
Analyzing Program Dependencies in Java EE
Applications

Anas Shatnawi, Hafedh Mili, Ghizlane El Boussaidi, Anis Boubaker, Yann-Gaël Guéhéneuc,
Naouel Moha, Jean Privat, Manel Abdellatif

LATECE Laboratory, Université du Québec à Montréal, Montréal, Canada

Abstract—Program dependency artifacts such as call graphs
help support a number of software engineering tasks such as
software mining, program understanding, debugging, feature
location, software maintenance and evolution. Java Enterprise
Edition (JEE) applications represent a significant part of the
recent legacy applications, and we are interested in modernizing
them. This modernization involves, among other things, analyz-
ing dependencies between their various components/tiers. JEE
applications tend to be multilanguage, rely on JEE container
services, and make extensive use of late binding techniques–all
of which makes finding such dependencies difficult. In this paper,
we describe some of these difficulties and how we addressed them
to build a dependency call graph. We developed our tool called
DeJEE (Dependencies in JEE) as an Eclipse plug-in. We applied
DeJEE on two open-source JEE applications: Java PetStore and
JSP Blog. The results show that DeJEE is able to identify different
types of JEE dependencies.

Index Terms—program dependency, code analysis, Java EE
application, modernization, container services, server pages.

I. INTRODUCTION

Program dependency artifacts such as call graphs help
support a number of software engineering tasks such as
software mining, program understanding, debugging, feature
location, maintenance and evolution. Since the early 2000’s,
most new enterprise applications were developed using dis-
tributed objects, with Java technologies taking the lead. The
early generation of JEE (Java Enterprise Edition) applications
suffered from many ills due to a combination of, 1) the
inherent limitations of the technology, and 2) an improper use
of its features (see e.g. EJB antipatterns [1]). JEE applications
represent a significant part of the recent legacy applications.
We are interested in analyzing such applications to support
their modernization, including migrating them to more loosely
coupled architectures such as Service-Oriented Architectures
(SOA). This involves building several representations of such
applications that highlight different dependencies between the
application elements.

However, JEE applications present a number of character-
istics that make analysis difficult:

• they tend to be distributed and multi-tiered –as opposed to
monolithic applications– which makes tracing calls across
tiers more difficult;

• a number of (calls) dependencies are implicit in frame-
works and services offered by JEE servers/containers:
they are not ‘visible’ in the user code;

• they tend to make extensive use of late binding tech-
niques, including language-specific features (e.g. reflex-
ion package) and coding and design idioms/tricks;

• a number of dependencies will be recorded in configura-
tion files that have ad-hoc syntax, and whose semantics
are fully embodied in the tools that consume them; and

• they usually embed portions of code written in other
programming/data presentation languages other than Java.

All of these considerations mean that to get a complete
representation of relationships between program elements, we
need to augment the traditional unilingual program static anal-
ysis techniques with other kinds of analyses, involving other
kinds of artifacts, but also, possibly, involving the codification
of services offered by containers/application servers. Figure 1
illustrates this.

Many approaches were proposed in the literature to ana-
lyze program dependencies in JEE applications with different
purposes. Most of these approaches focus on a subset of JEE
technologies that is part of a tier. For examples, Naumovich
and Centonze analyzed EJBs and JEE access policies [3],
Kirkegaard and Moller focused on the analysis of Java Servlets
[4], and Zaidman supports the understanding of Ajax-based
web applications [6]. While each one of these technologies
present significant analysis challenges, in their own right,
none of the approaches attempt an integrated view of the
technologies.

In this paper, we look at some of the challenges posed
by JEE characteristics to build a dependency call graph,
and illustrate with some details the problems–and solutions–
of uncovering invocation relationships between server pages
(Servlets, JSPs and JSFs). We also give some insights on
our envisioned approach to discover dependencies related to
container services such as RMI, life-cycle management, and
persistence. We rely on the OMG’s Knowledge Discovery
Meta-model (KDM) [2] to represent different program ele-
ments and dependencies in JEE applications. To implement
our solution, we developed the DeJEE (Dependencies in JEE)
tool. DeJEE is implemented as an Eclipse plug-in based on
the MoDisco [8] tool. We applied DeJEE on two open-source
JEE applications; Java PetStore and JSP Blog. We compared
dependency call graphs resulting from DeJEE and MoDisco
tools. We find that DeJEE increases MoDisco’s recall by
detecting 70.5% more accurate program elements as well as
their related dependencies in average for our case studies.
DeJEE does not only identify a dependency call graph, but

1

Fig. 1. Java code analyses have to be complemented with the analysis of, 1) other program artifacts, and 2) services offered by the run-time infrastructure

also it detects dependencies toward program elements that do
not exist in the implementation.

The rest of this paper is organized as follows. We first
provide a short overview of the anatomy of a JEE applica-
tion (Section II). In Section III, we identify the underlying
problems at analyzing dependencies in JEE applications and
propose our solutions. We discuss the implementation and
some preliminary results of DeJEE tool on two case studies
in Section IV. Section V provides a discussion about some
important issues related to the proposed approach. Next, we
explore related work in Section VI. Finally, we present our
conclusion and future work in Section VII.

II. THE ANATOMY OF JEE APPLICATIONS

A. Overview of JEE applications

JEE applications are managed, developed and deployed
based on a multi-tier distributed model. In this context, the
application logic of a JEE application is decomposed into
a set of components distributed among different tiers based
on their functionalities. Fig. 2 shows an example of two
JEE applications that are split into four tiers: client, web,
business logic and data tiers. The client tier can be client
applications that access business logic functionalities running
on server-side machines, or HTML pages that use HTTP
requests to communicate with web tier components. The web
tier implements the presentation logic of the JEE application.
The business tier encapsulates the business logic of the JEE
application. The data tier stores the enterprise data.

JEE applications are implemented using different technolo-
gies that can be written either using normal Java code (e.g.
Servlets, JavaBeans, Managed Beans) or scripting languages
using XML tags (e.g. JSP, JSF). The different technolo-
gies communicate through various mechanisms. For instance,

clients may either use HTTP requests or Remote Method
Invocation (RMI) to request server’s provided services, while
Enterprise Beans use Java Database Connectivity (JDBC)–
or more generally, the Java Connector Architecture (JCA)–to
access the Enterprise data stored on the data tier.

Fig. 2. Architecture of multi-tiered JEE applications

2

B. Server pages in JEE applications: Servlets, JSPs, and JSFs

In web tier layer, server pages allow to extend web ap-
plication capabilities to offer clients functionalities through
HTTP requests. Server pages can be implemented based on
three JEE technologies: Servlets, JSPs, and JSFs. Servlets
represent the traditional implementation of server pages and
are implemented using normal object-oriented Java code (see
javax.Servlet and javax.Servlet.http packages in Java APIs),
while the presentation of the corresponding server pages is
realized through string parameters attached to HTTP requests
(readable by the client browser).

JSPs (JavaServer Pages) and JSFs (JavaServer Faces) are
built on the top of Java Servlets and are used for develop-
ing dynamic server-side pages based on scripting languages
(based on XML). They can contain a mix of static content
(XML/HTML tags) and dynamic content (like dynamic JSP
tags). They provide reusable components via tag libraries
(taglibs). In addition, developers are allowed to include normal
Java code fragments and to invoke external Java components
such as JavaBeans and Managed Beans. JSF enhances JSP in
several ways including its model-view-controller approach and
its componentization standards.

III. ANALYZING DEPENDENCIES IN JEE APPLICATIONS

We identified several problems during the analysis of our
two case studies. These are: 1) the various JEE technologies
conform to different (exogenous) meta-models; 2) the con-
tainer services’ related dependencies are implicit; 3) the use
of multi-language code in single source files; 4) the embedding
of dependencies in string literals; 5) the different mechanisms
to codify dependencies; and 6) the need to look in different
files to interpret dependencies.

In the remaining of this section, we explain and analyze
these problems and sketch their solutions.

A. Problem with the variety of meta-models

1) Problem: Different JEE technologies were designed for
different objectives. Therefore, they follow different meta-
models that have various structures based on the inventors’
point of views about what it is the right lexical, syntax and
semantics. As servlets are implemented using Java code, they
follow an object-oriented meta-model where their program
elements are associated to classes, methods and attributes,
and their program dependencies are mainly based on method
invocations, attribute access and object instantiations. On the
other hand, JSPs and JSFs follow an XML-based meta-model
such that their program elements are based on XML tags
that define their attributes and dependencies. This can be
generalized to other JEE technologies, including JEE container
services. Therefore, there is a need for an unifying standard
representation that is able to represent all of JEE technologies
considering their program elements and dependencies.

2) Solution: To solve the problem of the variety of meta-
models, we select to use an intermediate language-independent
meta-model. Such a meta-model should be able to offer a

common interchange format that unifies all of JEE technolo-
gies with respect to their program elements and relationships
as well. Among existing language-independent meta-models
(such as KDM [2], FAMIX [7] and Abstract Syntax Tree),
we selected KDM (Knowledge Discovery Meta-model), an
Object Management Group (OMG) standard for the following
reasons. First, it is an open specification that allows us to
extend it through a light-weight extension mechanism [22,
p. 39-46]. Second, it is able to represent software artifacts
physically and logically in terms of entities and relations at
different levels of abstraction based on the container concept.
This allows one to perform several software engineering
tasks such as software analysis, re-engineering, refactoring,
modernization, quality analysis, etc. Third, it can represent the
entire legacy software artifacts including source code, design,
configuration files, etc. For technical details about the KDM
specification please refer to [2], [22].

For KDM tool support, we considered two of the most
mature tools: MoDisco [8] and KDM Analytics [9]. However,
MoDisco is the only one that offers open-source implemen-
tation that can be extended to understand JEE dependencies.
Therefore, we used MoDisco as an underlying tool to extract
and to manipulate KDM models.

However, MoDisco suffers from two limitations. First, the
current version only supports the construction of KDM models
from to object-oriented languages like Java and C++. Although
it does permit the analysis of non-object oriented languages,
such as JSP, JSF or HTML, the concepts are extracted follow-
ing an alternate (i.e. non-KDM) meta-model. Each concept is
represented in terms of string literals. These string literals need
to be analyzed for mining dependencies within and across the
JSP and JSF pages, in addition to dependencies with other
JEE technologies including Bean components and other Java
source code.

The second problem with MoDisco is that configuration
files are statically represented as XML-based models without
interpreting their content with respect to the other software
artifacts. As a result, the KDM model produced by MoDisco
does not take into account any of the JEE framework specifics.
To address these issues, we developed a specific processor
to parse JSPs, JSFs and HTML, in order to represent them
(and their dependencies) by complementing MoDisco’s KDM
model. We define JSPs, JSFs and HTML instances in terms
of KDMEntity, and dependency instances between pages are
realized in terms of KDMRelationship.

B. Problem with codifying container services

1) Problem: JEE containers offer a number of services to
host applications such as remote method invocation (RMI),
lifecycle management, transactions, persistence, and security.
Unlike CORBA services, which developers have to explicitly
invoke through service APIs, JEE services do not require
end-user programming, but are specified declaratively through
deployment descriptors. Many such services rely on callback
methods to be implemented by application developers, to either
provide custom behavior for the service, or to notify the user

3

code that the service has been rendered. This means that
several program dependencies will not be visible in application
code. Examples1 include:

• A call on a create (or find) method on an EJB
Home object on the client side, results into calling an
ejbCreate (or ejbFind) method on the bean class,
with different return types.

• Some callback methods are not meant to be called
by user code, such as lifecycle callback methods
(ejbPostCreate, ejbActivate, etc.).

• Some methods will be triggered by the occurrence of
conditions/events, not all of which are directly traceable
to application code actions.

These examples show us that uncovering JEE container
specific dependencies is not an easy problem to solve. Even if
we the source code of the JEE server–or where able to reverse
engineer it–we would face two problems: 1) we would have to
delve into reams of code dependencies that would needlessly
clutter our dependency graph, and 2) even that would not be
enough because of the heavy reliance of the server on Java
reflection. Thus, we are better off codifying the dependencies
inherent in container services explicitly.

2) Solution: We codify the dependencies induced by
container services as a set of pattern → dependency rules,
where pattern describes a particular code configuration,
and dependency describes a dependency induced by the
container, when such pattern occurs. Referring to the first
example above:
(∀ type T s.t. isHomeInterface(T))(∀ method m ε T)
(∀ method mb ε BeanClass(EJB(T)))
((name(m) = ”create” and name(mb) = ”ejbCreate”
paramlist(m) = paramlist(mb))
→ (add dependency (T.m calls BeanClass(EJB(T)).mb)))
where isHomeInterface(.) returns true for types that
extend the EJBHome interface, EJB(.) is a function that
returns the EJB associated with the home interface T , and
BeanClass(.) is a function that takes an EJB and returns
the bean implementation class2. Practically, all of these
methods will operate on the KDM representation of the code
(see Fig. 3).

The rule above is one of the simplest ones. A study of
the main services (RMI, persistence, life-cycle management,
transaction, and security) identified the following variations:

• Some code properties are implicit in the code (e.g.
whether a type is a home interface) whereas others are
specified in deployment descriptors and configuration
files (e.g. transactional and security properties).

• Beyond the basic call, there are a number of other
interesting relationships, including, precedence without
explicit invocation, which have architectural implications.

• Differences between type-wide dependencies, and
instance-specific dependencies.

1Our examples use the EJB 1.1. and EJB 2.0 standards, unless otherwise
stated

2The Java class that implements the EntityBean interface, and the
methods of the remote interface

Fig. 3. Adding container dependencies to KDM repository

• Discretionary dependencies where the JEE standard
leaves it to the discretion of the vendor3.

Some of the dependencies we codified do not concern program
flow, per se, but reflect likely run-time behavior that is useful
for architectural purposes. The problem of container services
dependencies still requires deeper analysis and is still a work
in progress. Therefore, our tool implementation (see Section
IV) will not cover this problem.

C. Multi-language in one file to realize dependencies

1) Problem: Some JEE technologies allows to mix code
from the other JEE technologies in their implementing source
code files to realize dependencies. For example, in a Servlet,
one might use JSP and JSF code (even HTML) as string literals
given as parameters for the response object (Listing 1), while
JSPs enable to embed Java code using the scriptlet tags. The
content of a scriptlet may forward requests to another server
page (see Listing 2). Therefore, the JEE analyzer should:

1) be able to detect which files having multi-language code;
2) distinguish between the different language codes in a

given file;
3) develop a specific processor for each piece of code,

depending on its JEE technology while parsing a given
source code file; and

4) be able to detect dependencies between the different
parts written using different languages (e.g., in JSP,
defining a variable using Java code and use it in JSP
tag).

Listing 1. Inoking a relative-URL
@WebServlet("/relative-URL")
public class MyServlet extends HttpServlet {
public void service(HttpServletRequest request,

HttpServletResponse response) {
PrintWriter out = response.getWriter();
out.println("</TABLE> <FORM ACTION=\"relative-URL\">

<BIG><CENTER> <INPUT TYPE=\"SUBMIT\" VALUE=\"Proceed
to Checkout\"> </CENTER></BIG></FORM>"); } }

3For example, whether the ejbLoad method is called at the beginning of
every business method–transactional or not–or "only as needed", etc.

4

Listing 2. JSP embeds Java code to make dependencies
<jsp:scriptlet> RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("relative-URL");

dispatcher.forward(request, response); </jsp:scriptlet>

2) Solution: We use a common representation model (KDM
model) that abstracts away language and paradigm differences.
We develop an analyzer that is able to detect multi-language
code usage in a given source file. It identifies pieces of code
related to different JEE technologies. Then, it parses each
piece of code based on its technology to identify program
elements and dependencies, and represent them in the central
KDM model. We also consider detecting dependencies be-
tween program elements belonging to different technologies
in order to keep the dependency call graph connected.

D. Dependencies embedded in string literals
1) Problem: String literals are frequently used in JEE ap-

plications for several purposes such as codifying dependencies
and encapsulating parameters.

a) Codifying dependencies: In Servlets, JSPs and JSFs,
string literals are used to refer to relative-URLs that are
related to other server pages. Listing 1 shows an example of a
Servlet that use string literals that embed a dependency for a
relative-URL. String literals are also used to refer to the usage
(reference) of JavaBeans and/or Managed Beans components,
and to determine which members (attributes or methods) are
accessed in the Beans. Listing 3 shows an example of JSF
code that use string literals to refer to the myBean Managed
Beans component. In this example string literals are used in
two cases: the value entered by the end-user will be stored in
the myAttribute attribute of myBeans and the value returned
from myMethod() determines what is the relative-URL, and
thus the request will be forwarded to the server page related to
this relative-URL. As we can see, myMethod() has a parameter
(Parm) that is also based on string literals. Moreover, if we
consider the second h:commandButton, the value page1?faces-
redirect=true of the action attribute is even more complex
and needs special analysis to identify which part refers to the
name of a relative-URL (page1) and which part denotes to
parameter(s) (faces-redirect=true).

In enterprise Java Beans, clients identify interfaces re-
lated to enterprise beans using JNDI. This is based on
string literals that are given as a parameter to the lookup()
method of the Initial Context instance (e.g., initialCon-
text.lookup("java:comp/env/ejb/cart");).

Thus, we need to parse these string literals to mine mean-
ingful relative-URLs and bean’s interfaces to account for the
dependencies to the corresponding server pages and beans,
respectively.

Listing 3. Example of JSF code that use string literals to codify dependencies
<h:form>
<h:inputText id="name" value="#{myBean.myAttribute}"/>
<h:commandButton id="submit"

action="#{myBean.myMethod(’Parm’)}" />
<h:commandButton action="page1?faces-redirect=true"

value="Page1" />
</h:form>

b) Encapsulating parameters: String literals are utilized
to encapsulate parameters in requests based on an id:value
pattern. In Listing 4, the server page firstly reads three
parameters from the sender through the request object, does
its thing, and then attaches another parameter to the request.
This works as long as both the sender and the receiver agree on
parameter ids (i.e. gradeX and average in our example). Thus,
we need to verify the compatibility of the string literals used
by the sender and the receiver, which requires us to correlate
the source code of both the sender and the receiver.

2) Solution: We studied Oracle’s JEE specification to iden-
tify where string literals could be used to codify dependencies.
For JSPs and JSFs, we made a list of tags and their attributes
that are related to program dependencies to server pages and
Bean components. For example, that list includes the action
attribute of the form tag, since its value corresponds to a
relative-URL corresponding to a server page. For Servlets,
we develop a lexical analyzer that is able to process the
string literals used inside the Java implementation of Servlets,
and identifies what relative-URLs are invoked in these string
literals. This lexical analyzer is built based on XML concepts
(i.e. tags and attributes). In our example in Listing 1, it returns
"relative-URL".

Listing 4. Example of encapsulating paramerts using string literals
<!-- read parameters as a receiver -->
<% int grade1 = request.getParameter("grade1");
int grade2 = request.getParameter("grade2");
int grade3 = request.getParameter("grade3"); %>
<!-- send a parameter as a sender -->
<% double avg= (double) (grade1 + grade2 +grade3)/3.0;
request.setAttribute("average", avg); %>

Listing 5. Differnt mechanisms for invoking relative-URLs in JSPs and JSFs
// In JSPs:
<jsp:include page="relative-URL" flush="true" />
<%@ include file="relative-URL" %>
<jsp:directive.include file="relative-URL" />
<jsp:forward page="relative-URL"> </jsp:forward>
<c:redirect url="relative-URL"> </c:redirect>
<c:url value="relative-URL" var="completeURL"> </c:url>
<%@ page errorPage="relative-URL" %>
<jsp:directive.page errorPage="relative-URL"/>
// In JSFs:
<h:commandButton id="submit" value="Submit"

action="/myPage.jsp"/>
<h:commandLink value="LINk" action="/myPage.jsp"/>
Message

Listing 6. JSP page invokes a relative-URL using a HTML form
<form action="relative-URL" method="get">
Name: <input type="text" name="name">

<input type="submit" value="Submit">
</form>

E. Different mechanisms to codify dependencies

1) Problem: Different JEE technologies use different mech-
anisms to codify dependencies. Although Servlets, JSPs and
JSFs represent different implementation styles to achieve
similar results, they use different mechanisms to invoke
each other through their relative-URLs. Servlets invoke
relative-URLs based on API calls of the standard-interface

5

javax.Servlet.RequestDispatcher such that the relative-URL is
given as a string parameter to the getRequestDispatcher()
method. JSPs and JSFs invoke relative-URLs in five and
three different ways, respectively (see Listing 5). Furthermore,
these tags use different attributes to parametrize relative-
URLs. For instances, <jsp:include> uses the page attribute,
while <%@ page%> and <jsp:directive.page> use errorPage
and <jsp:directive.include> uses the file attribute. Thus, it is
required to identify all of these mechanisms to be able to
capture and to codify all dependencies during the analysis of
JEE applications.

Moreover, JEE technologies have many versions. Newer
versions preserve backward compatibility and allow develop-
ers to use older tags to codify dependencies. For instance,
The scriptlet tag can be of two equal forms; <% ... %> and
<jsp:scriptlet> ... </jsp:scriptlet>. Moreover, Servlets, JSPs
and JSFs still use other old technologies to codify dependen-
cies such as the traditional HTML form (see Listing 6). Thus,
several codification mechanisms coexist and can be used to
perform a single task. This requires to analyze all versions
of each JEE technology to identify how each version codifies
dependencies.

2) Solution: By analyzing the JEE specification, we iden-
tified all the mechanisms that could be used for codifying
dependencies. Additionally, we consider analyzing all versions
of Servlets, JSPs and JSFs, in addition to HTML during
parsing server pages.

For JSPs and JSFs tags, we build an abstract simple table
that abstracts the syntax variants for defining and refining these
tags (respectively their attributes). For Servlet API calls, we
parse the string parameter to identify relative-URLs. We also
consider the mix of many technologies together (e.g., when a
JSP uses normal Java code).

F. Need to look into different places to interpret dependencies

1) Problem: In order to identify dependencies in JEE
applications, it does not suffice to analyze the source code files
but one must also consider configuration files. As an example,
Fig. 4 illustrates the several files we need to consider in order
to map a relative-URL to the corresponding Servlet. To make
things worse, this set of files to be analyzed depends on the
specific JEE revision we are considering in the analysis. For
example, we first need to visit a server page file4 to identify
a group of relative-URLs that have been invoked. These
relative-URLs are mapped to server pages either using the
web.xml file and/or @WebServlet annotation5. Consequently,
it is essential to visit (and parse) web.xml (located in the
WEB-INF/ directory of a JEE application) and @WebServlet
annotations (within the Servlet’s source code).

This is also the case with EJBs, for which we need to visit
(and parse) both the ejb.xml and the Java implementation of
EJBs in order to identify the type of a given bean (session
or entity), what is the home interface, the type of persistence

4Servlets are located in Java Resources, JSPs and JSFs are located in
WebContent resources

5Starting from Servlet 3.0 specification

(bean-managed or container-managed) and so on. For JSFs
and Managed Beans, we have different configuration files to
be analyzed (the faces-config.xml).

Therefore, we need to identify the set of files to be analyzed,
their structure and their location, in order to detect each type
of dependencies.

Fig. 4. Visiting different places to map a relative-URL to the corresponding
Servlet

2) Solution: For each dependency, we identified the set of
files that need to be parsed to extract this dependency. For
example, we need to parse the implementation of Servlets,
JSPs and JSFs as well as the web.xml configuration file to
detect dependencies in server pages. Then, we identified what
information needs to be considered form each file. In web.xml,
we consider five elements to identify mappings between
server pages and relative-URLs, namely: <Servlet>, <Servlet-
mapping>, <Servlet-class>, <jsp-file> and <url-pattern>.
Then, we developed a parser to extract the needed information
from each file. Finally. we built a look-up table that maps
each relative-URL to its corresponding server page(s). The
same process is applied to the other kind of dependencies like
JavaBeans and Managed Beans mapping.

In Table I, we present the list of configuration files that
need to be parsed to analyze dependencies in different JEE
technologies. We also provide examples of some XML tags
that need to be analyzed.

IV. DEJEE TOOL

We developed a tool called DeJEE (Dependencies in JEE)
that implement our solution. DeJEE is applied on two case
studies to demonstrate the applicability of our approach to
identify dependencies in JEE applications.

A. DeJEE implementation

We developed DeJEE as an Eclipse plug-in that extends
MoDisco6 tool. DeJEE supports the representation of multi-
language code of JEE technologies in one common KDM
model. The resulting KDM model is able to include program
elements and their related dependencies existing across and
within Java code, Servlets, JSPs, JSFs, JavaBeans and Man-
aged Beans technologies. Based on this common KDM model,
we extract a dependency call graph.

6Available at https://eclipse.org/MoDisco/

6

TABLE I
LIST OF CONFIGURATION FILES NEEDED TO ANALYZE DIFFERENT JEE TECHNOLOGIES

JEE Technology Coniguration file(s) Example of some important attributes
JSP web.xml <Servlet>, <Servlet-name>, <jsp-file>, <Servlet-mapping>, <error-page>, <url-pattern>,

<init-param>, <param-name>, <param-value>, <welcome-file-list>
JSF faces-config.xml and web.xml <navigation-rule>, <from-view-id>, <navigation-case>, <from-action>, <from-

outcome>, <to-view-id>
Servlets annotation and web.xml <Servlet>, <Servlet-name>, <Servlet-class>, <Servlet-mapping>, <error-page>, <url-

pattern>, <init-param>, <param-name>, <param-value>,<welcome-file-list>
EJBs annotation, web.xml, ejb.xml, ejb-jar.xml,

orion-ejb-jar.xml, toplink-ejb-jar.xml,
ejb3-toplink-sessions.xml, persistence.xml
...

<enterprise-beans>, <session>, <ejb-name>, <env-entry>, <env-entry-name>, <env-
entry-type>, <env-entry-value>,<ejb-ref>, <ejb-ref-name>, <ejb-ref-type>, <home>,
<remote>

Managed Beans annotation and faces-config.xml <managed-bean>, <managed-bean-name>, <managed-bean-class>, <managed-bean-
scope>, <managed-property>, <property-name>, <value>

tag libs web.xml <taglib>, <taglib-uri>, <taglib-location>

B. Case studies

1) Subject: As case studies, we selected two JEE projects
publicly available, namely Java PetStore [20] and JSP
Blog[21]. Java PetStore is the official Sun Microsystems’
showcase example to demonstrate how to develop flexible,
scalable, cross-platform JEE applications. We selected Java
PetStore due to: 1) the availability of both its source code and
documentation, and 2) its coverage of several JEE technolo-
gies including JSP pages, Java Servlets, Enterprise JavaBeans
(EJB), and Java Message Service (JMS) technologies. The
implementation of Java Pet Store consists of 88 JSP pages,
233 normal Java classes and 8 HTML pages.

JSP Blog is a web-blogger that is developed based on
JSP technology using the Tomcat server and MySQL as
a persistence backend. The implementation of JSP Blog is
composed of 10 JSP pages and 1 HTML page. We selected
this application as these JSP pages make heavy use of multi-
language code (mixing normal Java code in JSP pages), and do
not rely on normal Java classes, which will let us expose the
limitations of existing tools. Thus, it is considered as a good
case study to evaluate how DeJEE works with these multi-
language files.

2) Method: We aim to show two aspects: 1) the ability
of DeJEE tool to codify problems underlying dependencies
an analysis in JEE applications, and 2) How much DeJEE
extends MoDisco to identify more program elements and
dependencies. To do so, we have executed both MoDisco
and DeJEE and noted the differences between each tool’s
results. At each run, we have parametrized DeJEE to focus
independently on each of the aforementioned problems. Then,
we verified the relevancy of the dependencies that were only
detected by DeJEE.

3) Result:
a) The ability of DeJEE to codify dependencies: For Java

PetStore, we identify 40 JSP pages having multi-language code
composed of HTML tags, JSP tags and normal Java code7.
These represent 45.4% of the total number of JSP pages. In
JSP Blog, we identify 6 JSP pages mixing normal Java code

7These results do not include yet dependencies related to container services
(see Section III-B) as these are still a work in progress.

inside JSP tags that makes 54.5% (6/11) of its implementing
files. Dependencies in JSP Blog can be mainly classified into
two categories. The first refers to dependencies implemented
in Java code based on normal Java dependencies (method
invocation, object instance, etc.). The second category refers
to dependencies implemented in JSP tags. We identify three
tags in this category. These are ,
<%@ include file="relative-URL" ... %> and <form action
= "relative-URL"... >, which are used 15, 1, and 4 times,
respectively. As a result of parsing these dependencies, we
identified 41 program dependencies that are realized in the
Java code using scriptlet, and 20 program dependencies are
realized using other JSP tags.

In server pages of Java PetStore and JSP Blog, DeJEE
respectively identifies 1541 and 204 string literals in total such
that each server page contains 17.51 and 18.54 string literals in
average. Dependencies are embedded in 46.7% (720/1541) and
31.8% (65/204) of these string literals for Java PetStore and
JSP Blog respectively. The results show that 20.4% and 12.7%
(26/204) of string literals embed dependencies to other source
code files, while 26.2% and 19.1% (39/204) are used for
passing parameters of Java PetStore and JSP Blog respectively.

As results of codifying these problems, DeJEE discovers
329 and 11 instances of KDMEntity for representing program
elements related to Java code, JSP and HTML files, as well
as 315 and 61 instances of KDMRelationship for represent-
ing program dependencies in server pages, respectively for
JavaPetStore and JSP Blog.

b) How much DeJEE extends MoDisco: DeJEE provides
a dependency call graph such that KDMEntity instances repre-
sent the set of nodes and KDMRelationship instances represent
the set of links. For JSP Blog case study, Fig. 5 shows
the resulting dependency call graph from DeJEE tool, from
which we exclude external dependencies (e.g., those related to
Java APIs). DeJEE goes beyond our expectation and detects
dependencies toward program elements that are missing from
the project code, that are undetected at compile time, but
will lead to run-time errors if execution takes it down that
path (references to missing JSP pages delnews.jsp, edituser.jsp
and deluser.jsp). As MoDisco’s KDM model does not support
server pages, the resulting KDM model related to JSP Blog has

7

0 KDMEntity and 0 KDMRelationship instances. Therefore,
we do not have a dependency call graph.

For Java PetStore, MoDisco produces a KDM model rep-
resenting only the Java implementation side. Thus, its call
graph consists of 233 nodes corresponding to Java classes. On
the other hand, DeJEE includes server pages and Java classes
in its KDM model. Therefore, DeJEE’s call graph contains
329 nodes. As a result, our approach increases MoDisco’s
recall by detecting 41% ((329-233)/233) and 100% ((100-
0)/100) more accurate program elements as well as their
related dependencies respectively for Java PetStore and JSP
Blog.

Fig. 5. Dependency call graph of JSP Blog resulting from DeJEE tool

V. DISCUSSION

In this section, we discuss some important issues to be
considered regarding our approach. These are: 1) the correct-
ness and the coverage of our approach, 2) the prevalence of
the various dependencies, 3) Difficulties that we face during
parsing configuration files, 4) Java reflexion with string literals,
5) user-defined tag libraries and 6) dependencies can be
common in other web technologies.

A. Correctness and coverage of our approach

We studied Oracle’s JEE specification to identify how
dependencies can be codified to take into account different
versions of the JEE technologies. For example, for JSPs, we
identified the different ways that a JSP page can invoke another
JSP page. In terms of coverage, that represent 100% of pure
specific inter-JSP dependencies.

We manually evaluated the resulting call graph. For each
link, we examined the implementation of the corresponding
two nodes to verify that the produced dependency is relevant.
We found that all links refer to real dependencies with
100% precision. Furthermore, we tested our tool using many

examples to validate its ability to capture such dependencies
(for example, <form action="relative-URL"> meaning that we
have 100% of a static reference to the service page related to
this relative-URL).

Unfortunately, we cannot measure the recall of our approach
due to the lack of full dependency call graph corresponding to
the selected case studies where we can measure if we really
codified all of the dependencies (i.e., we cannot know if we
have false positives).

B. Prevalence of the various dependencies

The dependencies that we codified are frequently used
in JEE applications. The prevalence of the various kind of
dependencies depend on application type, use of frameworks,
and design quality. For example, Servlets, JSPs and JSFs use
string literals a lot for several reasons. For JSPs and JSFs,
tags are described based on attributes whose values are based
on string literals. Servlets use string literals to embed HTML
and JSP tags in the request object that can be handled on the
client-side.In our case studies, the results show that 100% of
server-page- dependencies are codified based on string literals
that require to be lexically compared. EJBs are referenced
in the clients’ codes based on string literals. Relative-URLs
represent the common protocol used for communication be-
tween different server pages regardless of the implementa-
tion programming language (similar to method invocations
in object-oriented languages). In our case studies, relative-
URLs represent 100% of the interdependencies between server
pages. For JavaBeans components, JSP Blog does not have any
JavaBeans, while server pages of Java PetStore reference to
JavaBeans components 26 times. The case of multilanguage
in one file is realized in 49.9% ((45.4%+54.5%)/2) of server
pages of our case studies.

C. Difficulties in parsing configuration files

For JSP Blog, the web.xml file is used to configure the
welcome page and to define references to 4 tag libraries (.tld
configuration files) and one jar file. There are no JSPs to
relative-URLs mapping in web.xml. The developers directly
use the names of JSP pages as references (e.g., addnews.jsp).

For Java PetStore, identifying dependencies in configuration
files is a more complicated task compared to the case of
JSP Blog as the developers did not use direct mapping
of server pages. The design of Java PetStore is based on
several sub-projects. We identified 3 web.xml files that
correspond to different sub-projects. Each one uses different
mapping style. In petstoreadmin subproject, web.xml maps all
relative-URLs to one Java Servlet (AdminRequestProcessor).
AdminRequestProcessor maps the requests programmatically
into four different JSP pages based on a conditional statement
evaluated against parameter values embedded in the HTTP
request. The mapping is directly to the name of JSP pages.
This means that we do not need further processing in this
case as their dependencies can be detected by our string
literal parser. In the second sub-project, web.xml file maps all
requests to the MainServlet.java Servlet class that does the

8

mapping task. The mapping of relative-URLs to server page is
defined in a Map instance and, to identify these mappings, we
need to resort to data-flow analysis. In the third sub-project,
web.xml file also maps all requests to another MainServlet.java
Servlet class. Then, this MainServlet.java reads another xml
files (e.g., screendefinitions.xml, screendefinitions.xml and re-
questmappings.xml) for doing the mapping using requestMap-
pingsURL = getServletContext().getResource("/WEB-
INF/xml/requestmappings.xml").toString();. These files
do not follow a standard format. Thus, we have to study them
for identifying patterns corresponding to their structures.
These patterns are then given to our analysis tool to be able
to detect relative-URL-to-server-page-mappings.

D. Java reflexion with string literals

Some dependencies might be expressed as string literals
using the Java Reflexion mechanism. These literals will then
be replaced, at run-time, by the actual class/method towards
which the request should be redirected. In order to identify
such dependencies, a data-flow analysis is then required to
evaluate those strings passed as parameters (for example, the
target of a relative-URL). However, if the string is constructed
with user input (for example, the concatenation of a variable
and string input by the user), then data-flow analysis will not
be enough. We have to evaluate how much/frequent a problem
that is. This will affect the recall of our approach.

E. User-defined tag libraries

In some cases, developers develop their own tag libraries
in terms of template, and then they use these template in
their source code. Some of these tags could codify depen-
dencies. As a real example from PetStore JEE applicatiopn8,
the developers override the HTML form in their tag library
to be called PrevFormTag (can be used as <j2ee:prevForm
action="relative-URL"> ... </j2ee:prevForm>). Such override
dependencies need farther processing to be caught.

F. Dependencies can be common in other web technologies

Among dependencies that we addressed in this paper, we
can generalize some of them for other programming languages
and technologies. For example, relative-URLs are used as a
communication protocol in all type of server pages regardless
of the used programming language. Therefore, our approach
of capturing dependencies related to relative-URLs can be
used for other web applications (JavaScript, PHP ...). The
same case is applied for dependencies embedded in string
literals. The lexical analyzer can be used to parse other
technologies and programming languages by providing it the
set of patterns that the string literals are used and composed.
Moreover, the resulting KDM model is language-independent
one which allows to easily extend our approach for including
other programming languages such as JavaScript and PHP.

8https://docs.oracle.com/cd/E17802_01/blueprints/blueprints/code/jps11/src/
com/sun/j2ee/blueprints/petstore/taglib/list/PrevFormTag.java.html

VI. RELATED WORK

Several approaches were proposed to target the analysis
of web applications with different purposes. Most of these
approaches focus on a subset of technologies. The approach
in [3] analyzes EJBs and JEE access policies to find incon-
sistencies. It relies on static analysis and it uses graphs to
represent the extracted information. However, this approach is
limited to retrieving objects, the fields they are manipulating
and the methods that load or store these fields. With the
purpose of checking a number of desirable properties of web
applications, the approach in [4] focused on the analysis of
Servlets. To analyze the behavior of an application, grammars
are built to approximate the output of Servlets and they are
translated into XML graphs. Cloutier et al. [5] proposed WAVI
(WebAppViewer), a reverse engineering tool for retrieving
and documenting the structure of a web application. The tool
uses static analysis to retrieve dependencies and a number of
heuristics to specifically resolve function calls in JavaScript.
FireDetective [6] is a tool that supports the understanding of
Ajax-based web applications. The tool uses dynamic analysis
to retrieve execution traces on both client and server sides and
it visualizes them.

On the multi-language analysis front, we cite the work of
Mayrhauser and Vans who studied various program compre-
hension models and sketched an integrated model that can
be used to explain developers’ comprehension of components
written in any programming language [10]. Müller and his
group developed Rigi, an environment to reverse engineer,
explore, visualize, and re-document components in C, C++,
or COBOL, but in isolation from one another [11]. Moise and
Wong were among the first researchers to extract, represent,
and study cross-language dependencies [12] (see also [13]
[14]). They used the API provided by each language to identify
cross-language calls, e.g., calls to Java Native Interface API
in C and Java. Kraft et al. developed a technique to identify
cross-language clones using the Microsoft CodeDOM library
for .NET languages and a hybrid token/tree-based algorithm
for clone detection [15]. They reported clones whose siblings
exist in components written in both C# and Visual Basic.NET.
German and Hassan described five possible kinds of dependen-
cies between (heterogeneous) components (linking, forking,
subclassing, inter-process communication, and plugin) and
identified these in 124 open-source software systems [16]. Us-
ing the identified component dependencies and their licenses,
they proposed 12 patterns of license integration. Mayer and
Schroeder proposed a technique based on the MOF Query,
View, Transformation Relations specification (QVT/R) to iden-
tify dependencies among heterogeneous components, warn
of potential missing dependencies, and propagate renamings
among heterogeneous components [17]. This approach targets
the Java ecosystem and it focuses on discovering artifacts
and binding them. However, the bindings are mostly based
on artifacts names. Ayers et al. [18] proposed TraceBack to
diagnose bugs in multi-language software by collecting data
through run-time instrumentation of control-flow blocks. The

9

data is collected by statically rewriting the binaries and/or
instrumenting the intermediate languages to generate a unified
trace of the components’ execution. However, dynamic analy-
sis is expensive to setup and does not guarantee full relations
(missing of usage scenarios). Yazdanshenas and Moonen [19]
built homogeneous KDM models of heterogeneous systems,
with components in C, C++, and Java and configuration files
in XML. They used these models to obtain system dependency
graphs and sliced these graphs to show if a given input is used
to produce the expected output, typically in sensor/actuator
systems and other such component-based systems. However,
their approach considered only programming languages fol-
lowing object-oriented meta-model (as does MoDisco [8]), dis-
regarding JSPs, JSFs and other non object-oriented languages.

Though all these approaches contribute largely to support
the understanding and analysis of web applications, none of
these approaches tackle all the technologies found in JEE
application tiers. To the best of our knowledge, none of the
existing approaches tackled the problem of codifying container
service dependencies.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

Program dependency artifacts such as call graph supports a
number of key software engineering tasks including software
mining, program understanding, debugging, feature location,
maintenance and evolution. Static code analysis can be quite
challenging when dealing with single-language monolithic
applications–depending on the language (e.g. typed or not)
and the task at hand (e.g. understanding versus data flow
analysis). Things get far more complicated when dealing with
multi-language systems such as JEE applications. Further,
JEE applications rely on JEE container services that, in the
process of hiding/abstracting the complexities of the run-time
infrastructure, end up hiding some useful dependencies. These
dependencies need to be identified, in order to improve the
accuracy of the other software engineering tasks. In this paper,
we highlighted the major difficulties in analyzing dependencies
across key JEE technologies (Servlet, JSP, JSF, and EJBs), and
presented our strategies for addressing them.

To implement our solution, we developed a tool called
DeJEE (Dependencies in JEE) as an Eclipse plug-in. We
reused the KDM APIs offered by MoDisco. We applied
DeJEE on two open-source JEE applications. The results show
that DeJEE is able to detect different type of dependencies
that MoDicso does not. Also, DeJEE detects dependencies
toward program elements that do not exist in the application
implementation.

B. Future Work

We are extending our work in four research directions.
These are:

1) Generalization from JEE applications to multi-language
applications: The problems encountered with JEE applica-
tions are common to modern legacies which also tend to be

multi-language, and also rely on various frameworks, middle-
wares, and container services, which relieve application devel-
opers from the complexities of the run-time environment, but
also obfuscate dependencies that would otherwise help explain
functional dependencies and run-time behavior. The principles
underlying our solutions should apply to other recent legacies.

2) The application of the resulting dependency call graph:
Thanks to the thoroughness and precision of the dependencies
that we are uncovering, we are exploring other uses for the
program dependency graphs that we are building, including:
1) help with program understanding tasks, 2) change impact
analysis, and 3) performance engineering–thanks, in part, to
the codification of container services.

3) Extending DeJEE tool to include all dependencies in
JEE applications: The current implementation of DeJEE tool
does not support the codification of dependencies related to
container services. We are currently working on that. More-
over, JEE allow developers to use other programming lan-
guages inside the implementation of JEE applications such as
JavaScript code. DeJEE does not cover dependencies existing
in these other languages and we plan to consider them in our
future work.

4) Experimenting with large number of case studies: To
generalize the results of our approach for other JEE appli-
cations, we need to evaluate it with a large number of JEE
applications. Different JEE applications can be implemented
using different sets of JEE technologies following different
design patterns by developers with various knowledge and
experience levels. Therefore, we want to collect a large set
of JEE applications as case studies developed for various
purposes by different developers. We aim to study two main
aspects. First, we will study the impact of design patterns on
the correctness and coverage of our approach. To do so, we
will classify the case studies based on their design patterns.
Then, we will identify what design patterns are covered by
our approach, and will address the other design patterns.
Second, we want to generalize that our approach is able
to identify dependencies in JEE applications, regardless the
design patterns or the technologies used for their development.

5) The evaluation of our approach by human experts: We
demonstrated the applicability of our approach through the
most common ways that developers used for developing JEE
applications (Java PetStore that represents the official demon-
stration offered by Oracle and several representative examples
taken form the JEE specification offered by Oracle). However,
the resulting dependency call graph should be validated using
external human experts. Therefore, we plan to validate our
results using the help of human experts. We will try to contact
the developers of case studies to evaluate the resulting call
graphs. Otherwise, we will select a number of master and
PhD students to study the case studies in order to be able to
evaluate the resulting call graphs.

REFERENCES

[1] Bill Dudney, Stephen Asbury, Jospeh K. Krozak, and Kevin Wittkopf.
J2EE Antipatterns. Wiley, 2003.

10

[2] Ricardo Pérez-Castillo, Ignacio Garcia-Rodriguez De Guzman, and
Mario Piattini, "Knowledge Discovery Metamodel-ISO/IEC 19506: A
standard to modernize legacy systems," Computer Standards & Inter-
faces, 33(6):519–532, 2011.

[3] Gleb Naumovich and Paolina Centonze, "Static analysis of role-based
access control in j2ee applications," ACM SIGSOFT Software Engineer-
ing Notes, 29(5):1–10, 2004.

[4] Christian Kirkegaard and Anders Møller, "Static analysis for java
Servlets and jsp," In International Static Analysis Symposium, pages
336–352. Springer, 2006.

[5] Jonathan Cloutier, Sỳgla Kpodjedo, and Ghizlane El Boussaidi, "Wavi:
A reverse engineering tool for web applications," In IEEE 24th Inter-
national Conference on Program Comprehension (ICPC), pages 1–3.
IEEE, 2016.

[6] Andy Zaidman, Nick Matthijssen, Margaret-Anne Storey, and Arie
Van Deursen, "Understanding ajax applications by connecting client
and server-side execution traces," Empirical Software Engineering,
18(2):181–218, 2013.

[7] Tichelaar Sander, Stéphane Ducasse and Serge Demeyer, "FAMIX:
Exchange experiences with CDIF and XMI," In Proceedings of the ICSE
2000 Workshop on Standard Exchange Format (WoSEF 2000), 2000.

[8] Bruneliere, Hugo, Jordi Cabot, Grégoire Dupé and Frédéric Madiot,
"Modisco: A model driven reverse engineering framework," Information
and Software Technology, 56 (8):1012–1032, 2014.

[9] KDM Analytics, ww.kdmanalytics.com, visited in 2016.
[10] A. von Mayrhauser. "Program comprehension during software mainte-

nance and evolution," In IEEE Computer, 28(8):44–55, 1995.
[11] H. M. Kienle and H. A. Mllër. "Rigi–an environment for software

reverse engineering, exploration, visualization, and redocumentation".
In Science of Computer Programming, 75(4):247–263, 2012.

[12] D. L. Moise and K. Wong. "Extracting and representing cross-language
dependencies in diverse software systems," In Proceedings of the 12th
Working Conference on Reverse Engineering. IEEE Computer Society
Press, November 2005.

[13] L. Deruelle, N. Melab, M. Bouneffa, and H. Basson. "Analysis and
manipulation of distributed multi-language software code," In Proceed-
ings of the 1st International Workshop on Source Code Analysis and
Manipulation, pages 45–56. IEEE Computer Society Press, November
2001.

[14] P. K. Linos, Z. hong Chen, S. Berrier, and B. O’Rourke. "A tool for
understanding multi-language program dependencies," In Proceedings
of the 11th International Workshop on Program Comprehension, pages
64–72. IEEE Computer Society Press, May 2003.

[15] N. A. Kraft, B. W. Bonds, and R. K. Smith. "Cross-language clone detec-
tion," In Proceedings of the 20th International Conference on Software
Engineering and Knowledge Engineering., pages 54–59. Knowledge
Systems Institute, July 2008.

[16] D. M. German and A. E. Hassan. "License integration patterns: Ad-
dressing license mismatches in component-based development," In Pro-
ceedings of the 31st International Conference on Software Engineering,
pages 188–198. ACM Press, May 2009.

[17] Philip Mayer and Andreas Schroeder, "Automated multi-language ar-
tifact binding and rename refactoring between java and dsls used by
java frameworks," In European Conference on Object-Oriented Pro-
gramming, pages 437–462. Springer, 2014.

[18] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel.
"Traceback: first fault diagnosis by reconstruction of distributed control
flow," In Proceedings of the 26th conference on Programming language
design and implementation. pages 201–212. ACM Press, June 2005.

[19] A. R. Yazdanshenas and L. Moonen. "Crossing the boundaries while
analyzing heterogeneous component-based software systems," In Pro-
ceedings of the 27th International Conference on Software Maintenance,
pages 193–202. IEEE CS Press, September 2011.

[20] Sun MicroSystems, Java Pet Store, http://www.oracle.com/technetwork/
java/petstore1-3-1-02-139690.html, last access: Feb. 8th 2017.

[21] JSP Blog, http://jspblog.sourceforge.net, last access: Feb. 8th 2017.
[22] Object Management Group, "Architecture-Driven Modernization:

Knowledge Discovery Meta-Model (KDM), v. 1.3".

11

http://www.oracle.com/technetwork/java/petstore1-3-1-02-139690.html
http://www.oracle.com/technetwork/java/petstore1-3-1-02-139690.html
http://jspblog.sourceforge.net

	Introduction
	The Anatomy of JEE Applications
	Overview of JEE applications
	Server pages in JEE applications: Servlets, JSPs, and JSFs

	Analyzing Dependencies in JEE Applications
	Problem with the variety of meta-models
	Problem
	Solution

	Problem with codifying container services
	Problem
	Solution

	Multi-language in one file to realize dependencies
	Problem
	Solution

	Dependencies embedded in string literals
	Problem
	Solution

	Different mechanisms to codify dependencies
	Problem
	Solution

	Need to look into different places to interpret dependencies
	Problem
	Solution

	DeJEE Tool
	DeJEE implementation
	Case studies
	Subject
	Method
	Result

	Discussion
	Correctness and coverage of our approach
	Prevalence of the various dependencies
	Difficulties in parsing configuration files
	Java reflexion with string literals
	User-defined tag libraries
	Dependencies can be common in other web technologies

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work
	Generalization from JEE applications to multi-language applications
	The application of the resulting dependency call graph
	Extending DeJEE tool to include all dependencies in JEE applications
	Experimenting with large number of case studies
	The evaluation of our approach by human experts

	References

