
Software Evolution and Quality Data from
Controlled, Multiple, Industrial Case Studies

Abstract—A main difficulty to study the evolution and quality
of real-life software systems is the effect of moderator factors,
such as: programming skill, type of maintenance task, and
learning effect. Experimenters must account for moderator
factors to identify the relationships between the variables of
interest. In practice, controlling for moderator factors in realistic
(industrial) settings is expensive and rather difficult. The data
presented in this paper has two particularities: First, it involves
six professional developers and four real-life, industrial systems.
Second, it was obtained from controlled, multiple case studies
where the moderator variables: programming skill, maintenance
task, and learning effect were controlled for. This data set is
relevant to experimenters studying evolution and quality of real-
life systems, in particular those interested in studying industrial
systems and replicating empirical studies.

Index Terms—software quality, software evolution, software
defects, software replicability, case study, empirical study, mod-
erator factors, industrial data, replication, code smells.

I. INTRODUCTION

Many moderator factors can impact the outcome of a
software engineering activity [1]. Experimenters must control
them (or take them into account by measuring them) to avoid
spurious relationships between the variables of interest. The
moderator factors: programming skill and learning effect are
important factors to consider because software development
is intrinsically a human endeavor in which developers play a
major role [2]. Equally, type of task have been shown to be an
important moderator in program comprehension [3]. However,
it is not possible to easily control for these factors in real-
life settings because of their very nature: their values depend
on the contexts of the systems, which are often beyond the
experimenters’ controls.

In this paper, we present a data set that has two particu-
larities. First, it involves six professional developers and four
real-life, industrial systems. Second, it was obtained through
a controlled, multiple case study designed to control for the
moderator factors: programmer skill, maintenance task and
learning effect. In the study, programmer skill was controlled
by selecting developers from a pool of developers in the same
range of programming skills assessed through a previous,
independent study [4]. Maintenance task was controlled by
involving four systems with near-identical features, over which
identical tasks could be performed. Finally, learning effect
was controlled by having each developer replicate the same
tasks on two different systems. The primary data set contains
multiple evolution histories, in the form of git repositories, and
multiple sets of defects, in the form of reports (excel files)
extracted from issue tracking systems. The secondary data

consists of a series of attributes extracted from the software
systems (i.e., code smells) and their evolution (i.e., code
churn), and a log specifying the dates on which developers
worked on each of the systems/tasks, in the form of excel files.
The remainder of this paper is organized as follows: Section II
provides a brief background of the study from which the data
was obtained. Section III describes the data being released.
Section IV explains how the data can be accessed and used
as well as caveats and limitations. Section V concludes and
presents future work.

II. BACKGROUND OF THE DATA SET

This data set is derived from a controlled, multiple, indus-
trial case study conducted by Simula Research Laboratory in
2008, with the objective of investigating the effect of code
smells on the evolution and quality of real-life, industrial
software systems. Previous work describes in detail the context
and the methodology of the study [5].

A. Systems

The four systems forming part of this data set, and involved
in the study described in [5] originally come from a previous
study conducted by Simula Research Laboratory in 2003 [6]
to investigate software project replicability. For the study,
Simula issued a tender for the development of a new web-
based information system. Based on the bids, they hired four
Norwegian software consultancy companies to develop inde-
pendently a version of the system, using the same requirements
specification. This resulted in four systems (hereon denoted as
A, B, C and D) with near-identical features, but with dissimilar
size, design, and implementation. The systems encompass a
wide range of software artifacts such as Java, JSP, and other
file types, such as XML and HTML as summarized in Table I.

The main feature of all four systems comprised of keeping a
record of the empirical studies and related information at Sim-
ula, e.g., the researcher responsible for the study, participants,
data collected, and publications resulting from the study. The
systems were all deployed on Simula’s Content Management

TABLE I
LOC PER FILE TYPE FOR ALL FOUR SYSTEMS.

System A B C D

Java 8205 26679 4983 9960

JSP 2527 2018 4591 1572

Others 371 1183 1241 1018

Total 11103 29880 10815 12550



Developer

Round
1

1 2 3 4 5 6

A B C D C A
2 D A D C B B

Fig. 1. Assignment of systems to developers in the study.

System (CMS), which at that time was based on PHP and a
relational database system.

B. The Controlled, Multiple Case Study

In 2008, the Simula Research Laboratory introduced a new
CMS called Plone (plone.org), thus all the four original sys-
tems needed to be adapted to the new environment, providing
the opportunity to conduct and observe a real-life software
maintenance project. The maintenance project was conducted
in 2008 by outsourcing two European software consultancy
companies. The entire study lasted four months, at a total cost
of 50.000 Euros. The project comprised of three maintenance
tasks: the first two tasks involved adapting the system to the
new platform, and the third task adding new functionality.

Six software professionals were recruited from a pool of 65
participants of a previous study on programming skill [4]. The
main selection criteria used for the participants was that they
were in the same range of programming-skills according to
the study. These developers completed all three maintenance
tasks individually on one system, and then repeated the same
tasks on a second system. We then distinguish “rounds” where
first round corresponds to a case where the developer has
not maintained any of the systems previously, and second
round denotes a case where developers repeat the tasks on
a second system. Consequently, we use “rounds” as a proxy
for learning effect. Figure 1 describes the order in which the
systems were assigned to each developer. This assignment
resulted in 3 projects per system, i.e., 6 developers x 2 systems
= 12 projects (cases) in total. The development took place
entirely at the company sites and the first author of this
paper was present in both sites for the entire duration of
the project. The developers were given no information on
what the study entailed. Eclipse was used as the development
tool, together with MySQL (www.mysql.com) and Apache
Tomcat (http://tomcat.apache.org). Subversion or SVN (http:
//subversion.apache.org/) was used as the versioning system.
There were no unit tests available, due to the heterogene-
ity of the systems. Instead, acceptance testing was done to
identify defects at system level, which were then registered in
Trac (https://trac.edgewall.org/).

III. DATA DESCRIPTION AND RELEASE APPROACH

A. Data Description and Collection

The dataset comprises of four parts: 1) Software evolution
history, 2) Software defects, 3) Code smells and change-related
metrics (of both the initial and final versions of the artifacts),
and 4) Task dates.

a) Software evolution history: As mentioned previously,
there were six developers involved in the study. Each was
given access to one SVN repository containing the two systems
they were assigned to. Consequently, there are six repositories
in total. Each repository contains the evolution of two of the
four systems, as depicted in Fig. 1. In total, there are 12 code
evolution histories, each displaying a certain combination of
the variables: system, developer and round. The repositories
were initially in SVN, but later on were migrated to Git (see
section III-B for further details).

b) Software defects: In the same was as each devel-
oper was given access to an SVN repository, they were
given access to one issue tracking system (Trac). Each Trac
project was in addition, integrated with the corresponding
SVN repository. Each issue tracking system registered the
defects corresponding to the two systems each developer
worked on. In total, there are 12 excel files of software
defects, each set displaying a certain combination of the
variables: system and developer, where the file format is: ”De-
fects Dev{1/2/3/4/5/6} Sys{A/B/C/D}.xlsx. Trac treats every
issue as a “Ticket”, and each Ticket contains the following
information: Ticket ID, Status, Resolution, Severity, Priority,
Created, Modified, Summary, and Description.

c) Code smells and change metrics: The following code
smells were detected in the four systems: Data Class, Data
Clumps, Duplicated code in conditional branches, Feature
Envy, God (Large) Class, God (Long) Method, Misplaced
Class, Refused Bequest, Shotgun Surgery, Temporary variable
used for several purposes, Use of implementation instead of
interface, and Interface Segregation Principle (ISP) Violation.
Note that these metrics are available only for Java files
due to limitations in the tool. For each code smell instance
identified, the following information was extracted: Smell
name, smell description/details, Filename, and System. The
code smells were extracted from the original (untouched)
version before they were subjected to changes by the devel-
opers (“InitialSmells.xls”), and they were also measured on
the 12 resulting versions after the developers finalized the
maintenance tasks (“FinalSmells.xls”). Consequently, the last
data contains in addition the following information: System,
Developer, Round. For detecting the code smells, two com-
mercial tools were used: Borland Together 1 and InCode; they
both use the detection strategies (metrics-based interpretations
of code smells) by Marinescu [7]. As for code change metrics
(“Changes.xls”), the following metrics were calculated for
each commit revision: Programmer, Revision No., Date, Full
path, Filename, File extension, System, Action Type (i.e.,
Added, Deleted, Modified, Renamed), No. lines added, No.
lines deleted, No. lines changed, and Churn. We used the
definition by Hall and Munson [8] for churn: the absolute
number of changes (i.e., number of lines changed + added +
deleted) made over a number of versions of a software unit.
There were in total 2400 commits from which we extracted
these metrics. The change-related metrics were calculated by

1 https://www.microfocus.com/products/requirements-management/together

2



writing a Java program that used SVNKit (http://svnkit.com),
a library for extracting data from Subversion.

d) Task Dates: An important feature of the data on this
study is the fact that developers perform identical tasks across
systems. This means that the effect of the type of task could
be ruled out for the purposes of secondary analyses. During
the study, different features of the case study protocol were
used, one of them was daily interviews with the developers
and a study log that the PI (Principal Investigator) kept during
the entire study. Based on these two sources, it was possible to
determine per day, which tasks the developers were working
on. This can provide contextual information when analysing
the commit logs and the defect data in Trac. This data (“Task-
Dates.xls”) contains the following information: Programmer,
System, Task (i.e., 1,2,3), and Date. Detailed description of
each of the tasks is available in [5]. Note that there are
some overlapping dates between tasks or even systems. These
represent situations where the developer finished a task and
moved on to the next task or system during the same day.

B. Process for Releasing the Data

We first converted the SVN repositories into Git to allow
researchers to work off-line with the data and clone the
repositories for their own needs easily. Also, Git is con-
siderably more popular for repository analysis tools than
SVN. The Git repositories were cloned on GitLab2 instance
deployed over a VM within the Polytechnique of Montreal
infrastructure. The second task consisted of anonymising the
data. We wrote a script to remove/change the history of Git,
following instructions from3. Sensitive folders were removed
from the history using “–fitler-branch”. Then, strings con-
taining names of developers (including complete name, short
names, nicknames or parts of the name), emails, phones,
and references to Simula’s employees or infrastructure were
replaced (consistently) with a Python script using a mapping
file which contained all the patterns for the sensitive strings
and corresponding anonymised strings. The same script was
used to change the authors of the commits and re-write the
master HEAD branch (to anonymise names in the history).
For the defects, it was not possible to reinstall the Trac server
because it was previously integrated with SVN, and now we
have moved to Git. Thus, we extracted the defect reports and
published them in Zenodo.org, with the secondary data set.

IV. DATA USAGE

A. How to access the data?

The evolution history is available at the following ad-
dress: http://opendata.soccerlab.polymtl.ca/git. The researcher
should then create an account in order to access, but it should
be granted automatically4. The defect data, alongside the
secondary data, can be accessed via Zenodo, at the following
url: https://zenodo.org/record/293719.

2 https://about.gitlab.com/gitlab-com/ 3 https://goo.gl/LXtKUE 4 The
reviewers of the paper can use ’guest’ as username and ’opendata’ as password

B. How has the data been used?
The data presented in this paper has been used5 in the

doctoral dissertation by Yamashita [5]. In addition, it has been
used in the work by Yamashita & Counsell [9], where it
was investigated if code smells can be used as system-level
indicators of maintainability. Analyses reported in [10, 11]
investigate whether code smells can be used as indicators of
problematic artifacts, and to which extent can code smells
uncover maintenance problems in general. Sjøberg et al., [12]
and Soh et al., [13] also use this data set in conjunction to
additional data (e.g., interaction traces) to quantify the effect
of code smells on maintenance effort at different granularity
levels. Finally, Yamashita & Moonen [14] also use this dataset
to investigate the phenomenon of inter-smell relations in
Object Oriented systems.

C. Potential usage scenarios
a) Analysis of “repeated defects” in a multiple case

study: There is evidence that developers introduced similar
defects while working on the same system, which hints that
some defects are “meant to happen”. It could be interesting
to examine these defects and investigate the properties of the
system leading to the introduction of those defects.

b) Studies on the impact of different metrics/attributes on
software evolution: This data has primarily been used to in-
vestigate the effect of code smells on software maintainability,
but other metrics/attributes can be extracted from the systems,
and validated across the different cases.

c) Further studies of inter-smells: Explanatory and pre-
dictive models built based on the notion of inter-smells –by
using techniques such as association mining or clustering can
be contrasted to traditional, file-based analyses.

d) Cost-benefit analysis of smell removal: The reposito-
ries can be mined for the refactorings performed, and can be
contrasted to evaluate which refactorings actually “paid off”
from quality and–or change size perspectives.

e) Benchmarking of tools/methodologies: The data set
and the underlying systems can be used for benchmarking
purposes, when evaluating new tools for metrics detection,
defect extraction, or any other methodologies.

f) Task/context extraction: A possible improvement on
the data set concerns the accuracy of the time when a given
task was performed. Currently, the data only defines the date
on which a developer was working on a given task/system
(with the already mentioned “overlap” issue). It could be
valuable to experiment with techniques/tools/methods that can
allow identifying the exact context (e.g., task) at the time
of each commit. Such techniques have industrial applications
such as the one reported by [15].

D. Challenges and Limitations
a) Context of the study: The external validity of any

results stemming from this data are contingent to the context
of the study, in this case: medium-sized, Java-based, three-
layered architecture, web-based, information systems.

5 In conjunction with other qualitative data collected during the same study.

3



b) Tasks were individual: The software professionals
completed the project individually, i.e., not in teams or pair
programming. This can affect the applicability of results
obtained from this data in highly collaborative environments.

c) Time frame: The data does not fully represent a long-
term maintenance project with large tasks, given the size of
the tasks and the shorter maintenance period covered in the
study. However, tasks resemble backlog items in a single
sprint/iteration within the Agile context.

d) The age of the systems: The technology used in this
study is already nearly 10 years (14 if the original study [16] is
considered). However, there are still many industrial systems
which are even older than 14 years, and the technology
involved is still quite relevant to current software projects.

e) Tool availability: Unfortunately, the tools used for
detecting the code smells are not available anymore, thus
researchers would need to resort to alternative tools for ex-
tracting code smells, with possibly different results.

f) No explicit corrective tasks: The tasks considered ex-
plicitly in the study design are only of adaptive and perfective
nature. Thus, the corrective tasks manifested in the study are
not controlled for (i.e., they were generated from the defects
originally existing in the systems –which were of diverse
nature, and side-effects from developers’ changes).

g) Date accuracy for the task: As previously mentioned,
the data specifies the dates for which a developer worked in
a specific task/system. However, if the developer did several
commits the same day, is not always straightforward to deter-
mine to which task the commit corresponds to (in particular
commits concerning the same system).

h) Quality of the defect reports and commit logs:
Although developers were instructed to report the defects with
as much information as possible, this was not always the
case. Also, not all the commit logs were associated with an
issue (Ticket) ID. This may require in some cases, mining
techniques to link a commit to a bug fix.

i) Realism of the study: Is natural to believe that there
will be a trade-off between the degree of realism and the
degree of control in such type of studies (for a more detailed
discussion on this issue, see [5]). We believe the systems and
tasks belong to a realistic setting, and special care was put in
order to ensure as much as possible, a realistic project.

V. CONCLUSION AND FUTURE WORK

We presented a data set that has two particularities: first, it
involves six professional developers and four real-life, indus-
trial systems. Second, it was obtained from controlled, multiple
case studies designed to control for the factors: programming
skill, task and learning effect. The primary data set contains
multiple evolution histories, in the form of git repositories,
and multiple defect reports, extracted from issue tracking
systems. The secondary data consists of a series of attributes
extracted from the software systems (i.e., code smells) and

their evolution (i.e., code churn), and the dates when the
different tasks on each of the systems were conducted by the
different developers, all in the form of excel files. In future
work, we plan to: 1) release more data from this study, 2)
provide concrete guidelines for sharing diverse types of data
from software engineering studies, and 3) present a proposal
for a platform that could constitute a more intuitive approach
for sharing research data.

REFERENCES

[1] F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H. Travassos,
M. Mendonça, and S. Fabbri, “Replicating Software Engineering Ex-
periments: Addressing the Tacit Knowledge Problem,” in Proceedings of
the 2002 International Symposium on Empirical Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2002.

[2] R. M. Belbin, Management teams : why they succeed or fail.
Butterworth-Heinemann, 2010.

[3] J. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-Oriented Pro-
gram Comprehension: Effect of Expertise, Task and Phase,” Empirical
Software Engineering, vol. 7, no. 2, pp. 115–156, 2002.

[4] G. R. Bergersen and J.-E. Gustafsson, “Programming Skill, Knowledge,
and Working Memory Among Professional Software Developers from
an Investment Theory Perspective,” Journal of Individual Differences,
vol. 32, no. 4, pp. 201–209, 1 2011.

[5] A. Yamashita, “Assessing the Capability of Code Smells to Support
Software Maintainability Assessments: Empirical Inquiry and Method-
ological Approach,” Ph.D. dissertation, University of Oslo, 2012.

[6] B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus, “Variability and
Reproducibility in Software Engineering : A Study of Four Companies
that Developed the Same System,” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 407–429, 2009.

[7] R. Marinescu, “Measurement and Quality in Object Oriented Design,”
Ph.D. dissertation, Politehnica University of Timisoara, 2002.

[8] G. A. Hall and J. C. Munson, “Software evolution: code delta and code
churn,” Journal of Systems and Software, vol. 54, no. 2, pp. 111–118,
2000.

[9] A. Yamashita and S. Counsell, “Code smells as system-level indica-
tors of maintainability: An Empirical Study,” Journal of Systems and
Software, 2013.

[10] A. Yamashita, “Assessing the capability of code smells to explain
maintenance problems: an empirical study combining quantitative and
qualitative data,” Empirical Software Engineering, vol. 19, no. 4, pp.
1111–1143, 3 2013.

[11] A. Yamashita and L. Moonen, “To what extent can maintenance prob-
lems be predicted by code smell detection? An empirical study,”
Information and Software Technology, vol. 55, no. 12, pp. 2223–2242,
12 2013.

[12] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the Effect of Code Smells on Maintenance Effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
8 2013.

[13] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Gueheneuc, “Do Code
Smells Impact the Effort of Different Maintenance Programming Activi-
ties?” in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 3 2016, pp. 393–402.

[14] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 5
2013, pp. 682–691.

[15] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping Developers
Help Themselves: Automatic Decomposition of Code Review Change-
sets,” in Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE
Press, 2015, pp. 134–144.

[16] B. C. D. Anda, “Assessing Software System Maintainability using
Structural Measures and Expert Assessments,” in IEEE International
Conference on Software Maintenance, 2007, pp. 204–213.

4


