 (3%)
(percentage) of committers involved 36 (72%) 39 (49%)

0

50

100

150

200

250

300

350

20
01

-0
5

20
01

-0
9

20
02

-0
1

20
02

-0
5

20
02

-0
9

20
03

-0
1

20
03

-0
5

20
03

-0
9

20
04

-0
1

20
04

-0
5

20
04

-0
9

20
05

-0
1

20
05

-0
5

20
05

-0
9

20
06

-0
1

20
06

-0
5

20
06

-0
9

Month

of

 re
na

m
in

gs

2.1.3

1.0

2.0 2.1
3.0

3.1

(a) Eclipse-JDT

0

5

10

15

20

25

30

35

19
99

-1
0

20
00

-0
3

20
00

-0
8

20
01

-0
1

20
01

-0
6

20
01

-1
1

20
02

-0
4

20
02

-0
9

20
03

-0
2

20
03

-0
7

20
03

-1
2

20
04

-0
5

20
04

-1
0

20
05

-0
3

20
05

-0
8

20
06

-0
1

20
06

-0
6

Month

of

 re
na

m
in

gs

5.5.165.5.95.0
4.0b1

(b) Tomcat

Figure 1: Number of renamings over time.

5. RESULTS
This section reports the results of our empirical study and

answers our research questions formulated. Raw and work-
ing data sets are available for download on-line5. Table 2
shows a summary of the detected renamings. In total, we
found, using the similarity and type filters, 4,500 renamings
in Eclipse-JDT and 885 in Tomcat. Identifier renamings af-
fected 23% of Eclipse-JDT files and only 3% of Tomcat files.

5.1 RQ1: When Do Renamings Happen?
Figure 1 shows the number of renamings performed in dif-

ferent periods—discretized on a monthly basis—of the ana-
lyzed history of the two systems. By looking at the figure
and considering the percentages of renamings per file (see
second row of Table 2), we observe that renamings are es-
pecially concentrated in specific, limited time frames. This
observation is not surprising as it is a common behavior
for refactorings in general [9]. For Eclipse-JDT, we observe
a peak in release 2.1.3. In that period, we found com-

5http://web.soccerlab.polymtl.ca/ser-
repos/public/renaming-data.tgz

Table 3: Top 10 committers involved in identifier
renamings. Values in parentheses indicate the per-
centages of file changed related to renaming per au-
thor.

Eclipse-JDT Tomcat
ID # of renamings ID # of renamings
pmulet 792 (3%) costin 139 (1%)
othomann 269 (3%) luehe 107 (3%)
jlanneluc 263 (3%) remm 89 (1%)
maeschli 260 (1%) fhanik 78 (3%)
jdesrivieres 197 (12%) craigmcc 51 (1%)
darin 158 (1%) kinman 29 (1%)
ptff 150 (7%) markt 27 (0%)
daudel 127 (3%) amyroh 22 (1%)
maeschlimann 127 (5%) pier 22 (1%)
kmaetzel 123 (6%) billbarker 15 (1%)
Total top 10 2,466 Total top 10 579
Total renamings 4,500 Total renamings 724
% renamings top 10 55% % renamings top 10 80%

mit notes referring to renaming activities, e.g.,: 2004-02-22,
jdesrivieres: “Changes to AST nodes for 1.5”, or 2004-03-
19, dmegert: “Cleaned up rename of reconcile participant to
reconcile listener”.

For Tomcat, peaks in renaming activities are visible in re-
lease 4.0b1, in the (major) release 5.0, and in releases 5.5.9
and 5.5.16. By looking at the commit notes, in some cases, it
is even possible to identify that a major renaming happened
in these releases, e.g., 2002-06-08, remm: “Rename methods
getNamingResource -> getNamingResources...”, 2002-08-26,
patrickl: “Correct method name to match current specifica-
tion draft”, or, 2005-04-18/2006-02-07, fhanik: “Fixed spelling
errors”.

5.2 RQ2: Who are the developers that mostly
perform identifier renamings?

As shown in Table 2, the numbers of committers involved
in renamings was 36 out of 50 (72%) for Eclipse-JDT and
39 out of 84 (49%) for Tomcat. Table 3 shows the list of the
top 10 committers involved in identifier renamings, over the
50 Eclipse-JDT committers and 84 Tomcat committers. In
Eclipse-JDT, 10 out of 50 committers performed 55% of the
renamings while in Tomcat, 10 out of 84 committers per-
formed 80% of renamings. Especially for Tomcat (but to
some extent also for Eclipse-JDT), most of the renamings
have been performed by a small subset of the committers.
As it can be seen in the table, the percentages of commits
related to renamings is more or less similar for all commit-
ters in the top 10 (i.e., ranging between 1 and 3%), besides
a few that have higher percentages, such as jdesrivieres in
Eclipse-JDT, for whom 12% of commits involved a renam-
ing activity. As illustrated above, jdesrivieres was involved
in the massive renaming before Eclipse 2.1.3.

5.3 RQ3: What kind of changes occur in the
terms composing renamed identifiers ac-
cording to our taxonomy?

In the remaining of this Section, we provide insights on
term renamings using our taxonomy.

D1: Entity.
Figure 2 shows the renamings classified for different kinds

of entities, i.e., the frequencies of renamings for each value of
D1. Most of the renamings occur to method or field identi-

6

!"# $"# %!"# %$"# &!"# &$"# '!"# '$"# (!"# ($"# $!"#

)*+,-./0,#

12*3+-40+2-#

15/33#

6/-/7,+,-#

820/5#9/-:/;5,#

<:,5=#

>,+?2=#

@270/+# A05:B3,#

'C%#

&!!'#

&!&#

%&'!#

D&#

C(E#

CF#
$!E#

C$#

%(#

C#

((#

!#
&#

6,-0,*+/G,#2.#

-,*/7:*G3#

Figure 2: Number of renamings per kind of entity.

fiers: they describe behavior and properties of classes, thus,
very likely, developers rename them to provide more mean-
ingful identifiers. Local variables are less renamed, possibly
because their visibility is somewhat limited when compared
with method and field identifiers. Finally, it is important to
recall that (i) class/interface renamings pertain to renam-
ings of member/inner classes and multiple classes contained
within the same file, because other class/interface renamings
involved file name changes and thus were not considered in
our study; and (ii) constructor renamings occur accordingly.
The numbers of class renamings are higher than the num-
bers of constructor renamings because, for several classes,
there are no explicit constructor, the Java default construc-
tor being used implicitly.

D2: Semantic.
Table 4 describes the term renamings based on their se-

mantic (dimension D2 of the taxonomy), providing some ex-
amples for both systems (when available). Surprisingly, we
found cases where terms were renamed to their antonym (op-
posite meaning). Moreover, a manual validation confirmed
that renamings to antonyms are more frequent than the fre-
quencies reported here because of the impossibility to detect
verb antonyms with WordNet. In our understanding, a re-
naming to antonym occurs when developers change the way
the algorithm that they are implementing works or fix a bug
(as it was doing the exact opposite of its expected behavior).
For example, an opening bracket was to be matched rather
than a closing bracket: hasClosingBracket → hasOpening-
Bracket, or an AST navigation should be performed by nav-
igating towards parents and not children findNextLevelChil-
drenByElementName → findNextLevelParentByElementName.

We did not find cases for term renamings that hold whole–
part relationship. We believe that this observation is par-
tially due to the limited applicability of the WordNet upper
ontology to capture whole–part relationships in the specific
domain of the two systems i.e., a domain-specific ontology
would be needed. In a very few specific cases, our obser-
vation can be due to the filtering applied, which excluded
renamings where the textual similarity between identifiers
was above the fixed threshold. We looked at the results
without applying the filter and found one case of renaming
towards a meronym: filename → extension.

Finally, we observe that very few term renamings changed
the meaning of a term, about 5% for both systems.

Table 5: Classification of term string distance.

Distance Eclipse-JDT Tomcat Example
low 1,433 249 isOverriddenMethod → are-

OverriddenMethods (E)
statement → stmt (E)
parameters → params (E)
warining → warning (E)
message → msg (T)

high 5,946 683 isOverriddenMethod →

areOverriddenMethods (E)
Total 7,379 932

D3: String Distance.
Table 5 shows the number of term renamings for dimen-

sion D3, which captures the distance between the original
and modified terms. The results correspond to all term re-
namings, no matter how they are spread over identifiers.
We considered additions and removals of terms as having
high distances, e.g., in addPointer → Pointer the term add
is removed which means that add is mapped to an empty
string and the corresponding distance will be considered
as high. Renamings with low distance are related to pre-
fix/suffix change, fixing typos, or expanding/abbreviating
terms.

D4: Grammatical changes.
Finally, Table 6 shows how term renamings are spread over

the different values of D4, i.e., changes of grammar forms.
These values were computed among cases where terms un-
derwent a semantic changes. The numbers of grammar form
changes among terms in the renamings are extremely low,
which we explain as an identifier has been conceived to de-
scribe an entity (i.e., by using a noun) or an action (i.e.,
by using a verb). As we have observed for D2, such identi-
fier can change towards a more precise/less, precise/opposite
meaning but it is unlikely that it will change grammar form,
except for particular cases.

We observe a relatively high number of “other changes”
(347 terms for Eclipse-JDT and 27 for Tomcat). These
changes are mainly related to cases where WordNet is not
able to uniquely identify the term grammar form: some En-
glish terms, depending on the context, can assume differ-
ent grammar forms: e.g., monitor can be both a noun or
a verb and set can be noun, verb, or adjective. Examples
of changes where the term had a multiple grammar clas-
sification are (from Eclipse-JDT): schedule (noun/verb) →

scheduling (noun), dead (noun/adjective/adverb) → dead-
lock (noun), or filename (noun) → file (noun/verb).

5.4 Why Do Renamings Occur?
We now discuss some examples of renamings that we found

during the manual validation of Tomcat and provide some
likely reasons. We did not perform a thorough analysis of
renaming rationale but wants to provide a list of possible
motivations for renamings based on observations.

Formatting: in some cases renaming was likely undertaken
for readability or for code conventions (e.g., Camel Case:
appbase → appBase, underscore: SC A SSL KEYSIZE →

SC A SSL KEY SIZE).

7

Table 4: Classification of term semantic changes.

Renaming Eclipse-JDT Tomcat Example
add meaning 3,333 357 type → authtype (T)

resource → visitedResource (E)
remove meaning 2,580 326 copyJAR → copy (T)

fTypeBinding → fBinding (E)
same meaning 436 42 committed → commited (T)

methodsBuffer→ methodsBuffered (E)
generalization/specialization relation 24 0 scanCurrentPosition → scanCurrentLine (E)

thrownExceptionSize → thrownExceptionLength (E)
opposite meaning 17 0 findNextLevelChildrenByElementName→ findNextLevelParentByElementName (E)

hasClosingBracket → hasOpeningBracket (E)
whole/part relation 0 0
unrelated meaning 989 207 createContents → createControl (E)

getClusterReceiver→ getChannelReceiver (T)
Total 7,379 932

Table 6: Classification of term grammar changes.
Renaming Eclipse-JDT Tomcat Example
noun to verb 4 0 editor → edit (E)
noun to adjective 7 0 qualificationPattern → qualified Pattern (E)
verb to noun 4 2 preparedAuthenticate → preparedCredentials (T)
verb to adjective 5 0 fReconcileListeners→ fReconcilingListeners (E)
adjective to noun 5 0 fLayoutHierarchicalAction → fShowTestHierarchyAction (E)
adjective to verb 2 0 isValidClassFile → validateClassFile (E)
adverb to adjective 0 0
Other changes 347 27 filterStatic (n;a) → filterStatics (n)
No change 230 27

Improving abbreviations: in some renamings, developers
seem to pay attention on the abbreviations used for a given
term (e.g., TYPE CONF APPLIC→ TYPE CONF ENUM-
APPL)

Never satisfied with a term: renaming sometimes is an
iterative process. During our analysis, we encountered mul-
tiple renamings for the same declaration (i.e., list → roleList
→ roles).

Propagation to different packages: when renaming vari-
ables that exist in multiple packages, developers do it con-
sistently, e.g., size → capacity in WarpTable.java in two
different folders.

Declarations consistent with comments: renaming some-
times happens to make a declaration consistent with its com-
ment (i.e., list → roleList, where the comment is: “// Accu-
mulate the user’s roles”.

(In)consistency in renamings: consistency does not seem
to be always a concern. Sometimes, original and renamed
terms are abbreviations but different abbreviation for a same
word. For example, we observed two field declarations, both
of type int, that were renamed as follows: TYP HOST ID→

TYP CONINIT HID, and TYPE HOST→ TYP CONINIT-
HST. Similarly, we can have two terms as different expan-

sions of a same word but in different grammatical forms. We
observed two attributes for the same type (int) that were re-
named as follows: RID CONN → RID CONNECTION, and
RID DISC → RID DISCONNECT.

6. THREATS TO VALIDITY
To the best of the authors’ knowledge, this is the first

study of renaming analyzing two large open source appli-

cations. As such there are several limitations and threats
to validity. There are no threats to internal validity nor
to conclusion validity to be discussed, our study being an
exploratory study.

Construct validity threats are mainly due to limitations
and limited precision/recall of the adopted renaming identi-
fication approach. In this first exploratory study, we limited
ourselves at considering pairs of files that did not change
name and location between two files versions. We explain
our choice with the need for performing an extensive and
thorough manual validation of the results and avoiding am-
biguity in the decision about class evolution i.e., if indeed a
class evolved changing its name and position in the package
hierarchy.

Concerning the precision, in Section 4.1, we have dis-
cussed performances of our approach, at least on a subset
of the extracted renamings. We removed Tomcat false pos-
itives (about 18 %) from our data set, while we expect for
Eclipse-JDT an imprecision of about 17%, according to the
manually validated sample. In fact we manually verified 203
randomly selected Eclipse-JDT renaming and we found 83%
precision (17% imprecision) that corresponds to a 95% con-
fidence level with a 10% confidence interval.

Concerning the recall, we are aware that as discussed in
Section 3.1.3, the adopted filters can filter out some good re-
naming, e.g., those where the nld is higher than the thresh-
old and those where the type changed. Also, as stated above,
we do not consider file-level renaming, for which origin anal-
ysis methods would be needed. This implies that our results
are a lower bound as there is a percentage of missed renam-
ings and that any improvement will necessarily increase the
number of discovered renaming although the ratios between
the different categories of renaming may be modified. We
applied a graph-matching approach [11] to the entire Eclipse
history and all files/classes and we found that, on average,
(public) class renamings impacts happens on no more than

8

1%–5% of the classes (depending on the time window consid-
ered). Thus, we believe our results will not be substantially
modified once our approach will be integrated with origin
analysis and that achieved accuracy is acceptable consider-
ing the linear complexity of the approach.

Furthermore, it would be most likely difficult to apply
more precise approaches such as [18] on thousands of file
changes for systems of Tomcat or Eclipse-JTD sizes. In
fact, [18] has a worst case complexity quadratic cost in the
number of system tokens and this for the sizes of analyzed
systems is a severe limitation. Finally, as already noticed,
building a precise and accurate call graph with polymor-
phism resolution form about 100,000 file changes to accu-
rately identify methods renamings would be infeasible in an
acceptable amount of time even considering incremental call
graph and data dependencies analysis update.

As for the classification of semantic changes of the terms,
we observed that in some cases our approach fails to classify
some renaming due to the presence of abbreviations (or ex-
pansions) and/or typos (the word is not found in the Word-
Net database), e.g., message → msg is classified as unrelated
change even if based on our taxonomy it should be classified
as “same meaning”.

External validity threats concerns the generalization of our
findings. Although the study was performed on a long his-
tory (six and eight years) of two medium/large systems, it
is desirable to replicate the study on other systems, e.g., de-
veloped using different programming languages. Also, with
the availability of a renaming identification approach able to
avoid the limitations due to the used filters, we could obtain
different proportions of some renaming.

7. RELATED WORK
This section discusses related work for what concerns the

role of identifiers in software quality, and approaches for
software refactoring.

7.1 Role of identifiers in software quality
There is quite a consensus among researchers [5, 6, 12,

8] on the role played by identifiers on program comprehen-
sion, maintainability, and quality in general. In particular,
researchers studied the usefulness of identifiers to recover
traceability links [2, 17], measure conceptual cohesion and
coupling [19, 22], and, in general, high quality identifiers are
considered an asset for source code understandability and
maintainability [23, 14, 13].

As suggested in [6] identifiers should be consistent and
concise; unfortunately, verifying consistency and conciseness
is a difficult task and thus approaches have been developed
to identify consistency and conciseness violations via syn-
onyms and homonyms identification [12]. We share with pre-
vious works the concern on identifier quality as a support for
various software engineering tasks. However, we are focusing
our study on identifier renaming based on a newly proposed
taxonomy. We concur with [12] that synonyms play an im-
portant role, but we also believe that synonyms renamings
as well as other phenomena such as hypernyms, hyponyms
and antonyms should be investigated as they likely point
program understanding issues.

7.2 Refactoring
Dig et al. proposed a tool (Refactoring Crawler) for de-

tecting sequence of refactoring actions between consecutive

versions of Java applications [7]. Refactoring Crawler iden-
tifies seven types of refactoring: Rename package, class, and
method; pull up and push down method; move method and
change method signature. The detection algorithm consists
of a fast syntactic analyzer followed by a more computation-
ally intensive semantic analyzer. Refactoring Crawler was
applied on varoius releases of Eclipse UI, Struts, and JHot-
Draw. On the analyzed systems, the authors reported an
accuracy as high as 85%.

Recently Xing et al. [24] presented a tool, UMLDiff,
and an approach for detection refactoring at design level.
UMLDiff works with class diagrams; it inputs two class dia-
grams and it produces as output an XML design differencing
file. Queries on the XML file difference allow to detect sim-
ple (e.g., Rename class/method/field, Pull-up/Push-down
method/field) and composite refactoring actions (e.g., Form
template method, Replace inheritance with delegation).

Malpohl et al. [18] presented a tool (renaming detector)
for detecting identifier renaming. The tool uses three main
components: Parser, Symbol Analyzer, and Differencer. re-
naming detector analyzes each file for extracting identifier
declarations and references. Next, it matches the declara-
tions in two versions of a file. In addition, to increase ac-
curacy, types of variables and references are compared for
matching the identifiers. For the evaluation purpose the au-
thors applied the tool on the source code of the tool itself;
authors reports a 100% precision rate for 77 analyzed file
pairs with the computation time around nine minutes.

We share with Refactoring Crawler, UMLDiff and renam-
ing detector the general ideas and goal. We also use pars-
ing and differencing technologies though in different combi-
nation to attain an approximated, lightweight, robust and
scalable approach. Different from all previous work we de-
fined a renaming taxonomy directly conceived to better rep-
resent renamings orthogonal dimensions. Furthermore, our
approach does not require a compilable system to work and
it detects finer grain details about renaming such as the
grammatical renaming type or the semantic type.

8. CONCLUSION
This paper presented the first taxonomy for term renam-

ings and reported the first exploratory study investigating
and automatically classifying renamings observed in the life
span of two real-world systems, Eclipse-JDT and Tomcat.
The taxonomy is found on four dimensions, characterizing
terms renaming orthogonally along four dimensions.

We found a relatively large number of renamings, mostly
concentrated in specific time frames and performed by a
subset of the committers, sometimes the most active ones.
When classifying renamings according to the proposed tax-
onomy, (i) we found that most of the identified renamings
occur on class interfaces (method and field identifiers), likely
because their meaning is more important than that of local
variables; (ii) we observed term renamings not only towards
synonym but also antonyms and meronyms, which points to
the possibility of renaming as a step to correct wrong se-
mantic; (iii) we reported that small string changes are often
due to typos or expansions/contractions; and (iv) we found
that the grammar forms of terms tend not to change often.

The most frequent renaming change was adding and re-
moving terms but we cannot draw a conclusion on the im-
pact of such change on identifiers as, for example, adding
and removing terms may lead to the changed identifier to

9

be a synonym to the original one. For 5% of renamings,
the term meaning was unchanged because synonyms were
involved. In few renamings, we also found antonyms and
whole–part relationships. Our results support the conjec-
ture that renaming is not a one-time activity but has burst
of activity, sometimes major releases.

Future work will be devoted to further improve our tax-
onomy, in particular by studying the combination of term
renamings at the identifier-level. We will also merge our ap-
proach with a class evolution mapping approach to propose
a complete view of renamings. We will possibly integrate
more sophisticated heuristics. We will also investigate the
feasibility to integrate origin analysis, study term renaming
effect on identifier meaning, and include the developers’ in-
tention in our taxonomy. Finally, we will investigate the
relationship, if any, between the different dimensions of the
taxonomy and evolution phenomena, such as class change-
or fault-proneness.

9. REFERENCES
[1] S. L. Abebe, S. Haiduc, A. Marcus, P. Tonella, and

G. Antoniol. Analyzing the evolution of the source
code vocabulary. In CSMR, pages 189–198,
Kaiserslautern, Germany, 24-27 March 2009, March
2009. IEEE CS.

[2] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng.,
28:970–983, Oct 2002.

[3] G. Antoniol, M. Di Penta, and E. Merlo. An automatic
approach to identify class evolution discontinuities. In
7th International Workshop on Principles of Software
Evolution (IWPSE 2004), 6-7 September 2004, Kyoto,
Japan, pages 31–40. IEEE CS, 2004.

[4] G. Canfora, L. Cerulo, and M. Di Penta. Tracking
your changes: a language-independent approach.
IEEE Software, 27(1):50–57, 2009.

[5] B. Caprile and P. Tonella. Restructuring program
identifier names. In Proc. of the International
Conference on Software Maintenance (ICSM), pages
97–107, 2000.

[6] F. Deissenbock and M. Pizka. Concise and consistent
naming. In Proc. of the International Workshop on
Program Comprehension (IWPC), May 2005.

[7] D. Dig, C. Comertoglu, D. Marinov, and R. E.
Johnson. Automated detection of refactorings in
evolving components. In Proceedings of the 20th
European Conference on Object-Oriented Programming
(ECOOP), pages 404–428. Springer, 2006.

[8] E. Enslen, E. Hill, L. L. Pollock, and
K. Vijay-Shanker. Mining source code to automatically
split identifiers for software analysis. In Proceedings of
the 6th International Working Conference on Mining
Software Repositories, MSR 2009, Vancouver, BC,
Canada, May 16-17, 2009, pages 71–80, 2009.

[9] M. Fowler. Refactoring: Improving the design of
existing code. Addison-Wesley Publishing Company,
Reading, MA, 1999.

[10] S. Haiduc and A. Marcus. On the use of domain terms
in source code. In Proceedings of the 2008 The 16th
IEEE International Conference on Program

Comprehension, ICPC ’08, pages 113–122,
Washington, DC, USA, 2008. IEEE CS.

[11] S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol.
Recovering the evolution stable part using an ECGM
algorithm: Is there a tunnel in Mozilla? In Proceedings
of European Conference on Software Maintenance and
Reengineering, pages 179–188, Los Alamitos, CA,
USA, 2009. IEEE CS.

[12] D. Lawrie, H. Feild, and D. Binkley. Syntactic
identifier conciseness and consistency. In Sixth IEEE
International Workshop on Source Code Analysis and
Manipulation Philadelphia Pennsylvania USA, pages
139–148, Sept 27-29 2006.

[13] D. Lawrie, C. Morrell, H. Feild, and D. Binkley.
What’s in a name? a study of identifiers. In
Proceedings of 14th IEEE International Conference on
Program Comprehension, pages 3–12, Athens, Greece,
2006. IEEE CS Press.

[14] D. Lawrie, C. Morrell, H. Feild, and D. Binkley.
Effective identifier names for comprehension and
memory. Innovations in Systems and Software
Engineering, 3(4):303–318, 2007.

[15] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Cybernetics and
Control Theory, (10):707–710, 1966.

[16] N. Madani, L. Guerrouj, M. Di Penta, Y.-G.
Guéhéneuc, and G. Antoniol. Recognizing words from
source code identifiers using speech recognition
techniques. In Proceedings of the 14th European
Conference on Software Maintenance and
Reengineering (CSMR 2010), March 15-18 2010,
Madrid, Spain. IEEE CS, 2010.

[17] J. I. Maletic, G. Antoniol, J. Cleland-Huang, and
J. H. Hayes. 3rd international workshop on
traceability in emerging forms of software engineering
(TEFSE2005). In ASE, page 462, 2005.

[18] G. Malpohl, J. J. Hunt, and W. F. Tichy. Renaming
detection. In Proceedings of the 15th IEEE
international conference on Automated software
engineering (ASE), pages 73–. IEEE CS, 2000.

[19] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the
conceptual cohesion of classes for fault prediction in
object-oriented systems. IEEE Transactions on
Software Engineering, 34(2):287–300, 2008.

[20] G. A. Miller. Wordnet: A lexical database for english.
Commun. ACM, 38(11):39–41, 1995.

[21] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[22] D. Poshyvanyk and A. Marcus. The conceptual
coupling metrics for object-oriented systems. In
Proceedings of 22nd IEEE International Conference
on Software Maintenance, pages 469 – 478,
Philadelphia Pennsylvania USA, 2006. IEEE CS Press.

[23] A. Takang, P. A. Grubb, and R. D. Macredie. The
effects of comments and identifier names on program
comprehensibility: an experiential study. Journal of
Program Languages, 4(3):143–167, 1996.

[24] Z. Xing and E. Stroulia. Refactoring detection based
on UMLDiff change-facts queries. In Proceedings of the
13th Working Conference on Reverse Engineering
(WCRE), pages 263–274. IEEE CS, 2006.

10

