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Preface

The introduction of VHDL in 1987 and SystemC in 1999 gave a big boost to the
Electronic Design Community and played an important role in the development of
System Level Design. We were involved with both processes early on. Rich with
the experience with these two environments, we wanted to explore new frontiers that
can enforce these systems and hopefully constitute a synergy with them. This results
in the development of ESys.NET in 2003.

This book had its origin in the overall work done at the Université de Montréal,
on the system level design environment named ESys.NET. It is based on the .NET
framework and brings a better management of metadata, introspection, and interop-
erability between tools. The interoperability is one of the most important aspects
of frameworks such as .NET. It enabled us to develop for example assertions based
observers of ESys.NET models without any interference with the modeler. This can
be seen as enabling separation of concerns.

Encouraged by our experience with ESys.NET, we continued our efforts to try to
build a bridge between advances in the software community and the needs in the
EDA community for new ideas and algorithms. We pursued the development of
our environment by exploring new mechanisms such as transaction modeling to help
in distributed simulation, or Web Semantics to help with IP (Intellectual Property)
reuse.

The collaboration between the SLS group of TIMA in Grenoble (France) and the
LASSO group in Université de Montréal was a determining factor in the comple-
tion of this work. While the two groups have the same global objectives, they have
complementary strengths. The LASSO groups is more focused on modeling and
verification, while the SLS group has a valuable expertise in architecture, System on
Chip and code generation. Both have also a common interest in accurate and efficient
simulation. Sabbatical stays and exchanges helped to strengthen this collaboration.

This work summarizes our efforts and covers three main parts: (a) modeling and
simulation, including requirements specification, IP reuse, and applications of de-
sign patterns to Hardware/Software systems; (b) simulation and validation, cover-
ing Transaction-based models, accurate simulation at cycle and transaction levels,
cosimulation and acceleration techniques, and timing specification and validation;
(c) practical use of the ESys.NET environment concludes this work.

We would like to thank all the authors for their timely response and the numerous
iterations to complete their respective chapters.

Readers are encouraged to visit the companion website http://www.esys-net.org/
and send us their comments to enrich it.
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Abstract For half a century, hardware systems have become increasingly com-
plex and pervasive. They are not only found in satellite navigation systems or au-
tomated factory machinery but also in everyday cell-phone, parc-o-meter, and car
control-and-command systems. This increase in the use of hardware systems led
to a revolution in their design and implementation: the chips are becoming more
and more powerful, their logics is implemented as software systems executed by the
chips, thus helping system designers to cope with their complexity.

These mixed hardware–software systems raise the level of generality of the “hard-
ware part” and the level of abstraction of the “software part” of the systems. Thus,
they suggest that mainstream software engineering techniques and good practices,
such as design patterns, could be used by system designers to design and implement
their mixed hardware–software systems.

This chapter presents a proof of concept on “translating” the solutions of design
patterns into hardware concepts to alleviate the system designers’ work and, thus, to
accelerate the design of mixed hardware–software systems. This chapter opens the
path towards a new kind of hardware synthesis.
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4.1 Introduction
For half a century, hardware systems have become increasingly complex and per-

vasive. They are not only found in satellite navigation systems or automated fac-
tory machinery but also in everyday cell-phone, parc-o-meter, and car control-and-
command systems. This increase in the use of hardware systems led to a (r)evolution
in their design and implementation: the chips are becoming more and more powerful,
their logics is implemented as software systems executed by the chips, thus helping
system designers to cope with their complexity.

These mixed hardware–software systems raise the level of generality of the “hard-
ware part” and the level of abstraction of the “software part” of the systems. Thus,
they suggest that mainstream software engineering techniques and good practices,
such as design patterns, could be used by system designers to design and implement
their mixed hardware–software systems.

As a variable may match a register, we propose a mapping between design patterns
and a hardware implementation. System designers could use this mapping when de-
signing and implementing their mixed hardware–software systems to translate the
solution of a design pattern into its appropriate hardware counter-part. Thus, design-
ers would benefit for their systems of the good practices embodied by design patterns
from software design.

This chapter presents a mapping to “translate” some design patterns into hardware
concepts to alleviate the system designers’ work and, thus, to accelerate the design
and quality of mixed hardware–software systems. It focuses on interesting and chal-
lenging concepts to foster future research, without trying to be exhaustive.

Design patterns are “good” solutions to recurring design problems in software
design. We only consider the design patterns originally defined by Gamma et al.
[89], because these patterns are well-defined, well-known, and the subject of many
work in the software engineering community. With the beginning of the 21st century,
design patterns began to emerge in the system design domain [51, 23].

However, the main challenge of mapping design pattern into hardware systems is
that existing design patterns relate to object-oriented systems. Therefore, as a first
approach of translating design patterns from software into hardware, we consider that
we first build an “object system”—a representation of an object into the hardware
world. As there are several ways of designing and implementing a processor, there
is not only one way to build an object system.

This chapter is not a catalog of recurring hardware design patterns because such
a catalog should be compiled by the community based on the hardware designers’
experience and is therefore out of the focus of this chapter.

Motivating Example. Consider as example the problem of a circuit C that per-
forms a computation, as shown in Figure 4.1a. The classic solution to accelerate the
given circuit, at the cost of augmenting its latency, is to pipeline this circuit into the
sub-circuits {C1,C2,C3 . . .Cn}, each executing a small amount of the computation in
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(a) The problem: a complex circuit taking too
much time to execute.

(b) The solution: a pipeline which simplifies the
task intosmaller sub-circuits while allowing an
augmentation of the clockspeed at the cost of
constant latency.

FIGURE 4.1: Motivating example for getting inspiration from software engineering.

parallel, as shown again in Figure 4.1b. (The clock speed could also be increased,
resulting in an overall faster execution.)

The pipeline architecture has been applied in software engineering to obtain the
flexibility to replace particular component seamlessly. For example, it is used to
design compilers, where each phase of the compilation corresponds to a component
in the pipeline. We believe that other good practices from software engineering could
be applied in hardware–software system design and therefore study the feasibility
to apply concepts developed in software engineering to the synthesis of hardware
systems.

Running Example. In the rest of this chapter, we use the running example of a
module ComplexNumber to compute and perform operations on complex num-
bers. Figure 4.2 describe the whole running example, from the software classes to its
implementation and instantiation in hardware. We will describe this example step-
by-step in the rest of this chapter. In particular, we will use this example to highlight
the translation of object-oriented software concepts into hardware concepts, such as
inheritance.

Structure of the Chapter. Design patterns are inherently tied to the object-oriented
paradigm. Therefore, in Section 4.2, we present a mapping between software object-
oriented concepts and hardware concepts. Then, in Section 4.3, we describe the
constraints on our mapping. In Section 4.4, we detail our mapping between design
pattern concepts and hardware concepts in the form of a catalog of the most inter-
esting patterns. Such a mapping would be incomplete without a means to translate
the patterns into hardware concepts concretely, we therefore present an operational
description of design patterns and its use to generate hardware “code” in Section
4.5. In Section 4.6, we describe related work while in Section 4.7, we conclude and
introduce future work.
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ComplexNumber

#imag: float

+add(p:ComplexNumber): ComplexNumber *

N u m b e r

#value: float

+add(p:Number): Number *

(a) A UML software definition of a
ComplexNumber class using a Number
base class.

(b) A possible hardware implementation of
Object-Oriented inheritance.

(c) The module being in an “not instantiated”
state.

(d) The ComplexNumber module down-cast
into (or instantiated as) a Number class.

FIGURE 4.2: Running example of a ComplexNumber software class and its hard-
ware module.

4.2 Object-Oriented Translations
The design patterns in Gamma et al.’s catalog [89] are solutions to recurring

object-oriented design problems. We therefore present first a mapping between
object-oriented concepts and hardware concepts. This mapping will be used in Sec-
tion 4.4 to map design patterns and hardware concepts.

Essential concepts in object-oriented design and implementation are: objects and
their instantiations, methods, inheritance (and casting operations), and polymor-
phism. We also discuss the cost of generating hardware code from object-oriented
code based on our mapping.

4.2.1 Translation of Classes and their Members

In object-oriented programming, the main concepts of interest are Structures
or Classeses, which contain fields and related methods. For example, in C++,
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the distinction between a struct and a class is the default scope: members of
classes are private by default while those of structures are public by default.

Class members may be of two types: fields, which contain data and define the
“state” of a class or of its objects, and method (or constructor) that provide function-
alities usually operating on the data contained in the fields. Even if the fields are tied
with their methods in the class, they are distinct members.

Methods are shared among all the instances of a same class while fields are
not necessarily. Indeed, fields can be instance fields, whose values are unique for a
particular object, instance of the class, or class fields, whose values are shared by the
class and all of its instances.

4.2.2 Translation of Object Encapsulation

Encapsulation is the means by which a class embeds and hides its members. It
requires a protection mechanism for the enclosing class to gain the responsibilities
over its members and to isolate them from the outside world.

Considering that we are targeting synthesis, with the software being ready to be
transformed into hardware, we can treat a base class and its inherited classes simi-
larly to an enclosing class and its encapsulated member. The encapsulated member
can be generated directly into the enclosing class or it could be indexed with a pointer
to another instance.

4.2.3 Translation of Object Instantiation

An instantiation correspond to the creation of a new object, hence memory alloca-
tion for their instance fields. When either a struct or class are locally declared,
their instance fields are allocated on the execution stack. When a dynamic instan-
tiation is requested (with new or malloc), the instance fields are allocated on the
heap.

Unless a class has no fields and therefore provides only methods, its fields must be
define in its hardware equivalent. Fields are required to be created in two different
situation:

1. At the beginning of the execution of the system, for class fields.

2. At the instantiation of the object, when its constructor gets called.

There are at least four ways of storing instance fields:

As constants, hard-coded as bits. This kind of implementation is interesting for
some rare case of static constant fields, which are initialized at the beginning
of the execution and which values do not change during execution. Constant
fields would be generated with the platform in a ROM (or with a static combi-
natory circuit) and will have an infinite lifespan.

In registers, distributed in small “modules” that could be generated to corresponds
to an object.
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In a global RAM memory, probably the best way to store the field values, in a cen-
tralized unit.

In a local RAM memory, similar to the previous way, but distributed over the sys-
tem.

Instantiating class fields, at the beginning of the execution of the system is straight-
forward because the translator could identify such cases and they can be implemented
in hardware as constants or into registers for faster access. The fact that the class
fields are shared by all object makes it easy because the fields become unique in the
whole system for a given class.

The instantiation of a instance fields is more challenging. The exact moment of
a call to a given constructor is not known in advance if not simulated first. For
example, nothing forbids the constructor call to be controlled by something like a
random draw (e.g.: Rand()). Therefore, the time at which the construction takes
place, and at which the instance fields must be allocated, cannot be taken for granted
and the number of time a given constructor is called could also change between
different execution runs.

Therefore, for any realistic system, we cannot pre-compute the exact number and
type of each object that will be instantiated in the system. We can only estimate this
number and design a system that will be able to contain the most appropriate number
of instances of each objects.

4.2.4 Translation of Object Method calls

A method call corresponds to a static function call using an hidden this pointers
to indicate the object on which to apply the function. For example, the call in Listing
4.1 (Line 13) is the object-oriented equivalent of the function call in Listing 4.2 (Line
12).

The method calls in Figure 4.3a and 4.3b can be translated into a signal sent from
one module to another, as shown in Figure 4.3c. Parameters can be sent over the
signal data lines and the return values can be sent back as signals as well. If an
elaborated structure is to be exchanged, a memory reference, as shown in Figure
4.3d could be sent instead of concrete values.

4.2.5 Translation of Polymorphism

Polymorphism allows behavioral variations based on the class of an object. Poly-
morphism corresponds to a method defined in several specialized classes with a sig-
nature identical to the signature of the method in the base class. When the method
of an object is called, depending on the class that was used when the object was in-
stantiated, the method of the appropriate class is called, even if the object was stored
beneath a base class reference, as illustrated in Listing 4.3, Line 6 and 13. In this
example, f() is polymorphic because it is redefined in the inherited class and it is
marked as virtual. Both g() and h() are not polymorphic.
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1 / / C l a s s d e f i n i t i o n
2 c l a s s L i s t {
3 p r o t e c t e d :
4 c l a s s I t em ∗head ;
5 p u b l i c :
6 / / Ob jec t−O r i e n t e d p r o t o t y p e ( method ) :
7 void add ( I tem &i t e m t o a d d ) ;
8 }
9

10 /∗ Objec t−O r i e n t e d c a l l , t h e ”∗ t h i s ” p o i n t e r i s ” h id de n ” , made
11 i m p l i c i t by ” m y l i s t ” , which i s t h e o b j e c t on to which t o a p p l y t h e
12 ”add” method ∗ /
13 m y l i s t . add ( I tem ( 4 2 ) ) ;

Listing 4.1: Object-oriented way; the Add method applied on a List object.

1 / / S t r u c t u r e d e f i n i t i o n
2 s t r u c t L i s t {
3 s t r u c t I t em ∗head ;
4 }
5

6 / / P r o c e d u r a l p r o t o t y p e ( f u n c t i o n ) :
7 void L i s t a d d ( L i s t ∗ l i s t t o m o d i f y , I t em &i t e m t o a d d ) ;
8

9 /∗ P r o c e d u r a l c a l l , he re t h e s t r u c t u r e on to which a p p l y t h e b e h a v i o r
10 o f ”add” must be made e x p l i c i t by p a s s i n g t h e r e f e r e n c e t o t h e
11 ” L i s t ” s t r u c t u r e ∗ /
12 L i s t a d d f u n c t i o n (& m y l i s t , I t em ( 4 2 ) ) ;

Listing 4.2: Classic procedural way; the call of the Add function with the List
structure passed explicitly.

Polymorphism is usually implemented using a Virtual table (also known as Vtable),
which is a table that maps classes with pointers to methods to direct any call to the
appropriate method.

A virtual table is available at compile time, after parsing, before linking, as illus-
trated in Listing 4.4, which shows the assembly code of the virtual table with names
mangling correspondence shown with Table 4.1).

The class of an object is not always known at compile time and the virtual table
is persisted in the machine code and preserved for the methods called dynamically.
Only virtual methods ends up in the virtual table (Line 106) because ordinary meth-
ods can be called directly, they are linked with the object class that is implicit.

The translation of polymorphism into hardware can be achieved by creating sev-
eral instance of specialized classes into hardware and then controlling the classes of
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ComplexNumber

#real: float

#imag: float

+add(p:ComplexNumber): ComplexNumber *

(a) A UML software definition of a class.

main X:ComplexNumber

add(Y)

this

(b) A software method call.

(c) A possible translation into hardware. (d) Hardware method call using a memory ref-
erence.

FIGURE 4.3: Example of a class representing complex numbers, from its software
design to its hardware implementation.

1 c l a s s Base
2 {
3 p u b l i c :
4 v i r t u a l vo id f ( void ) ;
5 void g ( void ) ;
6 } ;
7

8 c l a s s Der ived : p u b l i c Base
9 {

10 p u b l i c :
11 v i r t u a l vo id f ( void ) ;
12 void h ( void ) ;
13 } ;

Listing 4.3: Polymorphic f() method defined in base and derived class.

objects by deactivating some part of the module when base classes are needed.
The translation of the Vtable into hardware then becomes straightforward, as ex-

emplified in Table 4.2, because it is similar to a LUT (Look-Up Table). The LUT
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1 ZTV4Base :
2 . l o n g 0
3 . l o n g ZTI4Base
4 . l o n g ZN4Base1fEv
5 .weak ZTS7Derived
6 . s e c t i o n . r o d a t a . Z T S 7 D e r i v e d , ”aG” , @progbi t s , ZTS7Derived , comdat
7 . t y p e ZTS7Derived , @object
8 . s i z e ZTS7Derived , 9

Listing 4.4: The vtable with the assembly language excerpt of the code of Listing
4.3.

TABLE 4.1: Translation of mangled names of
Listing 4.3.

Mangled identifier Result returned by c++filt
ZTV4Base vtable for Base
ZTI4Base typeinfo for Base
ZN4Base1fEv Base::f()
ZTS7Derived typeinfo name for Derived

TABLE 4.2: Possible method (and
polymorphism) encoding for the
ComplexNumber module.

Class type Method Code assigned
Base f() 0
Base g() 1
Derived f() 2
Derived h() 3

becomes a decoder; the numbers can be attributed sequentially to each newly discov-
ered method upon parsing during code generation.

4.2.6 Translation of Inheritance and Casting Operations

Inheritance and polymorphism help bringing communality and variation [61]. In
software engineering, inheritance is achieved by adding methods and properties to
the base inherited structure. We reuse this idea in hardware by generating a module
for each specialized class at the end of the inheritance tree (all leaf classes of the
inheritance tree).

Each of these specialized modules contains its parent class, which would in its
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turn, recursively contain all of its parents, as shown in Figure 4.2b. A special register
would then be generated within each class module to hold the type of the module,
obj inst as shown in our example. When the module is not instantiated, this
number is 0, in Figure 4.2c, indicating all the data in the local registers/memories are
invalid.

The proposed mechanism enables also to typecast an object into an inherited class
easily by changing the obj inst number to the one indicating the type of the new
class. If the class is down-cast, as illustrated in Figure 4.2d, the invalidated registers
can still holds some valid values (masked by the downcast) and could be restored
when the object is cast back to its original class.

4.3 Constraint and Assumptions for Design Pattern Synthesis
The translation of design patterns from software to hardware is subject to one

constraint and three assumptions that we present now.

4.3.1 Constraint: Dynamism of the Hardware

Hardware systems used to be static: sets of wires and components “hardwired”
together to perform specific computations. For some times now, hardware systems
blend altogether with their software systems to benefit from the dynamic nature of
the the software. End products are more customizable with flash memories and con-
figurable with small Web servers implemented in embedded systems as software
systems running on a generic hardware core.

Traditionally, objects are generated in memory, having a generic processor per-
forming method calls and fields accesses. Although such a solution is the usual way
of reaching the dynamism found in software systems, it is an extreme case that relies
on a “pure” software implementation and a generic processor and that is therefore
uninteresting in the context of this chapter.

We are interested in implementing design patterns using a “pure” hardware sys-
tem, which we could define as a hardware system with as less software as possible,
and which would potentially bring faster execution at the cost of specializing the
hardware. Such solution is more desirable for embedded systems, where the compu-
tations or application are unlikely to change.

Naturally, this solution would also work for mixed software–hardware systems
(e.g.: FPGAs) which are consequently implicitly be covered by this chapter, because
such solution does not directly implement (or emulate) an object-oriented system: we
assume a more conservative hardware system, thus guaranteeing that the translation
would work on more dynamic hardware systems.
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4.3.2 Assumption: Compiled Once

If we were to target an FPGA for our compiled system, it is possible to change the
hardware on the fly, thus easing the task of implementing polymorphism.

Such a solution complies with our constraint of obtaining a “pure” hardware solu-
tion, even though changing the nature of the hardware on the fly requires more logic
gates (as the control logic of the FPGA cell blocks). Indeed, changing the hardware
only requires more knowledge at the start of the system.

This knowledge is available if we limit our discussion to such a case where the
software system is known and is available as software code, ready to be transformed
into hardware by an hypothetical “software to hardware” compiler.

If we are to generate a solution for an ASIC (Application-Specific Integrated Cir-
cuit), we have to assume that the translation into hardware will occur once and that
the nature of the hardware—unless designed for—can not be changed.

Hence, in this chapter we shall focus the most restrictive platform type, and re-
strict ourselves to a one-time compilation and synthesis, no dynamic compilation or
synthesis.

4.3.3 Assumption: Limited Number of Objects

We could also create several hardware modules to simulate an object-oriented soft-
ware system, each module matching a class and its inheritance tree. We prefer,
however, to reuse specialized modules and use them as base modules. In order for
each class to be instantiated at least once in our system, we can them assume the
number of module must be at least, the number of leaf classes of our system.

Let n be the number of classes in our system at compile time. Assuming that
no new classes can be added after generation and that we have a complete binary
common-rooted balanced inheritance tree, there are n+1

2 leaf classes, the minimum
number of modules that must be generated in the hardware.

By generating more hardware modules for a class, we bring parallelism in the
system by enabling the existence and computation capability of several objects at
the same time. As mentioned earlier, unless the hardware is capable of mutating
into another class, once generated, the number of active class in the system at the
same time is limited by the number of time the designer instantiate a specific class.
This limitation means that a constant must be defined for each class, indicating the
maximum number of active objects allowed in the system at a same time.

Computing the maximum of number of active objects is in general impossible,
because objects can be created dynamically in software systems and with no other
constraints but the size of the memory. For example, a large and unknown number
of objects could be created to compute a complex scene in a ray tracer. Yet, it is
possible to run the software systems in a set of reasonable scenarios and obtain an
insight on the maximum number of objects of its classes. Such practice is already
used when developing for example software systems for cell-phones.
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4.3.4 Assumption: Pattern Automatic Recognition Problem

Although design patterns are quite formally described with Gamma et al. [89],
they were not meant to be defined into a computer language and parsed in an au-
tomated way. They express generic solutions to recurring design problems: they
cannot be easily automatically identified in a software system.

Since a design pattern can have several variants, identifying occurrences of the
pattern in a software system becomes a challenge of its own, which has been tackled
by the software engineering community as early as 1998 [206].

Therefore, we assume that we know explicitly which design patterns have been
used to implement a software system and which classes play some roles in their
occurrences.

4.3.5 Translation Cost versus Performance

An optimization phase can occur to reuse part of the behavioral synthesis pro-
cess. For example, the controller for the ComplexNumber class could use only
one ALU, at the cost of a more complex controller module.

In Figure 4.3c, we show a solution to our running example where its behavioral
parts, the ALU, are duplicated. Such solution provides more parallelism but at the
expense of more hardware.

In Figure 4.3d, we depict an alternate solution where the behavioral part is reused
for several distinct method. The need of buses then arises and complexifies the logic
circuits of the overall unit (not shown in the figure). Yet, this solution saves on
hardware, at the cost of serializing the operations. This solution, in worst case,
corresponds to the execution on a classic mono processor architecture. A threshold
could be set by the designer generating the hardware system, indicating how many
processing modules are to be generated to accelerate the overall architecture.

Another part of reuse could be achieve by replacing local registers by a local mem-
ory that could hold an array of objects of the same inherited branch. Let n be the
number of distinct classes in a given branch, we can then pose {i | 1 ≤ i ≤ n} to be
a number identifying each class. Let xi be the number of living objects required for
class type i. The minimal required memory size is then defined by Equation 4.1.

memory size =
n

∑
i=1

xi×memory usage of(i) (4.1)

For example, in the running example, the architecture could be configured to hold,
in the same ComplexNumber module, x0 objects of the Number class and x1
objects of the ComplexNumber class. Such a solution means larger amounts of
memory to hold more objects in a same module, at the cost of creating a execution
bottleneck if the number of executing units in the module is low. Local buses of units
will also be a bottleneck if the number of objects contained by a module is high.

It is advisable to use a mixed approach, where one could generate several modules
of the same kind, with each a small memory capable of handling several objects at
a same time, to distribute the computations whenever possible while minimizing the
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hardware cost. The acceleration could be thus maximized, especially with massively
parallel systems, where objects are relatively independent.

4.4 Design Pattern Mappings
We now describe some interesting patterns using the mappings of object-oriented

concepts into hardware concepts and the constraint and assumptions described be-
fore.

4.4.1 Creational Patterns

Creational patterns are the patterns related to the dynamic creations of objects.
As explained in Section 4.3.1, we consider hardware as being more static than dy-
namic. Applying these kinds of dynamic patterns to “pure” hardware is challenging
because of the static nature of the hardware. Therefore, we present the mapping
of two characteristic creational patterns into hardware: the Prototype and Singleton
design patterns.

Prototype is a pattern that provides a “typical” instance that can be copied before
being customised, with the help of the public method clone(). It allows a
class to have a default instantiation, and avoid having to call several (maybe
complex) methods to initialize an object with its default values.

The prototype pattern corresponds to a ROM (Read Only Memory) that can
hold a block of data containing the prototype. Upon call of the clone()
method, an object is allocated and the data is copied into the newly created
instance, creating a new object based on the prototype. The new object will
typically have to evolve in time and should be allocated in a RAM or in a
register as described in Section 4.2.3

Singleton is a pattern that restricts the number of objects of a class to one. In a soft-
ware system, where a class can usually be instantiated at will, the need quickly
arises to ensure there is only one instance of a certain class that is shared by
all other objects of the system, when a second object of the same class could
cause miscomputations or crashes (e.g.: a multi-threading controller).

Implementing the Singleton pattern is usually achieved by hiding the con-
structor from the outside world and providing a class method to obtain the
unique object (e.g.: instance(), get new(), get instance(). . . ).
Any other object is forced to use the class method supplied to get the unique
instance of the Singleton class. The class members (and inherited) still have
access to the constructor.

In terms of hardware, this pattern is easily implemented by directing the syn-
thesis to generate only one object of a class. A Boolean flag can also be in-
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(a) The problem: a complex compiler system. (b) A Facade class “Compiler” which lighten the
use of the system.

FIGURE 4.4: Example of a Façade.

cluded in the controller (for example the one in our inheritance example in
Figure 4.2b) to check that the object has been instantiated, and if so, to raise
an error with the calling entity to indicate it can not provide a new instance.

4.4.2 Structural Patterns

Structural patterns are useful to create the design of a software systems. Beck
[29] pointed out that design patterns generate architectures. We describe two typical
structural design patterns that are useful to make object interact seamlessly and to
isolate a set of objects from the rest of the system.

Adapter is the software equivalent of a wrapper. The goal of the Adapter pattern
is to enable the interconnection of several directly incompatible objects by
delegating method calls to the appropriate (incompatible) methods either by
using multiple inheritance or object composition.

In terms of hardware, it is not rare to see wrappers constructed around IP
blocks (Intellectual Properties blocks). As for the software pattern, wrappers
may be used to enhance, break into several subcomponents, reroute, or even
disable some behavior (or structure) of the component that they are “mas-
querading” by intercepting part of the communication with the external entity.

Façade is a class that hides the complexity of a whole sub-system into a single
object. The classical example of a Façade is a compiler, as shown in Figure
4.4a, where several compilation steps are implemented with several different
objects of various classes, each having distinct responsibilities. Façade helps
to separate a functionality and to segment the code into simpler parts that are
easier to maintain.

The Façade is the class “Compiler” in our example in Figure 4.4b) that is
inserted between the system and the external world and acts as an interface
to the system. The cost of using a Façade is an extra level of indirection and
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(a) Generic layout of the Observer pattern. (b) The Observer⇒ ESL Configuration (Mem-
ory, Screen, Bus, CPU, DMAs. . .

FIGURE 4.5: Example of an Observer.

the extra burden of updating the Façade when a major change occurs in the
system. Moreover, the Façade is sometime blamed for quickly getting big and
may lead to an entanglement when it needs to be tightly coupled with a lot of
other classes.

In terms of hardware, a Façade corresponds to an interface, where a protocol is
defined to access a more complex system. Usually pins are created that might
corresponds directly to some internal components, but the interface is usually
simplified to reduce its complexity.

A bus can be considered as a Façade as it usually gives access to (while caching
access to) a whole complex system. It also usually provides a simple interface
(rather than have the external system communicating with every other subsys-
tem.)

4.4.3 Behavioral Patterns

Finally, the last category of patterns include patterns related to the behaviour of
objects at runtime.

Observer is a pattern that allows a Subject to notify its Observers when some of
its data change thus ensuring consistency among the Observers, as shown in
Figure 4.5a.

In terms of hardware, a memory can be considered as a Subject that is ob-
served, as illustrated in Figure 4.5b. The Observers are all the different compo-
nents that needs to access the memory data (CPU, DMA, peripherals. . . ). The
bus along with its communication protocol form the “contract” that matches
the software interface using inheritance and polymorphism mechanism. We
show a screen as the observer in our example.
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4.5 Operational Description of Design Patterns
To operationalise our mapping between software design patterns and hardware

systems, we choose Esys.NET [138, 139]. Esys.NET is a system design environment
(similar to SystemC) based on C] and the corresponding .NET framework (rather
than C++).

Design motifs are the “Solution” parts of design patterns. They are what develop-
ers actually implement in their systems when using design patterns. The generation
of design motifs for Esys.NET require a means to describe design motifs in a form
that can be manipulated by a computer to perform code synthesis into hardware.

We use the Pattern and Abstract-level Description Language (PADL) as formalism
to describe design patterns. We first present PADL. Then, we introduce MIP, an
extension to PADL to describe more precisely the behaviour of the methods declared
in a motif. Finally, we show the use of PADL and MIP to generate Esys.NET code
on the Observer design pattern.

4.5.1 PADL in a Nutshell

PADL is a meta-model that can be used by developers to describe design motifs
and object-oriented software systems. A meta-model is essentially a set of classes
whose instances represent a model. The methods of the classes in the meta-model
describe the semantics of the model. Consequently, PADL provides a set of classes
representing constituents of design motifs and the methods required to instantiate
and link the instances together in a meaningful way.

Figure 4.6 shows a UML-like class diagram representing the architectural layers
of the PADL meta-model, their main packages and classes, and the design patterns
used in the design.

The diagram decomposes in three horizontal parts representing three different lay-
ers of services: First, CPL (Common PADL Library); Then, PADL; Finally, PADL
ClassFile Creator, PADL AOL Creator, POM, and PADL Analyses.
The first layer, CPL, provides utility classes and libraries used across PADL.

The second layer, PADL, provides the meta-model to describe models of systems
and motifs. The meta-model defines the interfaces (and implementation classes) of
the possible constituents of motifs, for example, IDesignMotif, whose instance
are motifs and IClass, whose instances describe the classes suggested by a motif.
These instances are combined to describe motifs and subsets of their behaviours.

The padl.kernel and padl.kernel.impl packages declares respectively
the types of the constituents (as Java interfaces) and their implementations.

The PADL meta-model is at the heart of the Ptidej project (Pattern Trace Identi-
fication, Detection, and Enhancement in Java) to evaluate and to enhance the qual-
ity of object-oriented software systems, promoting the use of patterns, either at the
language-, design-, or architectural-levels. In particular, it has been extensively used
to identify occurrences of motifs in systems, for example in [103].
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4.5.2 PADL in Details

Figure 4.7 shows the classes and main methods of the constituents of the PADL
meta-model. Essentially, the meta-model divides in four parts. The first part in-
cludes all the possible constituents (inheriting from Constituent) of the struc-
ture of a system or a motif. These constituents include different types of entities,
Interface (interface à la Java) and Class (classes found in C++ or Java); meth-
ods and fields; parameters.

The second part includes add constituents to refine a model of a system or of a mo-
tif with a comprehensive set of binary class relationships. These relationships are im-
portant because the interaction among classes and their objects in design motifs are
often described in terms of such relationships. The relationships include, from less
constraining to the more constraining, the Use, Association, Aggregation,
and Composition relationships [102]. The Creation relationship is also avail-
able to describe that objects of a class instantiates objects of another class.

The third part includes the constituents specific to the descriptions of design mo-
tifs. A design motif DesignMotif is described in terms of its participating classes
Participants which could be played by classes (ClassParticipant) or in-
terfaces (InterfaceParticipant). Any participant can declare elements as
defined in the part one and two of the meta-model.

Finally, the fourth part includes the constituents specific to the description of a
ProgramModel and its possible set of MicroArchitectures that are the con-
crete manifestations of a DesignMotif. A micro-architecture knows which of its
consistent plays which role in a DesignMotif.

We use the Abstract Factory design pattern to manage the concrete instantiation
of the constituents of PADL. The concrete factory, class Factory, implements the
Singleton design pattern. We use the Builder design pattern to let the parsers choose
the constituents to instantiate, through the Builder class. We use the Visitor de-
sign pattern to offer a standard mean to iterate over a model or a subset of a model,
the padl.visitor package provides default visitors. The padl.pattern and
padl.pattern.repository packages define several prototypal models of well-
known design motifs, which we can clone and parameterise, using the Prototype
design pattern.

The third layer contains several separate projects:

• Parsers for Java class-files and AOL files (PADL Java and AOL Creator).
These parsers are independent of the meta-model and new parsers for other
programming languages can be added seamlessly using the Builder design
pattern.

• A metric computation framework (POM), in which we use the Singleton de-
sign pattern. POM decomposes in a set of primitives defined in terms of the
meta-model constituents. These primitives are combined using set operators
to define metrics.

• A repository of analyses based on the meta-model, in which we use a simpler
version of the Command design pattern. An analyse is invoked on a model of
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1 p u b l i c c l a s s O b s e r v e r ex tends B e h a v i o u r a l M o t i f M o d e l implements
2 P r o p e r t y C h a n g e L i s t e n e r , C l o n e a b l e {
3

4 p r i v a t e I C l a s s s u b j e c t , c o n c r e t e S u b j e c t ;
5 p r i v a t e I I n t e r f a c e o b s e r v e r ;
6 p r i v a t e I D e l e g a t i n g M e t h o d n o t i f y ;
7 p r i v a t e IMethod upda te , g e t S t a t e ;
8

9 p u b l i c O b s e r v e r ( ) throws C l o n e N o t S u p p o r t e d E x c e p t i o n ,
10 M o d e l D e c l a r a t i o n E x c e p t i o n {
11

12 super ( ” O b s e r v e r ” ) ;
13 t h i s . s e t F a c t o r y ( F a c t o r y . g e t I n s t a n c e ( ) ) ;
14

15 / / I n t e r f a c e Observer
16 t h i s . o b s e r v e r = t h i s . g e t F a c t o r y ( ) . c r e a t e I n t e r f a c e ( ” O b s e r v e r ” ) ;
17 t h i s . u p d a t e = t h i s . g e t F a c t o r y ( ) . c r e a t e M e t h o d ( ” Update ” ) ;
18 t h i s . o b s e r v e r . a d d C o n s t i t u e n t ( t h i s . u p d a t e ) ;
19 t h i s . o b s e r v e r . s e t P u r p o s e ( M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
20 ” Observer PURPOSE ” ,
21 O b s e r v e r . c l a s s ) ) ;
22 t h i s . a d d C o n s t i t u e n t ( t h i s . o b s e r v e r ) ;

Listing 4.5: The Observer design motif using the PADL meta-model: declaration of
the Observer role.

a software system or of a pattern and returns a (potentially modified) model
when the analysis is done. Reflection is used by the repository to build the list
of available analyses dynamically.

4.5.3 PADL by Examples

PADL has been used to develop a library of design motifs from the 23 design pat-
terns by Gamma et al. [89], including Chain of Responsibility, Composite, Observer,
Visitor. . . For example, we show with the code of Listing 4.5 the Observer design
motif using the PADL meta-model. The following PADL code systematically instan-
tiates constituents of the meta-model according to the motif as suggested by Gamma
et al., see Figure 4.8.

We show in Listing 4.5 the declaration of the Observer design motif, as a class
Observer. The motif declares an interface Observer that plays the role of Ob-
server in the motif. The interface is built using a Factory.

In Listing 4.6 we show the declaration of the Subject role as a Subject as
a class. This class is abstract and is associated, using an embedded aggregation
ContainerAggregation, to the previously declared Observer class. The
Subject class also declares a Notify methods that delegates its call, through
the aggregation, to all the subject’s observers.

Listing 4.7 illustrates the declaration of the role of Concrete Subject as a class
ConcreteSubject that declares a method getState. The concrete subjects
inherits from the subject and assumes all its interface.

Finally, Listing 4.8 shows the declaration of the role Concrete Observer as a class
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1 / / A s s o c i a t i o n o b s e r v e r s
2 f i n a l I C o n t a i n e r A g g r e g a t i o n anAssoc =
3 t h i s . g e t F a c t o r y ( ) . c r e a t e C o n t a i n e r A g g r e g a t i o n R e l a t i o n s h i p (
4 ” o b s e r v e r s ” ,
5 t h i s . o b s e r v e r ,
6 C o n s t a n t s . CARDINALITY MANY ) ;
7

8 / / C l a s s e S u b j e c t
9 t h i s . s u b j e c t = t h i s . g e t F a c t o r y ( ) . c r e a t e C l a s s ( ” S u b j e c t ” ) ;

10 t h i s . s u b j e c t . s e t A b s t r a c t ( t rue ) ;
11 t h i s . s u b j e c t . a d d C o n s t i t u e n t ( anAssoc ) ;
12 t h i s . n o t i f y =
13 t h i s . g e t F a c t o r y ( ) . c r e a t e D e l e g a t i n g M e t h o d (
14 ” N o t i f y ” ,
15 anAssoc ,
16 t h i s . u p d a t e ) ;
17 t h i s . s u b j e c t . a d d C o n s t i t u e n t ( t h i s . n o t i f y ) ;
18 t h i s . s u b j e c t . a s s u m e A l l I n t e r f a c e s ( ) ;
19 t h i s . s u b j e c t . s e t P u r p o s e ( M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
20 ” Subject PURPOSE ” ,
21 O b s e r v e r . c l a s s ) ) ;
22 t h i s . a d d C o n s t i t u e n t ( t h i s . s u b j e c t ) ;

Listing 4.6: The Observer design motif using the PADL meta-model: declaration of
the Subject role.

1 / / C l a s s e C o n c r e t e S u b j e c t
2 t h i s . g e t S t a t e = t h i s . g e t F a c t o r y ( ) . c r e a t e M e t h o d ( ” g e t S t a t e ” ) ;
3 t h i s . c o n c r e t e S u b j e c t = t h i s . g e t F a c t o r y ( ) . c r e a t e C l a s s ( ” C o n c r e t e S u b j e c t ” ) ;
4 t h i s . c o n c r e t e S u b j e c t . a d d I n h e r i t e d E n t i t y ( t h i s . s u b j e c t ) ;
5 t h i s . c o n c r e t e S u b j e c t . s e t P u r p o s e ( M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
6 ” ConcreteSubject CLASS PURPOSE ” ,
7 O b s e r v e r . c l a s s ) ) ;
8 t h i s . c o n c r e t e S u b j e c t . a d d C o n s t i t u e n t ( t h i s . g e t S t a t e ) ;
9 t h i s . c o n c r e t e S u b j e c t . a s s u m e A l l I n t e r f a c e s ( ) ;

10 t h i s . a d d C o n s t i t u e n t ( t h i s . c o n c r e t e S u b j e c t ) ;

Listing 4.7: The Observer design motif using the PADL meta-model: declaration of
the Concrete Subject role.

ConcreteObserver. This class is associated to the concrete subjects through an-
other aggregation. It declares an updatemethod that is being called by the concrete
subject notify method when appropriate and that fetches the concrete subject’s
changes through a call to its getState method.

An instance of the Observer class is an instance of the Observer design motif,
which can then be parameterised to fit a given implementation. This parameterised
instance can be used to identify occurrences of the motif in a system or to generate
source code.

4.5.4 MIP

The PADL meta-model has been extended with additional constituents to describe
the inner working of the methods of systems and motifs. This extension to the meta-
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1 f i n a l I C o n t a i n e r A g g r e g a t i o n a2Assoc =
2 t h i s . g e t F a c t o r y ( ) . c r e a t e C o n t a i n e r A g g r e g a t i o n R e l a t i o n s h i p (
3 ” s u b j e c t ” ,
4 t h i s . c o n c r e t e S u b j e c t ,
5 C o n s t a n t s . CARDINALITY ONE ) ;
6

7 / / C l a s s e C o n c r e t e Observer
8 t h i s . n o t i f y =
9 t h i s . g e t F a c t o r y ( ) . c r e a t e D e l e g a t i n g M e t h o d (

10 ” Update ” ,
11 a2Assoc ,
12 t h i s . g e t S t a t e ) ;
13 t h i s . n o t i f y . setComment ( M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
14 ”DELEG METHOD COMMENT” ,
15 O b s e r v e r . c l a s s ) ) ;
16 t h i s . n o t i f y . a t t a c h T o ( t h i s . u p d a t e ) ;
17 t h i s . c o n c r e t e S u b j e c t = t h i s . g e t F a c t o r y ( ) . c r e a t e C l a s s ( ” C o n c r e t e O b s e r v e r ” ) ;
18 t h i s . c o n c r e t e S u b j e c t . s e t P u r p o s e ( M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
19 ” ConcreteObserver CLASS PURPOSE ” ,
20 O b s e r v e r . c l a s s ) ) ;
21 t h i s . c o n c r e t e S u b j e c t . a d d I m p l e m e n t e d E n t i t y ( t h i s . o b s e r v e r ) ;
22 t h i s . c o n c r e t e S u b j e c t . a d d C o n s t i t u e n t ( a2Assoc ) ;
23 t h i s . c o n c r e t e S u b j e c t . a d d C o n s t i t u e n t ( t h i s . n o t i f y ) ;
24 t h i s . c o n c r e t e S u b j e c t . a s s u m e A l l I n t e r f a c e s ( ) ;
25 t h i s . a d d C o n s t i t u e n t ( t h i s . c o n c r e t e S u b j e c t ) ;
26 }
27 }

Listing 4.8: The Observer design motif using the PADL meta-model: declaration of
the Concrete Observer role.

model, called MIP, is necessary to describe the behaviour of design motifs more
precisely than with PADL alone.

MIP proposes new constituents implementing the interface IConstituent-
OfMethods to describe the various statements that can be used to define the be-
haviour of methods. This set includes: IMethodInvocation, IParameter,
IConditional, IInstantiation, IAssignment. Figure 4.9 shows the ex-
tension of the PADL meta-model with MIP.

Essentially, the PADL meta-model was refactored to distinguish constituents of
methods using the interface IConstituentOfMethods. The MIP extension pro-
vide a set of such constituents of methods. This set is sufficient to describe several
behavioural and creational design motifs more precisely than with PADL alone.

For example, using PADL extended with MIP, the description of the Observer
design motif would be extended with the code shown of Listing 4.9 code:

This code describes in more details the behaviour of the notify method. Thus,
with MIP, it is possible to describe completely the structure and the behaviour of
behavioural, creational, and structural design motifs.

4.5.5 ESys.NET Code Generation

The PADL meta-model provides an implementation of the Visitor design pat-
tern that allow any client to write visitor to traverse the constituents of a model. We
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1 I B lo ck b l o c k = S t a t e m e n t F a c t o r y . g e t S t a t e I n s t a n c e ( ) . c r e a t e B l o c k ( ) ;
2 t h i s . n o t i f y . a d d C o n s t i t u e n t ( b l o c k ) ;
3 I I t e r a t o r i t e r a t i v e =
4 S t a t e m e n t F a c t o r y . g e t S t a t e I n s t a n c e ( ) . c r e a t e I t e r a t o r S ( t h i s . u p d a t e ) ;
5 b l o c k . a d d C o n s t i t u e n t ( i t e r a t i v e ) ;
6 I M e t h o d I n v o c a t i o n i n v o c a t i o n =
7 F a c t o r y . g e t I n s t a n c e ( ) . c r e a t e M e t h o d I n v o c a t i o n ( 2 , 1 , 1 , t h i s . s u b j e c t ) ;
8 i n v o c . a d d C a l l i n g F i e l d ( t h i s . o b s e r v e r ) ;
9 i n v o c . s e t C a l l e d M e t h o d ( t h i s . u p d a t e ) ;

10 i t e r a t i v e . a d d C o n s t i t u e n t ( i n v o c a t i o n ) ;

Listing 4.9: Extending the the description of the design motif Observer using PADL
extended with MIP.

implement such a visitor to generate Esys.NET code from the extended models of
design motifs.

4.6 Related Work & Background
4.6.1 Object Oriented Synthesis & Patterns in Hardware

The synthesis of complex C structures has been discussed by [181] and they claim
at the end of the article that their methodology can be applied for more complex C++
structures.

Some hardware designs for Object Oriented paradigm have been put forward, es-
pecially an Object Oriented processor by [124]. They discuss on an interesting hard-
ware object allocation strategy, although their approach analysis was limited to a
global shared memory.

Some patterns were used for hardware modeling as in [64].

4.6.2 Original Patterns

Original Design Patterns were introduced by [89]. Design Patterns express struc-
tured and elegant solution (based on the experience of software engineers) applied to
object oriented commonly encountered problem.

Design Patterns are sometimes critiqued for a lack of coherency in their inter-
relations, and blamed for degradation of performance by rising overall design com-
plexity. Despite these disputed drawbacks, they bring other interesting benefits such
as:

• clarification of object responsibilities,

• reduced class couplings,

• enhance code genericity,
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• augment reusability of classes and algorithms. . .

Patterns are classified under three major groups:

Creational Patterns are solving problems related to class instantiations. Usually,
each given objects know how to instantiate itself. With these patterns, the
instantiation responsibility is often delegated to other classes. The creation of
complex objects is more structured and more flexible.

Structural Patterns are solving problems related to class structures and interrela-
tions. They help creating more dynamic and flexible class constructions.

Behavioral Patterns are solving problems related to class functionality. Usually, a
class contains the implementation of the functionality of each of its instances.
Behavioral patterns helps to isolate object comportment from the class defini-
tion, bringing a more flexible approach.

4.7 Conclusion
We discussed relations between and matches between some of the Design Pattern

in a software form, and their various correspondence in hardware. With the help
of such thing as the Pipeline pattern, we showed that Design Patterns are not only
software specific, but are already present in the domain and should be better outlined.

We presented a specialized object system which can be implemented in “pure”
hardware in order to reproduce the behavior of a generic object system running on a
processor. We also discussed on how every Object-Oriented aspects can be integrated
into hardware, using our object system as examples.

We introduced Esys.NET, a new System Design platform based on C], along with
PADL, a Design Pattern framework into which Patterns can be defined and used in
order to generate code.

Future area of interests is to further develop the object-oriented system in order to
implement a full scale prototype on an FPGA.

The system design community needs to gather the experience they collectively
possess into a hardware focused pattern catalog in order to stop reinventing the
wheel, and drive the reuse of well known and proofed solutions. This chapter is
a first step into the right direction, but only with the help of a thriving community,
will we succeed in building a strong collaborative tool based on Design Patterns.
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FIGURE 4.6: The PADL meta-model layers.
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FIGURE 4.7: The PADL meta-model.
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FIGURE 4.8: The Observer design motif (from [89]).
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FIGURE 4.9: The MIP extension to the PADL meta-model.
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[24] Ivan Augé, Frédéric Pétrot, and Denis Hommais. A Pragmatic Approach To
The Design of Embedded Systems. In DATE’01: Proc. of Design Automation
and Test in Europe, pages 170–174, Munich, Germany, March 2001. IEEE.

[25] Jean Bacon. Operating Systems: Concurrent and Distributed Software De-
sign. Addison-Wesley, Boston, 2003.

[26] Christopher J.O. Baker and Kei-Hoi Cheung, editors. Semantic Web : Revo-
lutionizing Knowledge Discovery in the Life Sciences. Springer, 2007.

[27] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio
Passerone, and Alberto Sangiovanni-Vincentelli. Metropolis: An Integrated
Electronic System Design Environment. Computer, 36(4):45–52, 2003.

[28] K. Suzanne Barber, Thomas J. Graser, Jim Holt, and Geoff Baker. Arcade:
Early Dynamic Property Evaluation of Requirements Using Partitioned Soft-
ware Architecture Models. Requirements Engineering, 8(4):222–235, 2003.

[29] Kent Beck and Ralph E. Johnson. Patterns Generate Architectures. In
Proceedings of 8th European Conference for Object-Oriented Programming,
pages 139–149. Springer-Verlag, July 1994.

[30] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the USENIX Annual Technical Conference, pages 41–46. USENIX
Association, 2005.

[31] Claude Berge. Graphes et hypergraphes (in French), chapter 2, page 26.
Dunod, 2nd edition, 1973.

[32] Janick Bergeron. Writing Testbenches: Functional Verification of HDL Mod-
els, Second Edition. Kluwer Academic Publishers, Norwell, MA, USA, 2003.



Bibliography 289

[33] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez, Mikael
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