
El Mostapha Aboulhamid - Université de Montréal - Canada
Frédéric Rousseau - Laboratoire TIMA UJF/INPG/CNRS - France

System Level Design with
.NET Technology

CRC PRESS

Boca Raton London New York Washington, D.C.

Dedication

For Karine, my parents, and all my family, for their help and support - Frédéric
Rousseau

To my spouse and my mother, to all those who helped me, influenced me, or
endured me throughout all these years, I express my profound gratitude. El Mostapha
Aboulhamid

i

About the editors

El Mostapha Aboulhamid
Université de Montréal - Canada

El Mostapha Aboulhamid is active in modeling, synthesis and verification in hard-
ware/software systems. He obtained an Engineering degree from ENSIMAG, France
in 1974 and a Ph.D. from Montréal University in 1984. He is currently professor at
Université de Montréal. He worked in the 1980s and early 1990s on built-in-self test
techniques, design for testability, multiple fault automatic test generation and com-
plexity of test. He was involved in the current methodology of design of hardware/-
software systems since it early beginning in the 1980s and 90s with the introduction
of VHDL. He helped to the acceptance of this methodology in Canada, by the col-
laboration with industrial partners and by delivering intensive courses on modeling
and synthesis both in academia and industrial settings. He also collaborated to the
standardization of SystemC. He was the director of GRIAO, a multi-university re-
search center which led to the creation of the current ReSMiQ Research Centre. He
supervised more than 80 graduate students. He has been General or Technical Pro-
gram Chair of many conferences: such as ISSS/CODES, ICECS, NEWCAS, ICM,
AICCSA. He also served on Steering or Program Committees of different Interna-
tional Conferences. In 2003 his team developed ESys.NET as an environment for
modeling and simulation. His is looking into ways of using distributed simulation
to overcome this bottleneck caused by simulation of large digital systems. He is
also interested in advance software approaches in system level design and reuse. He
has multiple collaborations nationally and abroad on different aspects of System On
Chip modeling and verification. He has been an invited professor both at Université
de Lille and Université de Grenoble in France.

Frédéric Rousseau
Laboratoire TIMA UJF/INPG/CNRS - France

Frédéric Rousseau has been professor since 2007 (and associate professor since
1999) at University Joseph Fourier (UJF) where he teaches computer science and
he has been researcher in TIMA lab since 1999. He received the Engineer degree
in computer science and electrical engineering from University of Grenoble in 1991
and a Ph.D. in computer science in 1997 from University of Evry (near Paris). His
research interest have concerned Systems on Chip design and architecture, and more
precisely the design and validation of hardware/software interfaces. He is now fo-
cusing on prototyping, software code generation for Multiprocessor System-on-Chip
and communication on such systems. He also served on program committees of dif-
ferent international conferences, workshops or symposiums. In 2006, he spent one
year of sabbatical at Université de Montréal, working on ESys.NET.

iii

Contributor Biographies

Amine Anane
Université de Montréal - Canada

Amine Anane is a Ph.D. student at the department of computer science and oper-
ations research of the Université de Montréal. He received the computer science
engineer degree from the Faculty of Science of Tunis in 1998. He has been work-
ing as IT consultant for 7 years before joining the Université de Montréal for M.S.
degree in computer science. Since he obtained an accelerated admission to Ph.D.
program in 2006, he has been with the LASSO laboratory which is interested in the
formal design and verification methods of microelectronics systems. His researches
are related to the study of a design methodology suitable to formal verification and
correct-by-construction incremental refinement.

Guy Bois
École Polythechnique de Montréal - Canada

Guy Bois is a professor in the Department of Computer Engineering at Ecole Poly-
technique de Montréal. His research interests include hardware/software codesign
and coverification for embedded systems. Guy Bois has a Ph.D. in computer science
from the Université de Montréal.

Luc Charest
Université de Montréal - Canada

With a strong C++/software engineering background, Luc Charest, was one of the
first to introduce Design Patterns to the System Design domain. Graduated from
Université de Montréal in 2004, he then made a postdoc at the LIFL of Université
des Sciences et Technologies de Lille (France) in 2005. Some of his current work
and other theme interests are operational research and functional programming.

Mathieu Dubois
Université de Montréal - Canada

Mathieu Dubois is a Ph.D. candidate in computer science at the University of Montréal.
He holds a B.Ing. and a M.Sc.A. in electrical engineering from respectively the Ecole
de technologie supérieure de Montréal and the Ecole polytechnique de Montréal.
His research interests include heterogeneous compilation and the acceleration of
discrete-event simulations.

Patrice Gerin
Laboratoire TIMA INPG/UJF/CNRS - France

Patrice Gerin received the M.S. degree in Microelectronics from University Joseph

v

vi System level design with .Net technology

Fourier and is currently working toward the Ph.D. degree from INPG, Grenoble,
France. From 1999 to 2005, he has been working as embedded software engineer
in the industry. He is currently with the System-Level Synthesis Group in TIMA
Laboratory, Grenoble, France. His research interests include Hardware/Software
simulation and embedded software validation in MPSoC design.

Nicolas Gorse
Université de Montréal - Canada

Nicolas Gorse obtained a Ph.D. in Computer Science from University of Montréal in
2006. He is currently working within the Analog Mixed Signal Group at Synopsys,
Inc. His research interests are simulation, verification and formal methods.

Yann-Gaël Guéhéneuc
Ecole Polythechnique de Montréal - Canada

Yann-Gaël Guéhéneuc is associate professor at the Department of computing and
software engineering of Ecole Polytechnique de Montréal where he leads the Ptidej
team on evaluating and enhancing the quality of object-oriented programs by pro-
moting the use of patterns, at the language-, design-, or architectural-levels.

James Lapalme
Université de Montréal - Canada

James Lapalme is a PhD candidate at l’Université de Montréal. He has spent most of
his graduate research on the application of modern software engineering technolo-
gies to embedded systems design. He developed ESys.NET in the context of his
master’s thesis. Over the past couple of years he has become increasingly interested
in the use of Semantic Web technologies for the development of CAD tools. In addi-
tion to his academic career, James is a professional in the private sector specializing
in the areas of enterprise architecture and enterprise information management.

Michel Metzger
Université de Montréal - Canada

Michel Metzger is a research-and-development engineer at STMicroelectronics Canada.
His research interests include system-level design and verification of embedded plat-
forms. Michel Metzger has an engineering degree in Computer Science from Ecole
Supérieure en Sciences Informatiques, Sophia-Antipolis, France and a Master of Sci-
ence from University of Montréal.

Gabriela Nicolescu
École Polythechnique de Montréal - Canada

Gabriela Nicolescu is currently Associate Professor at Ecole Polytechnique de Montréal
teaching embedded systems design and real-time systems. She received a degree in
Engineering and Ms.S. from Polytechnic University of Romania in 1998. She re-
ceived her Engineer Doctor degree from the National Polytechnique Institute, Greno-
ble, France in 2002. Her research work is in the field of specification and validation

List of authors vii

of heterogeneous systems, and multiprocessor system-on-chip design.

Frédéric Pétrot
Laboratoire TIMA INPG/UJF/CNRS - France

Frédéric Pétrot is Professor in Computer Architecture at the ENSIMAG, a school of
higher education of the Institut Polytechnique de Grenoble since 2004. He is also
heading the System Level Synthesis Group of the TIMA laboratory, in Grenoble,
France. Prior to this position, Frédéric Pétrot was Assistant Professor in the SoC
design Lab of the University Pierre et Marie Curie, Paris, France, where he was a
major contributor of the Alliance VLSI CAD System (PhD in 1994 on this topic),
and of the Disydent Digital Design Environment.

Yvon Savaria
École Polythechnique de Montréal - Canada

Professor Yvon Savaria holds a Canada Research Chair in architecture and design
of advanced microelectronic systems. He has 27 years of experience with IC design
and test. He conducted research on design methods of digital, analog and mixed
signal integrated circuits and systems. He has extensively published on a wide range
of microelectronic circuits and system design methods. He has active collaborative
projects with several organizations and was a founder of LTRIM, a Polytechnique
spin-off that commercialized an invention resulting from his research at Polytech-
nique and for which he obtained an NSERC Synergy award in 2006.

Yousra Tagmouty
Université de Montréal - Canada

Yousra Tagmouty received M.Sc. in Computer science from Université de Montréal
in 2008. Her thesis describes a meta-model to specify the behaviour of the solutions
of design patterns and-or of object-oriented programs. She applied this meta-model
to specify several design patterns and to automatically generate the corresponding
source code in ESys.NET. She actually works in a software company in Montreal.

Alena Tsikhanovich
Université de Montréal - Canada

Alena Tsikhanovich is the P.D. candidate of the department of computer science
and operations research of Université de Montréal. She has received the bachelor
degree in mathematics in Belarus State University and the master degree in computer
science in Université de Montréal. Her current research projects are related to the
domains of hardware/software system modeling and timing verification based on
temporal constraint analysis.

Julie Vachon
Université de Montréal - Canada

Julie Vachon is an associate professor of computer science at Université de Montréal.
She is a member of the GEODES software engineering laboratory. Her current re-

viii System level design with .Net technology

search interests include formal software specification and verification (model-checking
and theorem proving), aspect-orientation, feature interaction detection, transaction
models and distributed systems verification.

Contents

1 Introduction 3
Frédéric Rousseau, James Lapalme and El Mostapha Aboulhamid
1.1 Needs of a Complete and Efficient Design Environment 3

1.1.1 The .NET Framework . 5
1.1.2 Characteristics Expected from a Design Environment 9
1.1.3 ESys.NET: a .NET Framework Based Design Environment . 10
1.1.4 Our Design, Simulation and Verification Flows 13

1.2 Design Flow with ESys.NET . 14
1.2.1 Modeling and Specification 15
1.2.2 Our System Design Flow 15
1.2.3 Analysis of the Design Flow 18

1.3 Simulation Flow with ESys.NET 19
1.3.1 Building the Simulation Model 19
1.3.2 Separation of Concerns Between Models and Simulation . . 19
1.3.3 Towards a Multi-Level Simulation Model 20

1.4 Observer Based Verification Flow with ESys.NET 22
1.4.1 Overview of the Observer-Based Verification Flow 22
1.4.2 Building and Binding the Verification Engine to the Simula-

tion Model . 23
1.4.3 Comparison with the Same Verification Flow in SystemC . . 24
1.4.4 Towards a Powerfull Verification Flow 25

1.5 Conclusion and Book Organization 25

I Modeling and Specification 29

2 High-Level Requirements Engineering for Electronic System-Level De-
sign 31
Nicolas Gorse
2.1 Introduction . 31
2.2 Background . 33

2.2.1 Framework . 33
2.2.2 Software Engineering Approaches 35

2.3 Proposed Solution . 37
2.3.1 Formalism . 37
2.3.2 Linguistic Pre-Processing 40
2.3.3 Consistency Validation . 42

ix

x System Level Design with .NET Technology

2.3.4 Elicitation of Missing Functionalities 44
2.4 Experimental Results . 45

2.4.1 Automatic Door Controller 45
2.4.2 Industrial Router . 48
2.4.3 RapidIO . 50

2.5 Linking to a UML-Based Methodology 51
2.5.1 Integrated Methodology 52
2.5.2 Case Study . 53

2.6 Conclusion . 54

3 The Semantic Web Applied to IP-Based Design: A Discussion on IP-
XACT 57
James Lapalme, El Mostapha Aboulhamid and Gabriela Nicolescu
3.1 Introduction . 57
3.2 Models of Architecture and XML 59

3.2.1 GSRC and MoML . 59
3.2.2 Colif and Middle-ML . 61
3.2.3 Premodona . 61

3.3 SPIRIT . 63
3.3.1 IP-XACT Metadata Format 63
3.3.2 Tight Generator Interface (TGI) 65
3.3.3 Semantic Consistency Rules (SCR) 65

3.4 The Semantic Web . 66
3.4.1 Resource Description Framework 66
3.4.2 RDF Schema . 67
3.4.3 Web Ontology Language (OWL) 68
3.4.4 SPARQL . 70
3.4.5 Tool for the Semantic Web: Editors and Jena 72
3.4.6 SWRL and Jena rules . 72

3.5 XML and its Shortcomings . 74
3.5.1 Multiple Grammars . 75
3.5.2 Documentation-centric . 76
3.5.3 Biased Grammar Model 77
3.5.4 Limited Metadata . 77

3.6 Advantages of the Semantic Web 78
3.6.1 Richer Semantic Expressivity 79
3.6.2 Separation Between Semantics and Encoding 79
3.6.3 Federated Data Model . 80
3.6.4 Simpler Data Manipulation 80

3.7 Case Study – SPIRIT . 82
3.7.1 Advantages Applied to Version Management (SPIRIT 1.2 to

SPIRIT 1.4) . 82
3.7.2 Advantages applied to Modeling 83
3.7.3 Impact on TGI . 84
3.7.4 Implications for SPIRIT Semantic Constraint Rules (SCRs) . 85

Table of Contents xi

3.7.5 Dependency XPath . 88
3.8 Cost of Adoption . 90
3.9 Future Research . 90
3.10 Conclusion . 91

4 Translating Design Pattern Concepts to Hardware Concepts 93
Luc Charest, Yann-Gaël Guéhéneuc and Yousra Tagmouti
4.1 Introduction . 94
4.2 Object-Oriented Translations . 96

4.2.1 Translation of Classes and their Members 96
4.2.2 Translation of Object Encapsulation 97
4.2.3 Translation of Object Instantiation 97
4.2.4 Translation of Object Method calls 98
4.2.5 Translation of Polymorphism 98
4.2.6 Translation of Inheritance and Casting Operations 101

4.3 Constraint and Assumptions for Design Pattern Synthesis 102
4.3.1 Constraint: Dynamism of the Hardware 102
4.3.2 Assumption: Compiled Once 103
4.3.3 Assumption: Limited Number of Objects 103
4.3.4 Assumption: Pattern Automatic Recognition Problem 104
4.3.5 Translation Cost versus Performance 104

4.4 Design Pattern Mappings . 105
4.4.1 Creational Patterns . 105
4.4.2 Structural Patterns . 106
4.4.3 Behavioral Patterns . 107

4.5 Operational Description of Design Patterns 108
4.5.1 PADL in a Nutshell . 108
4.5.2 PADL in Details . 109
4.5.3 PADL by Examples . 110
4.5.4 MIP . 111
4.5.5 ESys.NET Code Generation 112

4.6 Related Work & Background . 113
4.6.1 Object Oriented Synthesis & Patterns in Hardware 113
4.6.2 Original Patterns . 113

4.7 Conclusion . 114

II Simulation and Validation 119

5 Using Transaction-based Models for System Design and Simulation 121
Amine Anane, El Mostapha Aboulhamid, Julie Vachon and Yvon Savaria
5.1 Introduction . 121
5.2 Motivations . 123
5.3 Transaction Model . 126

5.3.1 STM Concurrent Execution 127
5.3.2 STM Implementation Techniques 131

xii System Level Design with .NET Technology

5.3.3 STM Implementation Examples 133
5.4 STM Implementation Using .NET 138

5.4.1 SXM Transactional Memory 139
5.4.2 NSTM Transactional Memory 143
5.4.3 PostSharp . 144
5.4.4 STM Framework . 148

5.5 Experimental Results . 154
5.6 Conclusion And Future Work . 157

6 Simulation at cycle accurate and transaction accurate levels 159
Frédéric Pétrot and Patrice Gerin
6.1 Introduction . 159
6.2 Short presentation of the Cycle Accurate and Transaction Accurate

abstraction levels . 160
6.3 Cycle Accurate simulation . 161

6.3.1 General description . 161
6.3.2 System properties . 162
6.3.3 Formal Model . 162
6.3.4 Simulator Implementation 166

6.4 Transaction Accurate simulation 171
6.4.1 General description . 171
6.4.2 Basic Concepts . 173
6.4.3 Native Simulation for MPSoC 175

6.5 Summary and conclusions . 179

7 An Introduction to Cosimulation and Compilation Methods 181
Mathieu Dubois, Frédéric Rousseau and El Mostapha Aboulhamid
7.1 Introduction . 181
7.2 Cosimulation . 185

7.2.1 Preliminaries: Managed and Unmanaged Code 185
7.2.2 Same binary file . 186
7.2.3 Shared memory . 186
7.2.4 TCP/IP . 186
7.2.5 COM . 187
7.2.6 Static function . 189
7.2.7 Pinvoke . 190
7.2.8 Managed wrapper . 191
7.2.9 Comparison of Cosimulation Implementations 194

7.3 Compiler Framework . 195
7.3.1 Common Intermediate Format 196
7.3.2 Internal data structures . 196
7.3.3 Code generation . 202
7.3.4 Compiled RTL . 204
7.3.5 Compiled TLM . 205

7.4 Conclusion . 206

Table of Contents xiii

8 Timing Specification in Transaction Level Models 209
Alena Tsikhanovich, El Mostapha Aboulhamid and Guy Bois
8.1 Summary . 209
8.2 Expressing Timing . 210
8.3 Timing Analysis . 213

8.3.1 Linear Constraint Systems 214
8.3.2 Max Constraint Systems 215
8.3.3 Max-Linear Systems . 217
8.3.4 Min-Max Constraint Systems 221
8.3.5 Min-Max-Linear Constraint Systems 222
8.3.6 Assume-Commit Constraint Systems 223
8.3.7 Discussion . 227

8.4 Min-Max Constraint Linearization Algorithm 227
8.4.1 Min-Max Constraint Linearization 227
8.4.2 Algorithm Optimization 231
8.4.3 Experimentations . 233

8.5 Timing in TLM . 236
8.5.1 Timing Modeling at CP+T Level 237
8.5.2 Communication Exploration at PV and PV+T Levels 238

8.6 Conclusion . 244

III Practical use of Esys.NET 245

9 ESys.NET Environment 247
James Lapalme and Michel Metzger
9.1 Introduction . 247
9.2 Modeling . 248

9.2.1 My First Model . 248
9.2.2 Modeling Concepts . 252
9.2.3 Process Method . 259
9.2.4 Signals . 259

9.3 Simulation . 266
9.3.1 Simulator Semantics and Construction 266
9.3.2 Semantics . 267

9.4 Verification . 276
9.4.1 Overview . 276
9.4.2 Case-study Model: The AHB-Lite bus 276
9.4.3 How to Specify Properties 278
9.4.4 Verifying Temporal Properties During Simulation 281
9.4.5 Linking Different Tools . 283
9.4.6 Observing Results . 284

9.5 Conclusion . 285

10 References 287

xiv System Level Design with .NET Technology

Index 303

Preface

The introduction of VHDL in 1987 and SystemC in 1999 gave a big boost to the
Electronic Design Community and played an important role in the development of
System Level Design. We were involved with both processes early on. Rich with
the experience with these two environments, we wanted to explore new frontiers that
can enforce these systems and hopefully constitute a synergy with them. This results
in the development of ESys.NET in 2003.

This book had its origin in the overall work done at the Université de Montréal,
on the system level design environment named ESys.NET. It is based on the .NET
framework and brings a better management of metadata, introspection, and interop-
erability between tools. The interoperability is one of the most important aspects
of frameworks such as .NET. It enabled us to develop for example assertions based
observers of ESys.NET models without any interference with the modeler. This can
be seen as enabling separation of concerns.

Encouraged by our experience with ESys.NET, we continued our efforts to try to
build a bridge between advances in the software community and the needs in the
EDA community for new ideas and algorithms. We pursued the development of
our environment by exploring new mechanisms such as transaction modeling to help
in distributed simulation, or Web Semantics to help with IP (Intellectual Property)
reuse.

The collaboration between the SLS group of TIMA in Grenoble (France) and the
LASSO group in Université de Montréal was a determining factor in the comple-
tion of this work. While the two groups have the same global objectives, they have
complementary strengths. The LASSO groups is more focused on modeling and
verification, while the SLS group has a valuable expertise in architecture, System on
Chip and code generation. Both have also a common interest in accurate and efficient
simulation. Sabbatical stays and exchanges helped to strengthen this collaboration.

This work summarizes our efforts and covers three main parts: (a) modeling and
simulation, including requirements specification, IP reuse, and applications of de-
sign patterns to Hardware/Software systems; (b) simulation and validation, cover-
ing Transaction-based models, accurate simulation at cycle and transaction levels,
cosimulation and acceleration techniques, and timing specification and validation;
(c) practical use of the ESys.NET environment concludes this work.

We would like to thank all the authors for their timely response and the numerous
iterations to complete their respective chapters.

Readers are encouraged to visit the companion website http://www.esys-net.org/
and send us their comments to enrich it.

1

4
Translating Design Pattern Concepts to
Hardware Concepts

Luc Charest
Université de Montréal - Canada

Yann-Gaël Guéhéneuc
Université de Montréal - Canada

Yousra Tagmouti
Université de Montréal - Canada

4.1 Introduction . 93
4.2 Object-Oriented Translations . 95
4.3 Constraint and Assumptions for Design Pattern Synthesis 102
4.4 Design Pattern Mappings . 105
4.5 Operational Description of Design Patterns . 107
4.6 Related Work & Background . 113
4.7 Conclusion . 114

Abstract For half a century, hardware systems have become increasingly com-
plex and pervasive. They are not only found in satellite navigation systems or au-
tomated factory machinery but also in everyday cell-phone, parc-o-meter, and car
control-and-command systems. This increase in the use of hardware systems led
to a revolution in their design and implementation: the chips are becoming more
and more powerful, their logics is implemented as software systems executed by the
chips, thus helping system designers to cope with their complexity.

These mixed hardware–software systems raise the level of generality of the “hard-
ware part” and the level of abstraction of the “software part” of the systems. Thus,
they suggest that mainstream software engineering techniques and good practices,
such as design patterns, could be used by system designers to design and implement
their mixed hardware–software systems.

This chapter presents a proof of concept on “translating” the solutions of design
patterns into hardware concepts to alleviate the system designers’ work and, thus, to
accelerate the design of mixed hardware–software systems. This chapter opens the
path towards a new kind of hardware synthesis.

93

94 System Level Design with .NET Technology

4.1 Introduction
For half a century, hardware systems have become increasingly complex and per-

vasive. They are not only found in satellite navigation systems or automated fac-
tory machinery but also in everyday cell-phone, parc-o-meter, and car control-and-
command systems. This increase in the use of hardware systems led to a (r)evolution
in their design and implementation: the chips are becoming more and more powerful,
their logics is implemented as software systems executed by the chips, thus helping
system designers to cope with their complexity.

These mixed hardware–software systems raise the level of generality of the “hard-
ware part” and the level of abstraction of the “software part” of the systems. Thus,
they suggest that mainstream software engineering techniques and good practices,
such as design patterns, could be used by system designers to design and implement
their mixed hardware–software systems.

As a variable may match a register, we propose a mapping between design patterns
and a hardware implementation. System designers could use this mapping when de-
signing and implementing their mixed hardware–software systems to translate the
solution of a design pattern into its appropriate hardware counter-part. Thus, design-
ers would benefit for their systems of the good practices embodied by design patterns
from software design.

This chapter presents a mapping to “translate” some design patterns into hardware
concepts to alleviate the system designers’ work and, thus, to accelerate the design
and quality of mixed hardware–software systems. It focuses on interesting and chal-
lenging concepts to foster future research, without trying to be exhaustive.

Design patterns are “good” solutions to recurring design problems in software
design. We only consider the design patterns originally defined by Gamma et al.
[89], because these patterns are well-defined, well-known, and the subject of many
work in the software engineering community. With the beginning of the 21st century,
design patterns began to emerge in the system design domain [51, 23].

However, the main challenge of mapping design pattern into hardware systems is
that existing design patterns relate to object-oriented systems. Therefore, as a first
approach of translating design patterns from software into hardware, we consider that
we first build an “object system”—a representation of an object into the hardware
world. As there are several ways of designing and implementing a processor, there
is not only one way to build an object system.

This chapter is not a catalog of recurring hardware design patterns because such
a catalog should be compiled by the community based on the hardware designers’
experience and is therefore out of the focus of this chapter.

Motivating Example. Consider as example the problem of a circuit C that per-
forms a computation, as shown in Figure 4.1a. The classic solution to accelerate the
given circuit, at the cost of augmenting its latency, is to pipeline this circuit into the
sub-circuits {C1,C2,C3 . . .Cn}, each executing a small amount of the computation in

Translating Design Pattern Concepts to Hardware Concepts 95

(a) The problem: a complex circuit taking too
much time to execute.

(b) The solution: a pipeline which simplifies the
task intosmaller sub-circuits while allowing an
augmentation of the clockspeed at the cost of
constant latency.

FIGURE 4.1: Motivating example for getting inspiration from software engineering.

parallel, as shown again in Figure 4.1b. (The clock speed could also be increased,
resulting in an overall faster execution.)

The pipeline architecture has been applied in software engineering to obtain the
flexibility to replace particular component seamlessly. For example, it is used to
design compilers, where each phase of the compilation corresponds to a component
in the pipeline. We believe that other good practices from software engineering could
be applied in hardware–software system design and therefore study the feasibility
to apply concepts developed in software engineering to the synthesis of hardware
systems.

Running Example. In the rest of this chapter, we use the running example of a
module ComplexNumber to compute and perform operations on complex num-
bers. Figure 4.2 describe the whole running example, from the software classes to its
implementation and instantiation in hardware. We will describe this example step-
by-step in the rest of this chapter. In particular, we will use this example to highlight
the translation of object-oriented software concepts into hardware concepts, such as
inheritance.

Structure of the Chapter. Design patterns are inherently tied to the object-oriented
paradigm. Therefore, in Section 4.2, we present a mapping between software object-
oriented concepts and hardware concepts. Then, in Section 4.3, we describe the
constraints on our mapping. In Section 4.4, we detail our mapping between design
pattern concepts and hardware concepts in the form of a catalog of the most inter-
esting patterns. Such a mapping would be incomplete without a means to translate
the patterns into hardware concepts concretely, we therefore present an operational
description of design patterns and its use to generate hardware “code” in Section
4.5. In Section 4.6, we describe related work while in Section 4.7, we conclude and
introduce future work.

96 System Level Design with .NET Technology

ComplexNumber

#imag: float

+add(p:ComplexNumber): ComplexNumber *

N u m b e r

#value: float

+add(p:Number): Number *

(a) A UML software definition of a
ComplexNumber class using a Number
base class.

(b) A possible hardware implementation of
Object-Oriented inheritance.

(c) The module being in an “not instantiated”
state.

(d) The ComplexNumber module down-cast
into (or instantiated as) a Number class.

FIGURE 4.2: Running example of a ComplexNumber software class and its hard-
ware module.

4.2 Object-Oriented Translations
The design patterns in Gamma et al.’s catalog [89] are solutions to recurring

object-oriented design problems. We therefore present first a mapping between
object-oriented concepts and hardware concepts. This mapping will be used in Sec-
tion 4.4 to map design patterns and hardware concepts.

Essential concepts in object-oriented design and implementation are: objects and
their instantiations, methods, inheritance (and casting operations), and polymor-
phism. We also discuss the cost of generating hardware code from object-oriented
code based on our mapping.

4.2.1 Translation of Classes and their Members

In object-oriented programming, the main concepts of interest are Structures
or Classeses, which contain fields and related methods. For example, in C++,

Translating Design Pattern Concepts to Hardware Concepts 97

the distinction between a struct and a class is the default scope: members of
classes are private by default while those of structures are public by default.

Class members may be of two types: fields, which contain data and define the
“state” of a class or of its objects, and method (or constructor) that provide function-
alities usually operating on the data contained in the fields. Even if the fields are tied
with their methods in the class, they are distinct members.

Methods are shared among all the instances of a same class while fields are
not necessarily. Indeed, fields can be instance fields, whose values are unique for a
particular object, instance of the class, or class fields, whose values are shared by the
class and all of its instances.

4.2.2 Translation of Object Encapsulation

Encapsulation is the means by which a class embeds and hides its members. It
requires a protection mechanism for the enclosing class to gain the responsibilities
over its members and to isolate them from the outside world.

Considering that we are targeting synthesis, with the software being ready to be
transformed into hardware, we can treat a base class and its inherited classes simi-
larly to an enclosing class and its encapsulated member. The encapsulated member
can be generated directly into the enclosing class or it could be indexed with a pointer
to another instance.

4.2.3 Translation of Object Instantiation

An instantiation correspond to the creation of a new object, hence memory alloca-
tion for their instance fields. When either a struct or class are locally declared,
their instance fields are allocated on the execution stack. When a dynamic instan-
tiation is requested (with new or malloc), the instance fields are allocated on the
heap.

Unless a class has no fields and therefore provides only methods, its fields must be
define in its hardware equivalent. Fields are required to be created in two different
situation:

1. At the beginning of the execution of the system, for class fields.

2. At the instantiation of the object, when its constructor gets called.

There are at least four ways of storing instance fields:

As constants, hard-coded as bits. This kind of implementation is interesting for
some rare case of static constant fields, which are initialized at the beginning
of the execution and which values do not change during execution. Constant
fields would be generated with the platform in a ROM (or with a static combi-
natory circuit) and will have an infinite lifespan.

In registers, distributed in small “modules” that could be generated to corresponds
to an object.

98 System Level Design with .NET Technology

In a global RAM memory, probably the best way to store the field values, in a cen-
tralized unit.

In a local RAM memory, similar to the previous way, but distributed over the sys-
tem.

Instantiating class fields, at the beginning of the execution of the system is straight-
forward because the translator could identify such cases and they can be implemented
in hardware as constants or into registers for faster access. The fact that the class
fields are shared by all object makes it easy because the fields become unique in the
whole system for a given class.

The instantiation of a instance fields is more challenging. The exact moment of
a call to a given constructor is not known in advance if not simulated first. For
example, nothing forbids the constructor call to be controlled by something like a
random draw (e.g.: Rand()). Therefore, the time at which the construction takes
place, and at which the instance fields must be allocated, cannot be taken for granted
and the number of time a given constructor is called could also change between
different execution runs.

Therefore, for any realistic system, we cannot pre-compute the exact number and
type of each object that will be instantiated in the system. We can only estimate this
number and design a system that will be able to contain the most appropriate number
of instances of each objects.

4.2.4 Translation of Object Method calls

A method call corresponds to a static function call using an hidden this pointers
to indicate the object on which to apply the function. For example, the call in Listing
4.1 (Line 13) is the object-oriented equivalent of the function call in Listing 4.2 (Line
12).

The method calls in Figure 4.3a and 4.3b can be translated into a signal sent from
one module to another, as shown in Figure 4.3c. Parameters can be sent over the
signal data lines and the return values can be sent back as signals as well. If an
elaborated structure is to be exchanged, a memory reference, as shown in Figure
4.3d could be sent instead of concrete values.

4.2.5 Translation of Polymorphism

Polymorphism allows behavioral variations based on the class of an object. Poly-
morphism corresponds to a method defined in several specialized classes with a sig-
nature identical to the signature of the method in the base class. When the method
of an object is called, depending on the class that was used when the object was in-
stantiated, the method of the appropriate class is called, even if the object was stored
beneath a base class reference, as illustrated in Listing 4.3, Line 6 and 13. In this
example, f() is polymorphic because it is redefined in the inherited class and it is
marked as virtual. Both g() and h() are not polymorphic.

Translating Design Pattern Concepts to Hardware Concepts 99

1 / / C l a s s d e f i n i t i o n
2 c l a s s L i s t {
3 p r o t e c t e d :
4 c l a s s I t em ∗head ;
5 p u b l i c :
6 / / Ob jec t−O r i e n t e d p r o t o t y p e (method) :
7 void add (I tem &i t e m t o a d d) ;
8 }
9

10 /∗ Objec t−O r i e n t e d c a l l , t h e ”∗ t h i s ” p o i n t e r i s ” h id de n ” , made
11 i m p l i c i t by ” m y l i s t ” , which i s t h e o b j e c t on to which t o a p p l y t h e
12 ”add” method ∗ /
13 m y l i s t . add (I tem (4 2)) ;

Listing 4.1: Object-oriented way; the Add method applied on a List object.

1 / / S t r u c t u r e d e f i n i t i o n
2 s t r u c t L i s t {
3 s t r u c t I t em ∗head ;
4 }
5

6 / / P r o c e d u r a l p r o t o t y p e (f u n c t i o n) :
7 void L i s t a d d (L i s t ∗ l i s t t o m o d i f y , I t em &i t e m t o a d d) ;
8

9 /∗ P r o c e d u r a l c a l l , he re t h e s t r u c t u r e on to which a p p l y t h e b e h a v i o r
10 o f ”add” must be made e x p l i c i t by p a s s i n g t h e r e f e r e n c e t o t h e
11 ” L i s t ” s t r u c t u r e ∗ /
12 L i s t a d d f u n c t i o n (& m y l i s t , I t em (4 2)) ;

Listing 4.2: Classic procedural way; the call of the Add function with the List
structure passed explicitly.

Polymorphism is usually implemented using a Virtual table (also known as Vtable),
which is a table that maps classes with pointers to methods to direct any call to the
appropriate method.

A virtual table is available at compile time, after parsing, before linking, as illus-
trated in Listing 4.4, which shows the assembly code of the virtual table with names
mangling correspondence shown with Table 4.1).

The class of an object is not always known at compile time and the virtual table
is persisted in the machine code and preserved for the methods called dynamically.
Only virtual methods ends up in the virtual table (Line 106) because ordinary meth-
ods can be called directly, they are linked with the object class that is implicit.

The translation of polymorphism into hardware can be achieved by creating sev-
eral instance of specialized classes into hardware and then controlling the classes of

100 System Level Design with .NET Technology

ComplexNumber

#real: float

#imag: float

+add(p:ComplexNumber): ComplexNumber *

(a) A UML software definition of a class.

main X:ComplexNumber

add(Y)

this

(b) A software method call.

(c) A possible translation into hardware. (d) Hardware method call using a memory ref-
erence.

FIGURE 4.3: Example of a class representing complex numbers, from its software
design to its hardware implementation.

1 c l a s s Base
2 {
3 p u b l i c :
4 v i r t u a l vo id f (void) ;
5 void g (void) ;
6 } ;
7

8 c l a s s Der ived : p u b l i c Base
9 {

10 p u b l i c :
11 v i r t u a l vo id f (void) ;
12 void h (void) ;
13 } ;

Listing 4.3: Polymorphic f() method defined in base and derived class.

objects by deactivating some part of the module when base classes are needed.
The translation of the Vtable into hardware then becomes straightforward, as ex-

emplified in Table 4.2, because it is similar to a LUT (Look-Up Table). The LUT

Translating Design Pattern Concepts to Hardware Concepts 101

1 ZTV4Base :
2 . l o n g 0
3 . l o n g ZTI4Base
4 . l o n g ZN4Base1fEv
5 .weak ZTS7Derived
6 . s e c t i o n . r o d a t a . Z T S 7 D e r i v e d , ”aG” , @progbi t s , ZTS7Derived , comdat
7 . t y p e ZTS7Derived , @object
8 . s i z e ZTS7Derived , 9

Listing 4.4: The vtable with the assembly language excerpt of the code of Listing
4.3.

TABLE 4.1: Translation of mangled names of
Listing 4.3.

Mangled identifier Result returned by c++filt
ZTV4Base vtable for Base
ZTI4Base typeinfo for Base
ZN4Base1fEv Base::f()
ZTS7Derived typeinfo name for Derived

TABLE 4.2: Possible method (and
polymorphism) encoding for the
ComplexNumber module.

Class type Method Code assigned
Base f() 0
Base g() 1
Derived f() 2
Derived h() 3

becomes a decoder; the numbers can be attributed sequentially to each newly discov-
ered method upon parsing during code generation.

4.2.6 Translation of Inheritance and Casting Operations

Inheritance and polymorphism help bringing communality and variation [61]. In
software engineering, inheritance is achieved by adding methods and properties to
the base inherited structure. We reuse this idea in hardware by generating a module
for each specialized class at the end of the inheritance tree (all leaf classes of the
inheritance tree).

Each of these specialized modules contains its parent class, which would in its

102 System Level Design with .NET Technology

turn, recursively contain all of its parents, as shown in Figure 4.2b. A special register
would then be generated within each class module to hold the type of the module,
obj inst as shown in our example. When the module is not instantiated, this
number is 0, in Figure 4.2c, indicating all the data in the local registers/memories are
invalid.

The proposed mechanism enables also to typecast an object into an inherited class
easily by changing the obj inst number to the one indicating the type of the new
class. If the class is down-cast, as illustrated in Figure 4.2d, the invalidated registers
can still holds some valid values (masked by the downcast) and could be restored
when the object is cast back to its original class.

4.3 Constraint and Assumptions for Design Pattern Synthesis
The translation of design patterns from software to hardware is subject to one

constraint and three assumptions that we present now.

4.3.1 Constraint: Dynamism of the Hardware

Hardware systems used to be static: sets of wires and components “hardwired”
together to perform specific computations. For some times now, hardware systems
blend altogether with their software systems to benefit from the dynamic nature of
the the software. End products are more customizable with flash memories and con-
figurable with small Web servers implemented in embedded systems as software
systems running on a generic hardware core.

Traditionally, objects are generated in memory, having a generic processor per-
forming method calls and fields accesses. Although such a solution is the usual way
of reaching the dynamism found in software systems, it is an extreme case that relies
on a “pure” software implementation and a generic processor and that is therefore
uninteresting in the context of this chapter.

We are interested in implementing design patterns using a “pure” hardware sys-
tem, which we could define as a hardware system with as less software as possible,
and which would potentially bring faster execution at the cost of specializing the
hardware. Such solution is more desirable for embedded systems, where the compu-
tations or application are unlikely to change.

Naturally, this solution would also work for mixed software–hardware systems
(e.g.: FPGAs) which are consequently implicitly be covered by this chapter, because
such solution does not directly implement (or emulate) an object-oriented system: we
assume a more conservative hardware system, thus guaranteeing that the translation
would work on more dynamic hardware systems.

Translating Design Pattern Concepts to Hardware Concepts 103

4.3.2 Assumption: Compiled Once

If we were to target an FPGA for our compiled system, it is possible to change the
hardware on the fly, thus easing the task of implementing polymorphism.

Such a solution complies with our constraint of obtaining a “pure” hardware solu-
tion, even though changing the nature of the hardware on the fly requires more logic
gates (as the control logic of the FPGA cell blocks). Indeed, changing the hardware
only requires more knowledge at the start of the system.

This knowledge is available if we limit our discussion to such a case where the
software system is known and is available as software code, ready to be transformed
into hardware by an hypothetical “software to hardware” compiler.

If we are to generate a solution for an ASIC (Application-Specific Integrated Cir-
cuit), we have to assume that the translation into hardware will occur once and that
the nature of the hardware—unless designed for—can not be changed.

Hence, in this chapter we shall focus the most restrictive platform type, and re-
strict ourselves to a one-time compilation and synthesis, no dynamic compilation or
synthesis.

4.3.3 Assumption: Limited Number of Objects

We could also create several hardware modules to simulate an object-oriented soft-
ware system, each module matching a class and its inheritance tree. We prefer,
however, to reuse specialized modules and use them as base modules. In order for
each class to be instantiated at least once in our system, we can them assume the
number of module must be at least, the number of leaf classes of our system.

Let n be the number of classes in our system at compile time. Assuming that
no new classes can be added after generation and that we have a complete binary
common-rooted balanced inheritance tree, there are n+1

2 leaf classes, the minimum
number of modules that must be generated in the hardware.

By generating more hardware modules for a class, we bring parallelism in the
system by enabling the existence and computation capability of several objects at
the same time. As mentioned earlier, unless the hardware is capable of mutating
into another class, once generated, the number of active class in the system at the
same time is limited by the number of time the designer instantiate a specific class.
This limitation means that a constant must be defined for each class, indicating the
maximum number of active objects allowed in the system at a same time.

Computing the maximum of number of active objects is in general impossible,
because objects can be created dynamically in software systems and with no other
constraints but the size of the memory. For example, a large and unknown number
of objects could be created to compute a complex scene in a ray tracer. Yet, it is
possible to run the software systems in a set of reasonable scenarios and obtain an
insight on the maximum number of objects of its classes. Such practice is already
used when developing for example software systems for cell-phones.

104 System Level Design with .NET Technology

4.3.4 Assumption: Pattern Automatic Recognition Problem

Although design patterns are quite formally described with Gamma et al. [89],
they were not meant to be defined into a computer language and parsed in an au-
tomated way. They express generic solutions to recurring design problems: they
cannot be easily automatically identified in a software system.

Since a design pattern can have several variants, identifying occurrences of the
pattern in a software system becomes a challenge of its own, which has been tackled
by the software engineering community as early as 1998 [206].

Therefore, we assume that we know explicitly which design patterns have been
used to implement a software system and which classes play some roles in their
occurrences.

4.3.5 Translation Cost versus Performance

An optimization phase can occur to reuse part of the behavioral synthesis pro-
cess. For example, the controller for the ComplexNumber class could use only
one ALU, at the cost of a more complex controller module.

In Figure 4.3c, we show a solution to our running example where its behavioral
parts, the ALU, are duplicated. Such solution provides more parallelism but at the
expense of more hardware.

In Figure 4.3d, we depict an alternate solution where the behavioral part is reused
for several distinct method. The need of buses then arises and complexifies the logic
circuits of the overall unit (not shown in the figure). Yet, this solution saves on
hardware, at the cost of serializing the operations. This solution, in worst case,
corresponds to the execution on a classic mono processor architecture. A threshold
could be set by the designer generating the hardware system, indicating how many
processing modules are to be generated to accelerate the overall architecture.

Another part of reuse could be achieve by replacing local registers by a local mem-
ory that could hold an array of objects of the same inherited branch. Let n be the
number of distinct classes in a given branch, we can then pose {i | 1 ≤ i ≤ n} to be
a number identifying each class. Let xi be the number of living objects required for
class type i. The minimal required memory size is then defined by Equation 4.1.

memory size =
n

∑
i=1

xi×memory usage of(i) (4.1)

For example, in the running example, the architecture could be configured to hold,
in the same ComplexNumber module, x0 objects of the Number class and x1
objects of the ComplexNumber class. Such a solution means larger amounts of
memory to hold more objects in a same module, at the cost of creating a execution
bottleneck if the number of executing units in the module is low. Local buses of units
will also be a bottleneck if the number of objects contained by a module is high.

It is advisable to use a mixed approach, where one could generate several modules
of the same kind, with each a small memory capable of handling several objects at
a same time, to distribute the computations whenever possible while minimizing the

Translating Design Pattern Concepts to Hardware Concepts 105

hardware cost. The acceleration could be thus maximized, especially with massively
parallel systems, where objects are relatively independent.

4.4 Design Pattern Mappings
We now describe some interesting patterns using the mappings of object-oriented

concepts into hardware concepts and the constraint and assumptions described be-
fore.

4.4.1 Creational Patterns

Creational patterns are the patterns related to the dynamic creations of objects.
As explained in Section 4.3.1, we consider hardware as being more static than dy-
namic. Applying these kinds of dynamic patterns to “pure” hardware is challenging
because of the static nature of the hardware. Therefore, we present the mapping
of two characteristic creational patterns into hardware: the Prototype and Singleton
design patterns.

Prototype is a pattern that provides a “typical” instance that can be copied before
being customised, with the help of the public method clone(). It allows a
class to have a default instantiation, and avoid having to call several (maybe
complex) methods to initialize an object with its default values.

The prototype pattern corresponds to a ROM (Read Only Memory) that can
hold a block of data containing the prototype. Upon call of the clone()
method, an object is allocated and the data is copied into the newly created
instance, creating a new object based on the prototype. The new object will
typically have to evolve in time and should be allocated in a RAM or in a
register as described in Section 4.2.3

Singleton is a pattern that restricts the number of objects of a class to one. In a soft-
ware system, where a class can usually be instantiated at will, the need quickly
arises to ensure there is only one instance of a certain class that is shared by
all other objects of the system, when a second object of the same class could
cause miscomputations or crashes (e.g.: a multi-threading controller).

Implementing the Singleton pattern is usually achieved by hiding the con-
structor from the outside world and providing a class method to obtain the
unique object (e.g.: instance(), get new(), get instance(). . .).
Any other object is forced to use the class method supplied to get the unique
instance of the Singleton class. The class members (and inherited) still have
access to the constructor.

In terms of hardware, this pattern is easily implemented by directing the syn-
thesis to generate only one object of a class. A Boolean flag can also be in-

106 System Level Design with .NET Technology

(a) The problem: a complex compiler system. (b) A Facade class “Compiler” which lighten the
use of the system.

FIGURE 4.4: Example of a Façade.

cluded in the controller (for example the one in our inheritance example in
Figure 4.2b) to check that the object has been instantiated, and if so, to raise
an error with the calling entity to indicate it can not provide a new instance.

4.4.2 Structural Patterns

Structural patterns are useful to create the design of a software systems. Beck
[29] pointed out that design patterns generate architectures. We describe two typical
structural design patterns that are useful to make object interact seamlessly and to
isolate a set of objects from the rest of the system.

Adapter is the software equivalent of a wrapper. The goal of the Adapter pattern
is to enable the interconnection of several directly incompatible objects by
delegating method calls to the appropriate (incompatible) methods either by
using multiple inheritance or object composition.

In terms of hardware, it is not rare to see wrappers constructed around IP
blocks (Intellectual Properties blocks). As for the software pattern, wrappers
may be used to enhance, break into several subcomponents, reroute, or even
disable some behavior (or structure) of the component that they are “mas-
querading” by intercepting part of the communication with the external entity.

Façade is a class that hides the complexity of a whole sub-system into a single
object. The classical example of a Façade is a compiler, as shown in Figure
4.4a, where several compilation steps are implemented with several different
objects of various classes, each having distinct responsibilities. Façade helps
to separate a functionality and to segment the code into simpler parts that are
easier to maintain.

The Façade is the class “Compiler” in our example in Figure 4.4b) that is
inserted between the system and the external world and acts as an interface
to the system. The cost of using a Façade is an extra level of indirection and

Translating Design Pattern Concepts to Hardware Concepts 107

(a) Generic layout of the Observer pattern. (b) The Observer⇒ ESL Configuration (Mem-
ory, Screen, Bus, CPU, DMAs. . .

FIGURE 4.5: Example of an Observer.

the extra burden of updating the Façade when a major change occurs in the
system. Moreover, the Façade is sometime blamed for quickly getting big and
may lead to an entanglement when it needs to be tightly coupled with a lot of
other classes.

In terms of hardware, a Façade corresponds to an interface, where a protocol is
defined to access a more complex system. Usually pins are created that might
corresponds directly to some internal components, but the interface is usually
simplified to reduce its complexity.

A bus can be considered as a Façade as it usually gives access to (while caching
access to) a whole complex system. It also usually provides a simple interface
(rather than have the external system communicating with every other subsys-
tem.)

4.4.3 Behavioral Patterns

Finally, the last category of patterns include patterns related to the behaviour of
objects at runtime.

Observer is a pattern that allows a Subject to notify its Observers when some of
its data change thus ensuring consistency among the Observers, as shown in
Figure 4.5a.

In terms of hardware, a memory can be considered as a Subject that is ob-
served, as illustrated in Figure 4.5b. The Observers are all the different compo-
nents that needs to access the memory data (CPU, DMA, peripherals. . .). The
bus along with its communication protocol form the “contract” that matches
the software interface using inheritance and polymorphism mechanism. We
show a screen as the observer in our example.

108 System Level Design with .NET Technology

4.5 Operational Description of Design Patterns
To operationalise our mapping between software design patterns and hardware

systems, we choose Esys.NET [138, 139]. Esys.NET is a system design environment
(similar to SystemC) based on C] and the corresponding .NET framework (rather
than C++).

Design motifs are the “Solution” parts of design patterns. They are what develop-
ers actually implement in their systems when using design patterns. The generation
of design motifs for Esys.NET require a means to describe design motifs in a form
that can be manipulated by a computer to perform code synthesis into hardware.

We use the Pattern and Abstract-level Description Language (PADL) as formalism
to describe design patterns. We first present PADL. Then, we introduce MIP, an
extension to PADL to describe more precisely the behaviour of the methods declared
in a motif. Finally, we show the use of PADL and MIP to generate Esys.NET code
on the Observer design pattern.

4.5.1 PADL in a Nutshell

PADL is a meta-model that can be used by developers to describe design motifs
and object-oriented software systems. A meta-model is essentially a set of classes
whose instances represent a model. The methods of the classes in the meta-model
describe the semantics of the model. Consequently, PADL provides a set of classes
representing constituents of design motifs and the methods required to instantiate
and link the instances together in a meaningful way.

Figure 4.6 shows a UML-like class diagram representing the architectural layers
of the PADL meta-model, their main packages and classes, and the design patterns
used in the design.

The diagram decomposes in three horizontal parts representing three different lay-
ers of services: First, CPL (Common PADL Library); Then, PADL; Finally, PADL
ClassFile Creator, PADL AOL Creator, POM, and PADL Analyses.
The first layer, CPL, provides utility classes and libraries used across PADL.

The second layer, PADL, provides the meta-model to describe models of systems
and motifs. The meta-model defines the interfaces (and implementation classes) of
the possible constituents of motifs, for example, IDesignMotif, whose instance
are motifs and IClass, whose instances describe the classes suggested by a motif.
These instances are combined to describe motifs and subsets of their behaviours.

The padl.kernel and padl.kernel.impl packages declares respectively
the types of the constituents (as Java interfaces) and their implementations.

The PADL meta-model is at the heart of the Ptidej project (Pattern Trace Identi-
fication, Detection, and Enhancement in Java) to evaluate and to enhance the qual-
ity of object-oriented software systems, promoting the use of patterns, either at the
language-, design-, or architectural-levels. In particular, it has been extensively used
to identify occurrences of motifs in systems, for example in [103].

Translating Design Pattern Concepts to Hardware Concepts 109

4.5.2 PADL in Details

Figure 4.7 shows the classes and main methods of the constituents of the PADL
meta-model. Essentially, the meta-model divides in four parts. The first part in-
cludes all the possible constituents (inheriting from Constituent) of the struc-
ture of a system or a motif. These constituents include different types of entities,
Interface (interface à la Java) and Class (classes found in C++ or Java); meth-
ods and fields; parameters.

The second part includes add constituents to refine a model of a system or of a mo-
tif with a comprehensive set of binary class relationships. These relationships are im-
portant because the interaction among classes and their objects in design motifs are
often described in terms of such relationships. The relationships include, from less
constraining to the more constraining, the Use, Association, Aggregation,
and Composition relationships [102]. The Creation relationship is also avail-
able to describe that objects of a class instantiates objects of another class.

The third part includes the constituents specific to the descriptions of design mo-
tifs. A design motif DesignMotif is described in terms of its participating classes
Participants which could be played by classes (ClassParticipant) or in-
terfaces (InterfaceParticipant). Any participant can declare elements as
defined in the part one and two of the meta-model.

Finally, the fourth part includes the constituents specific to the description of a
ProgramModel and its possible set of MicroArchitectures that are the con-
crete manifestations of a DesignMotif. A micro-architecture knows which of its
consistent plays which role in a DesignMotif.

We use the Abstract Factory design pattern to manage the concrete instantiation
of the constituents of PADL. The concrete factory, class Factory, implements the
Singleton design pattern. We use the Builder design pattern to let the parsers choose
the constituents to instantiate, through the Builder class. We use the Visitor de-
sign pattern to offer a standard mean to iterate over a model or a subset of a model,
the padl.visitor package provides default visitors. The padl.pattern and
padl.pattern.repository packages define several prototypal models of well-
known design motifs, which we can clone and parameterise, using the Prototype
design pattern.

The third layer contains several separate projects:

• Parsers for Java class-files and AOL files (PADL Java and AOL Creator).
These parsers are independent of the meta-model and new parsers for other
programming languages can be added seamlessly using the Builder design
pattern.

• A metric computation framework (POM), in which we use the Singleton de-
sign pattern. POM decomposes in a set of primitives defined in terms of the
meta-model constituents. These primitives are combined using set operators
to define metrics.

• A repository of analyses based on the meta-model, in which we use a simpler
version of the Command design pattern. An analyse is invoked on a model of

110 System Level Design with .NET Technology

1 p u b l i c c l a s s O b s e r v e r ex tends B e h a v i o u r a l M o t i f M o d e l implements
2 P r o p e r t y C h a n g e L i s t e n e r , C l o n e a b l e {
3

4 p r i v a t e I C l a s s s u b j e c t , c o n c r e t e S u b j e c t ;
5 p r i v a t e I I n t e r f a c e o b s e r v e r ;
6 p r i v a t e I D e l e g a t i n g M e t h o d n o t i f y ;
7 p r i v a t e IMethod upda te , g e t S t a t e ;
8

9 p u b l i c O b s e r v e r () throws C l o n e N o t S u p p o r t e d E x c e p t i o n ,
10 M o d e l D e c l a r a t i o n E x c e p t i o n {
11

12 super (” O b s e r v e r ”) ;
13 t h i s . s e t F a c t o r y (F a c t o r y . g e t I n s t a n c e ()) ;
14

15 / / I n t e r f a c e Observer
16 t h i s . o b s e r v e r = t h i s . g e t F a c t o r y () . c r e a t e I n t e r f a c e (” O b s e r v e r ”) ;
17 t h i s . u p d a t e = t h i s . g e t F a c t o r y () . c r e a t e M e t h o d (” Update ”) ;
18 t h i s . o b s e r v e r . a d d C o n s t i t u e n t (t h i s . u p d a t e) ;
19 t h i s . o b s e r v e r . s e t P u r p o s e (M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
20 ” Observer PURPOSE ” ,
21 O b s e r v e r . c l a s s)) ;
22 t h i s . a d d C o n s t i t u e n t (t h i s . o b s e r v e r) ;

Listing 4.5: The Observer design motif using the PADL meta-model: declaration of
the Observer role.

a software system or of a pattern and returns a (potentially modified) model
when the analysis is done. Reflection is used by the repository to build the list
of available analyses dynamically.

4.5.3 PADL by Examples

PADL has been used to develop a library of design motifs from the 23 design pat-
terns by Gamma et al. [89], including Chain of Responsibility, Composite, Observer,
Visitor. . . For example, we show with the code of Listing 4.5 the Observer design
motif using the PADL meta-model. The following PADL code systematically instan-
tiates constituents of the meta-model according to the motif as suggested by Gamma
et al., see Figure 4.8.

We show in Listing 4.5 the declaration of the Observer design motif, as a class
Observer. The motif declares an interface Observer that plays the role of Ob-
server in the motif. The interface is built using a Factory.

In Listing 4.6 we show the declaration of the Subject role as a Subject as
a class. This class is abstract and is associated, using an embedded aggregation
ContainerAggregation, to the previously declared Observer class. The
Subject class also declares a Notify methods that delegates its call, through
the aggregation, to all the subject’s observers.

Listing 4.7 illustrates the declaration of the role of Concrete Subject as a class
ConcreteSubject that declares a method getState. The concrete subjects
inherits from the subject and assumes all its interface.

Finally, Listing 4.8 shows the declaration of the role Concrete Observer as a class

Translating Design Pattern Concepts to Hardware Concepts 111

1 / / A s s o c i a t i o n o b s e r v e r s
2 f i n a l I C o n t a i n e r A g g r e g a t i o n anAssoc =
3 t h i s . g e t F a c t o r y () . c r e a t e C o n t a i n e r A g g r e g a t i o n R e l a t i o n s h i p (
4 ” o b s e r v e r s ” ,
5 t h i s . o b s e r v e r ,
6 C o n s t a n t s . CARDINALITY MANY) ;
7

8 / / C l a s s e S u b j e c t
9 t h i s . s u b j e c t = t h i s . g e t F a c t o r y () . c r e a t e C l a s s (” S u b j e c t ”) ;

10 t h i s . s u b j e c t . s e t A b s t r a c t (t rue) ;
11 t h i s . s u b j e c t . a d d C o n s t i t u e n t (anAssoc) ;
12 t h i s . n o t i f y =
13 t h i s . g e t F a c t o r y () . c r e a t e D e l e g a t i n g M e t h o d (
14 ” N o t i f y ” ,
15 anAssoc ,
16 t h i s . u p d a t e) ;
17 t h i s . s u b j e c t . a d d C o n s t i t u e n t (t h i s . n o t i f y) ;
18 t h i s . s u b j e c t . a s s u m e A l l I n t e r f a c e s () ;
19 t h i s . s u b j e c t . s e t P u r p o s e (M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
20 ” Subject PURPOSE ” ,
21 O b s e r v e r . c l a s s)) ;
22 t h i s . a d d C o n s t i t u e n t (t h i s . s u b j e c t) ;

Listing 4.6: The Observer design motif using the PADL meta-model: declaration of
the Subject role.

1 / / C l a s s e C o n c r e t e S u b j e c t
2 t h i s . g e t S t a t e = t h i s . g e t F a c t o r y () . c r e a t e M e t h o d (” g e t S t a t e ”) ;
3 t h i s . c o n c r e t e S u b j e c t = t h i s . g e t F a c t o r y () . c r e a t e C l a s s (” C o n c r e t e S u b j e c t ”) ;
4 t h i s . c o n c r e t e S u b j e c t . a d d I n h e r i t e d E n t i t y (t h i s . s u b j e c t) ;
5 t h i s . c o n c r e t e S u b j e c t . s e t P u r p o s e (M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
6 ” ConcreteSubject CLASS PURPOSE ” ,
7 O b s e r v e r . c l a s s)) ;
8 t h i s . c o n c r e t e S u b j e c t . a d d C o n s t i t u e n t (t h i s . g e t S t a t e) ;
9 t h i s . c o n c r e t e S u b j e c t . a s s u m e A l l I n t e r f a c e s () ;

10 t h i s . a d d C o n s t i t u e n t (t h i s . c o n c r e t e S u b j e c t) ;

Listing 4.7: The Observer design motif using the PADL meta-model: declaration of
the Concrete Subject role.

ConcreteObserver. This class is associated to the concrete subjects through an-
other aggregation. It declares an updatemethod that is being called by the concrete
subject notify method when appropriate and that fetches the concrete subject’s
changes through a call to its getState method.

An instance of the Observer class is an instance of the Observer design motif,
which can then be parameterised to fit a given implementation. This parameterised
instance can be used to identify occurrences of the motif in a system or to generate
source code.

4.5.4 MIP

The PADL meta-model has been extended with additional constituents to describe
the inner working of the methods of systems and motifs. This extension to the meta-

112 System Level Design with .NET Technology

1 f i n a l I C o n t a i n e r A g g r e g a t i o n a2Assoc =
2 t h i s . g e t F a c t o r y () . c r e a t e C o n t a i n e r A g g r e g a t i o n R e l a t i o n s h i p (
3 ” s u b j e c t ” ,
4 t h i s . c o n c r e t e S u b j e c t ,
5 C o n s t a n t s . CARDINALITY ONE) ;
6

7 / / C l a s s e C o n c r e t e Observer
8 t h i s . n o t i f y =
9 t h i s . g e t F a c t o r y () . c r e a t e D e l e g a t i n g M e t h o d (

10 ” Update ” ,
11 a2Assoc ,
12 t h i s . g e t S t a t e) ;
13 t h i s . n o t i f y . setComment (M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
14 ”DELEG METHOD COMMENT” ,
15 O b s e r v e r . c l a s s)) ;
16 t h i s . n o t i f y . a t t a c h T o (t h i s . u p d a t e) ;
17 t h i s . c o n c r e t e S u b j e c t = t h i s . g e t F a c t o r y () . c r e a t e C l a s s (” C o n c r e t e O b s e r v e r ”) ;
18 t h i s . c o n c r e t e S u b j e c t . s e t P u r p o s e (M u l t i l i n g u a l M a n a g e r . g e t S t r i n g (
19 ” ConcreteObserver CLASS PURPOSE ” ,
20 O b s e r v e r . c l a s s)) ;
21 t h i s . c o n c r e t e S u b j e c t . a d d I m p l e m e n t e d E n t i t y (t h i s . o b s e r v e r) ;
22 t h i s . c o n c r e t e S u b j e c t . a d d C o n s t i t u e n t (a2Assoc) ;
23 t h i s . c o n c r e t e S u b j e c t . a d d C o n s t i t u e n t (t h i s . n o t i f y) ;
24 t h i s . c o n c r e t e S u b j e c t . a s s u m e A l l I n t e r f a c e s () ;
25 t h i s . a d d C o n s t i t u e n t (t h i s . c o n c r e t e S u b j e c t) ;
26 }
27 }

Listing 4.8: The Observer design motif using the PADL meta-model: declaration of
the Concrete Observer role.

model, called MIP, is necessary to describe the behaviour of design motifs more
precisely than with PADL alone.

MIP proposes new constituents implementing the interface IConstituent-
OfMethods to describe the various statements that can be used to define the be-
haviour of methods. This set includes: IMethodInvocation, IParameter,
IConditional, IInstantiation, IAssignment. Figure 4.9 shows the ex-
tension of the PADL meta-model with MIP.

Essentially, the PADL meta-model was refactored to distinguish constituents of
methods using the interface IConstituentOfMethods. The MIP extension pro-
vide a set of such constituents of methods. This set is sufficient to describe several
behavioural and creational design motifs more precisely than with PADL alone.

For example, using PADL extended with MIP, the description of the Observer
design motif would be extended with the code shown of Listing 4.9 code:

This code describes in more details the behaviour of the notify method. Thus,
with MIP, it is possible to describe completely the structure and the behaviour of
behavioural, creational, and structural design motifs.

4.5.5 ESys.NET Code Generation

The PADL meta-model provides an implementation of the Visitor design pat-
tern that allow any client to write visitor to traverse the constituents of a model. We

Translating Design Pattern Concepts to Hardware Concepts 113

1 I B lo ck b l o c k = S t a t e m e n t F a c t o r y . g e t S t a t e I n s t a n c e () . c r e a t e B l o c k () ;
2 t h i s . n o t i f y . a d d C o n s t i t u e n t (b l o c k) ;
3 I I t e r a t o r i t e r a t i v e =
4 S t a t e m e n t F a c t o r y . g e t S t a t e I n s t a n c e () . c r e a t e I t e r a t o r S (t h i s . u p d a t e) ;
5 b l o c k . a d d C o n s t i t u e n t (i t e r a t i v e) ;
6 I M e t h o d I n v o c a t i o n i n v o c a t i o n =
7 F a c t o r y . g e t I n s t a n c e () . c r e a t e M e t h o d I n v o c a t i o n (2 , 1 , 1 , t h i s . s u b j e c t) ;
8 i n v o c . a d d C a l l i n g F i e l d (t h i s . o b s e r v e r) ;
9 i n v o c . s e t C a l l e d M e t h o d (t h i s . u p d a t e) ;

10 i t e r a t i v e . a d d C o n s t i t u e n t (i n v o c a t i o n) ;

Listing 4.9: Extending the the description of the design motif Observer using PADL
extended with MIP.

implement such a visitor to generate Esys.NET code from the extended models of
design motifs.

4.6 Related Work & Background
4.6.1 Object Oriented Synthesis & Patterns in Hardware

The synthesis of complex C structures has been discussed by [181] and they claim
at the end of the article that their methodology can be applied for more complex C++
structures.

Some hardware designs for Object Oriented paradigm have been put forward, es-
pecially an Object Oriented processor by [124]. They discuss on an interesting hard-
ware object allocation strategy, although their approach analysis was limited to a
global shared memory.

Some patterns were used for hardware modeling as in [64].

4.6.2 Original Patterns

Original Design Patterns were introduced by [89]. Design Patterns express struc-
tured and elegant solution (based on the experience of software engineers) applied to
object oriented commonly encountered problem.

Design Patterns are sometimes critiqued for a lack of coherency in their inter-
relations, and blamed for degradation of performance by rising overall design com-
plexity. Despite these disputed drawbacks, they bring other interesting benefits such
as:

• clarification of object responsibilities,

• reduced class couplings,

• enhance code genericity,

114 System Level Design with .NET Technology

• augment reusability of classes and algorithms. . .

Patterns are classified under three major groups:

Creational Patterns are solving problems related to class instantiations. Usually,
each given objects know how to instantiate itself. With these patterns, the
instantiation responsibility is often delegated to other classes. The creation of
complex objects is more structured and more flexible.

Structural Patterns are solving problems related to class structures and interrela-
tions. They help creating more dynamic and flexible class constructions.

Behavioral Patterns are solving problems related to class functionality. Usually, a
class contains the implementation of the functionality of each of its instances.
Behavioral patterns helps to isolate object comportment from the class defini-
tion, bringing a more flexible approach.

4.7 Conclusion
We discussed relations between and matches between some of the Design Pattern

in a software form, and their various correspondence in hardware. With the help
of such thing as the Pipeline pattern, we showed that Design Patterns are not only
software specific, but are already present in the domain and should be better outlined.

We presented a specialized object system which can be implemented in “pure”
hardware in order to reproduce the behavior of a generic object system running on a
processor. We also discussed on how every Object-Oriented aspects can be integrated
into hardware, using our object system as examples.

We introduced Esys.NET, a new System Design platform based on C], along with
PADL, a Design Pattern framework into which Patterns can be defined and used in
order to generate code.

Future area of interests is to further develop the object-oriented system in order to
implement a full scale prototype on an FPGA.

The system design community needs to gather the experience they collectively
possess into a hardware focused pattern catalog in order to stop reinventing the
wheel, and drive the reuse of well known and proofed solutions. This chapter is
a first step into the right direction, but only with the help of a thriving community,
will we succeed in building a strong collaborative tool based on Design Patterns.

Translating Design Pattern Concepts to Hardware Concepts 115

FIGURE 4.6: The PADL meta-model layers.

116 System Level Design with .NET Technology

FIGURE 4.7: The PADL meta-model.

Translating Design Pattern Concepts to Hardware Concepts 117

FIGURE 4.8: The Observer design motif (from [89]).

118 System Level Design with .NET Technology

FIGURE 4.9: The MIP extension to the PADL meta-model.

10
References

[1] ASML Home Page, www.research.microsoft.com/foundations/AsmL/.

[2] C# language and tools:
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx.

[3] DotGNU: http://www.gnu.org/software/dotgnu/.

[4] ECMA-335: Common language specification. http://www.ecma-
international.org/publications/standards/Ecma-335.htm.

[5] ECMA and ISO/IEC: C# and common language infrastructure standards.
http://msdn.microsoft.com/en-us/netframework/aa569283.aspx.

[6] RapidIO Document Specifications. http://www.rapidio.org.

[7] SystemC version 2.1. http://www.systemc.org/.

[8] Xilinx EDK: http://www.xilinx.com/ise/embedded/edk docs.htm.

[9] IEEE Standard VHDL Language Reference Manual. IEEE, 1076, 2000 edi-
tion, 2000.

[10] AMBA Specification (rev2.0) and Multi layer AHB Specification, 2001.

[11] .NET source code. http://www.microsoft.com/net, 2003.

[12] OMG, UML Profile for Schedulability, Performance, and Time Specification.
In Version 1.0, http://www.omg.org, 2003.

[13] ESys.NET. http://www.esys-net.org/, 2004.

[14] PROMPT-MAME Project Website. http://www.ele.etsmtl.ca/projets/PROMPT,
2005.

[15] SystemC Language Reference Manual, IEEE Std 1666-2005. 2005.

[16] QuickGraph, Graph Data Structures And Algorithms for .NET, 2008.

[17] Postsharp, 2009. http://www.postsharp.org/.

[18] Ben Albahari. A Comparative Overview of C#.
http://genamics.com/developer/csharp comparative.htm.

287

288 System level design with .Net technology

[19] Perry Alexander. Rosetta: Standardization at the System Level. Computer,
42(1):108–110, 2009.

[20] Dean Allemang and James A. Hendler. Semantic Web for the Working Ontol-
ogist: Modeling in RDF, RDFS and OWL. Morgan Kaufmann Publishers/El-
sevier, Amsterdam; Boston, 2008.

[21] Daniel Amyot, Luigi Logrippo, Raymond J. A. Buhr, and Tom Gray. Use
Case Maps for the Capture and Validation of Distributed Systems Require-
ments. In RE ’99: Proceedings of the 4th IEEE International Symposium
on Requirements Engineering, page 44, Washington, DC, USA, 1999. IEEE
Computer Society.

[22] L. Aqvist. Introduction to Deontic Logic and the Theory of Normative Sys-
tems. Bibliopolis, 1983.

[23] Pontus Aström, Stefan Johansson, and Peter Nilsson. Application of Software
Design Datterns to DSP Library Design. In 14th International Symposium on
System Synthesis, Montréal, Québec, Canada, 2001.

[24] Ivan Augé, Frédéric Pétrot, and Denis Hommais. A Pragmatic Approach To
The Design of Embedded Systems. In DATE’01: Proc. of Design Automation
and Test in Europe, pages 170–174, Munich, Germany, March 2001. IEEE.

[25] Jean Bacon. Operating Systems: Concurrent and Distributed Software De-
sign. Addison-Wesley, Boston, 2003.

[26] Christopher J.O. Baker and Kei-Hoi Cheung, editors. Semantic Web : Revo-
lutionizing Knowledge Discovery in the Life Sciences. Springer, 2007.

[27] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio
Passerone, and Alberto Sangiovanni-Vincentelli. Metropolis: An Integrated
Electronic System Design Environment. Computer, 36(4):45–52, 2003.

[28] K. Suzanne Barber, Thomas J. Graser, Jim Holt, and Geoff Baker. Arcade:
Early Dynamic Property Evaluation of Requirements Using Partitioned Soft-
ware Architecture Models. Requirements Engineering, 8(4):222–235, 2003.

[29] Kent Beck and Ralph E. Johnson. Patterns Generate Architectures. In
Proceedings of 8th European Conference for Object-Oriented Programming,
pages 139–149. Springer-Verlag, July 1994.

[30] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the USENIX Annual Technical Conference, pages 41–46. USENIX
Association, 2005.

[31] Claude Berge. Graphes et hypergraphes (in French), chapter 2, page 26.
Dunod, 2nd edition, 1973.

[32] Janick Bergeron. Writing Testbenches: Functional Verification of HDL Mod-
els, Second Edition. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

Bibliography 289

[33] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez, Mikael
Kay, Jonathan Robie, and Jérome Siméon. XML Path Language (XPath) 2.0.
Technical report, 23 January 2007.

[34] Tim Berners-Lee. N3 Notation: http://www.w3.org/DesignIssues/Notation3 .

[35] Tim Berners-Lee, James A. Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):28–37, 2001.

[36] J. Bhasker. A SystemC Primer. Star Galaxy, 2004.

[37] Scott Boag, Don Chamberlin, Mary F. Fernndez, Daniela Florescu, Jonathan
Robie, and Jérome Siméon. XQuery 1.0: An XML Query Language. Techni-
cal report, W3C Recommendation - http://www.w3.org/TR/xquery/, 23 Jan-
uary 2007.

[38] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Lan-
guage User Guide, The (2nd Edition) (Addison-Wesley Object Technology Se-
ries). Addison-Wesley Professional, 2005.

[39] Aimen Bouchhima, Iuliana Bacivarov, Wassim Youssef, Marius Bonaciu, and
Ahmed A. Jerraya. Using Abstract CPU Subsystem Simulation Model for
High Level HW/SW Architecture Exploration. In ASPDAC’05: Proc. of the
Asia South Pacific Design Automation Conference, pages 969 – 972, 2005.

[40] Aimen Bouchhima, Patrice Gerin, and Frédéric Pétrot. Automatic Instru-
mentation of Embedded Software for High Level Hardware/Software Co-
Simulation. In ASP-DAC’09: Proc. of the Asia and South Pacific Design
Automation Conference, pages 546–551, Piscataway, NJ, USA, 2009. IEEE
Press.

[41] Aimen Bouchhima, Sungjoo Yoo, and Ahmed Jerraya. Fast and Accurate
Timed Execution of High Level Embedded Software using HW/SW Interface
Simulation Model. In ASPDAC’04: Proc. of the Asia South Pacific Design
Automation Conference, pages 469 – 474, 2004.

[42] Don Box. Essential COM. Addison-Wesley Professional, first edition, 1998.

[43] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. Mc-
Mullen, and Gary D. Hachtel. Logic Minimization Algorithms for VLSI Syn-
thesis. Kluwer Academic Publishers, Norwell, MA, USA, 1984.

[44] Richard Buchmann, Alain Greiner, and Frédéric Pétrot. Fast Cycle Accurate
Simulator To Simulate Event-Driven Behavior. In In Proc. of the Interna-
tional Conference on Electrical Electronic and Computer Engineering, pages
37–40, Cairo, Egypt, September 2004.

[45] Jerry Burch, Roberto Passerone, and Alberto L. Sangiovanni-Vincentelli.
Overcoming Heterophobia: Modeling Concurrency in Heterogeneous Sys-
tems. In ACSD ’01: Proceedings of the Second International Conference on
Application of Concurrency to System Design, page 13, 2001.

290 System level design with .Net technology

[46] Timothy M. Burks and Karem A. Sakallah. Min-max Linear Programming
and the Timing Analysis of Digital Circuits. In ICCAD’93: Proc. of the In-
ternational Conference on Computer-Aided Design, pages 152–155, 1993.

[47] Joáo M. P. Cardoso and Horácio C. Neto. Compilation for FPGA-Based Re-
configurable Hardware. IEEE Design and Test, 20(2):65–75, 2003.

[48] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: Implementing the Semantic Web Rec-
ommendations. In WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers and posters, pages
74–83, New York, NY, USA, 2004. ACM.

[49] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
Transactional Memory: Why is it only a Research Toy?, url =
http://dx.doi.org/10.1145/1400214.1400228, volume = 51, year = 2008. Com-
mun. ACM, (11):40–46.

[50] Wander O. Cesario, Gabriela Nicolescu, Lovic Gauthier, Damien Lyonnard,
and Ahmed A. Jerraya. Colif: A Design Representation for Application-
Specific Multiprocessor SOCs. Design and Test of Computers, IEEE, 18(5):8–
20, Sept-Oct 2001.

[51] Luc Charest, Michel Reid, El Mostapha Aboulhamid, and Guy Bois. A
Methodology for Interfacing Open Source SystemC with a Third Party Soft-
ware. In DATE’01: Proceedings of the Design Automation and Test in Europe
Conference, pages 16–20, Munich, Germany, March 2001. IEEE Computer
Society.

[52] Yiping Cheng and Da-Zhong Zheng. Min-Max Inequalities and the Timing
Verification Problem with Max and Linear Constraints. Discrete Event Dy-
namic Systems, 15(2):119–143, 2005.

[53] Yiping Cheng and Da-Zhong Zheng. An Algorithm for Timing Verification
of Systems Constrained by Min—max Inequalities. Discrete Event Dynamic
Systems, 17(1):99–129, 2007.

[54] Nicos Christofides. Graph Theory, An Algorithmic Approach, chapter 10,
Hamiltonian Circuits, Paths and the Traveling Salesman Problem, pages 214–
235. Academic Press, 1975.

[55] Alexandre Chureau, Yvon Savaria, and El Mostapha Aboulhamid. The Role
of Model-Level Transactors and UML in Functional Prototyping of Systems-
on-Chip: A Software-Radio Application. In DATE’05: Proc. of the confer-
ence on Design, Automation and Test in Europe, pages 698–703, 2005.

[56] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Protocol
for RDF. Technical report, W3C Recommendation, 15 January 2008.

Bibliography 291

[57] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,
1987.

[58] Bob Cmelik and David Keppel. Shade: A Fast Instruction Set Simulator for
Execution Profiling. In Sigmetrics 94, pages 128–138, June 1994.

[59] A. Colgan and P. Hardee. Advancing Transaction Level Modeling: Linking
the OSCI and OCP-IP Worlds at Transaction Level, http://www.opensystems-
publishing.com/whitepapers.

[60] C.T.I. Comete. CODESIGN: Conception conjointe logiciel-matériel, in
french. Eyrolles, 1998.

[61] James Coplien, Daniel Hoffman, and David Weiss. Commonality and Vari-
ability in Software Engineering. IEEE Software, 15(6):37–45, 1998. James O.
Coplien, Daniel M. Hoffman, and David M. Weiss. Commonality and Vari-
ability in Software Engineering.

[62] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Graph Al-
gorithms, chapter 23, pages 485–488. MIT Press, 2nd printing, 1994.

[63] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Patar-
icza, and Dániel Varró. VIATRA ”Visual Automated Transformations for For-
mal Verification and Validation of UML Models. In ASE ’02: Proceedings of
the 17th IEEE International Conference on Automated Eoftware Engineering,
page 267, 2002.

[64] Robertas Damaševičius, Giedrius Majauskas, and Vytautas Štuikys. Applica-
tion of Design Patterns for Hardware Design. In DAC’03, proc. of the 40th
International Design Automation Conference, pages 48–53, Anaheim, Cali-
fornia, USA, June 2003. ACM Press.

[65] Chris J. Date. An Introduction to Database Systems 7ed. Addison Wesley
Longman, 2000.

[66] Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel
Klein, Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The Semantic
Web: the Roles of XML and RDF. Internet Computing, IEEE, 15(3):63–74,
Sept-Oct 2000.

[67] Fredrik Degerlund, Marina Walden, and Kaisa Sere. Implementation Issues
Concerning the Action Systems Formalism. In PDCAT ’07: Proceedings of
the Eighth International Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 471–479, Washington, DC, USA, 2007.
IEEE Computer Society.

[68] Louise A. Dennis, Graham Collins, Michael Norrish, Richard J. Boulton,
Konrad Slind, Graham Robinson, Michael J. C. Gordon, and Thomas F. Mel-
ham. The PROSPER Toolkit. In International Journal on Software Tools for
Technology Transfer vol. 4, n. 2, 2003.

292 System level design with .Net technology

[69] Paolo Destro, Franco Fummi, and Graziano Pravadelli. A Smooth Refinement
Flow for Co-Designing HW and SW Threads. In DATE’07: Proc. of the
conference on Design, Automation and Test in Europe, pages 105–110, 2007.

[70] Adam Donlin. Transaction level modeling: flows and use models. In
CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages 75–
80, New York, NY, USA, 2004. ACM.

[71] Frédéric Doucet, Sandeep Shukla, and Rajesh Gupta. Introspection in
System-Level Language Frameworks: Meta-level vs. Integrated. In DATE’03:
Design Automation and Test in Europe Conference, pages 382–387, Munich,
Germany, 2003. IEEE Computer Society.

[72] Mathieu Dubois and El Mostapha Aboulhamid. Techniques to Improve
Cosimulation and Interoperability of Heterogeneous Models. Electronics,
Circuits and Systems, 2005. ICECS 2005. 12th IEEE International Confer-
ence on, pages 1–4, Dec. 2005.

[73] Mathieu Dubois, El Mostapha Aboulhamid, and Frédéric Rousseau. Accel-
eration for a Compiled Transaction Level Modeling Simulation. Electronics,
Circuits and Systems, 2006. ICECS ’06. 13th IEEE International Conference
on, pages 1176–1179, Dec. 2006.

[74] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
Property Specifications for Finite-State Verification. In ICSE ’99: Proceed-
ings of the 21st international conference on Software engineering, pages 411–
420, New York, NY, USA, 1999. ACM.

[75] ”eCosCentric”. eCos homepage, http://ecos.sourceware.org/.

[76] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto
Sangiovanni-Vincentelli. Design of Embedded Systems: Formal Models, Val-
idation, and Synthesis. Proc. of the IEEE, 85(3):366–390, March 1997.

[77] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac,
and David Van Campenhout. Reasoning with Temporal Logic on Truncated
Paths. In 15th International Conference on Computer Aided Verification,
2003.

[78] A. El-Aboudi and El Mostapha Aboulhamid. An Algorithm for the Verifica-
tion of Timing Diagrams Realizability. In ISCAS (1), pages 314–317, 1999.

[79] A. El-Aboudi, El Mostapha Aboulhamid, and Eduard Cerny. Verificatiom of
Synchronous Realizability of Interfaces from Timing Diagram Specifications.
Microelectronics, 1998. ICM ’98. Proceedings of the Tenth International Con-
ference on, pages 103–106, 1998.

[80] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL: Formal Object-
oriented Language for Communicating Systems. Prentice Hall, 1997.

Bibliography 293

[81] B. Berar et al. Systems and Software Verification, Model-Checking Techniques
and Tools. Springer-Verlag, 2001.

[82] Alessandro Fantechi, Stefania Gnesi, G. Lami, and A. Maccari. Application
of Linguistic Techniques for Use Case Analysis. In RE ’02: Proceedings of
the 10th Anniversary IEEE Joint International Conference on Requirements
Engineering, pages 157–164, Washington, DC, USA, 2002. IEEE Computer
Society.

[83] International Technology Roadmap for Semiconductor. 2004 Edition. In
http://public.itrs.net/, 2004.

[84] Christopher P. Fuhrman. Lightweight Models for Interpreting Informal Spec-
ifications. Requirements Engineering, 8(4):206–221, 2003.

[85] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Roveri, and Paolo Traverso.
Specifying and Analyzing Early Requirements in Tropos. Requirements En-
gineering, 9(2):132–150, 2004.

[86] Anthony Joseph Gahlinger. Coherence and Satisfiability of Waveform Timing
Specifications. PhD thesis, Waterloo, Ont., Canada, Canada, 1990.

[87] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specification
and Design of Embedded Systems. Prentice Hall, 1994.

[88] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and
Shuquing Zhao. SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, Boston, March 2000.

[89] Erich Gamma, Richard Helm, Ralph Johnso, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1994.

[90] Paul Gastin and Denis Oddoux. Fast LTL to Buchi Automata Translation.
In CAV ’01: Proceedings of the 13th International Conference on Computer
Aided Verification, pages 53–65, London, UK, 2001. Springer-Verlag.

[91] Patrice Gerin, Hao Shen, Alexandre Chureau, and Ahmed Jerraya. Flexi-
ble and Executable Hardware/Software Interface Modeling for Multiproces-
sor SoC Design Using SystemC. In ASPDAC’07: Proc. of the Asia South
Pacific Design Automation Conference, pages 390–395, 2007.

[92] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS Modeling for
System Level Design. In DATE’03: Proc. of the Design Automation and Test
in Europe Conference, pages 130–135, 2003.

[93] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-
the-fly Automatic Verification of Linear Temporal Logic. In Proceedings of
the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification,
Testing and Verification XV, pages 3–18, London, UK, UK, 1995. Chapman
& Hall, Ltd.

294 System level design with .Net technology

[94] Dimitra Giannakopoulou and Klaus Havelund. Automata-Based Verification
of Temporal Properties on Running Programs. In ASE ’01: Proceedings of
the 16th IEEE international conference on Automated software engineering,
page 412, Washington, DC, USA, 2001. IEEE Computer Society.

[95] Bruno Girodias, El Mostapha Aboulhamid, and Gabriela Nicolescu. A Plat-
form for Refinement of OS Services for Embedded Systems. In DELTA ’06:
Proceedings of the Third IEEE International Workshop on Electronic Design,
Test and Applications, pages 227–236, 2006.

[96] Maya B. Gokhale and Janice M. Stone. NAPA C: Compiling for a Hybrid
RISC/FPGA Architecture. In FCCM ’98: Proc. of the IEEE Symposium on
FPGAs for Custom Computing Machines, page 126, 1998.

[97] Nicolas Gorse, Pascale Bélanger, El Mostapha Aboulhamid, and Yvon
Savaria. Mixing Linguistic and Formal Techniques for High-Level Require-
ments Engineering. Proceedings of the 16th IEEE International Conference
on Microelectronics, Tunisia, 2004.

[98] Nicolas Gorse, Pascale Bélanger, Alexandre Chureau, El Mostapha Aboul-
hamid, and Yvon Savaria. A high-Level Requirements Engineering Method-
ology for Electronic System-Level Design. Comput. Electr. Eng., 33(4):249–
268, 2007.

[99] K John Gough. Stacking them up: a Comparison of Virtual Machines. Aus-
tralasian Computer Science Communnication, 23(4):55–61, 2001.

[100] Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan. System Design
with SystemC. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[101] Michael Grove and Andrew Schain. POPS NASAs Expertise Lo-
cation Service Powered by Semantic Web Technologies. Techni-
cal report, W3C Semantic Web Case Studies and Use Cases -
http://www.w3.org/2001/sw/sweo/public/UseCases/Nasa/Nasa.pdf, 2008.

[102] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering Binary Class Re-
lationships: Putting Icing on the UML Cake. In Doug C. Schmidt, editor, Pro-
ceedings of the 19th Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 301–314. ACM Press, October 2004.

[103] Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A Multi-layered
Framework for Design Pattern Identification. Transactions on Software Engi-
neering, 34(5):667–684, September 2008.

[104] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic
Contention Management. In DISC ’05: Proceedings of the nineteenth In-
ternational Symposium on Distributed Computing, pages 303–323. LNCS,
Springer, Sep 2005.

[105] Elliotte R. Harold and Scott W. Means. XML in a Nutshell, Third Edition.
O’Reilly Media, Inc., October 2004.

Bibliography 295

[106] Tim Harris and Keir Fraser. Language Support for Lightweight Transactions.
In OOPSLA’03: Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and applications, pages
388–402, New York, NY, USA, 2003. ACM.

[107] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Com-
posable Memory Transactions. Commun. ACM, 51(8):91–100, 2008.

[108] Abdelsalam Hassan, Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu
Imai. RTK-Spec TRON: A Simulation Model of an ITRON Based RTOS
Kernel in SystemC. In DATE’05: Proc. of the Design Automation and Test in
Europe Conference, pages 554–559, 2005.

[109] Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, and
Matthieu Moy. Automatic generation of schedulings for improving the test
coverage of systems-on-a-chip. In FMCAD ’06: Proceedings of the Formal
Methods in Computer Aided Design, pages 171–178, Washington, DC, USA,
2006. IEEE Computer Society.

[110] John L. Hennessy and David A. Patterson. Computer Architecture, a Quanti-
tative Approach. Morgan Kaufmann Publisher, Inc, 1990.

[111] John L. Hennessy and David A. Patterson. Computer Architecture and De-
sign, The Hardware/Software Interface. Morgan Kaufmann Publisher, Inc,
2003.

[112] Maurice Herlihy. Obstruction-free Synchronization: Double-ended Queues as
an Example. In In Proceedings of the 23rd International Conference on Dis-
tributed Computing Systems, pages 522–529. IEEE Computer Society, 2003.

[113] Patrick Heymans and Eric Dubois. Scenario-Based Techniques for Supporting
the Elaboration and the Validation of Formal Requirements. Requirements
Engineering, 3(3/4):202–218, 1998.

[114] R. Hilderink and T. Grötker. Transaction-level Modeling of Bus-based Sys-
tems with SystemC 2.0. Synopsys, Inc.

[115] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[116] C. A. R. Hoare. Towards a Theory of Parallel Programming. pages 231–244,
2002.

[117] A. Horn. On Sentences Which are True of Direct Unions of Algebras. Journal
of symbolic logic, pages 14–21, 1951.

[118] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Com-
bining OWL and RuleML. Technical report, W3C Member Submission
- http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, 21 May
2004.

[119] Intel. IXP45X datasheet, http://www.intel.com/design/network/datashts/306261.htm.

296 System level design with .Net technology

[120] ITRS. International technology roadmap for semiconductors design, 2007.
http://www.itrs.net/Links/2007ITRS/2007 Chapters/2007 Design.pdf.

[121] ITU. Recommendation Z.120: Message Sequence Chart (MSC). 1996.

[122] Glenn Jennings. A Case Against Event Driven Simulation for Digital System
Design. In 24th Annual Simulation Symposium, pages 170–175, April 1991.

[123] Glenn Jennings. A Case Against Event-driven Simulation for Digital System
Design . In Simulation Symposium, 1991. Proceedings of the 24th Annual,
pages 170–176, 1991.

[124] Weixing Ji, Feng Shi, and Baojun Qiao. The Design of a Novel Object Pro-
cessor: OOMIPS. In Proceedings of the 18th IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP 2007),
July 2007.

[125] Viraj Kamat. Towards slicing vhdl. Master’s thesis, Indian Institute of Tech-
nology, Bombay, 2003.

[126] Torsten Kempf, Kingshuk Karuri, Stefan Wallentowitz, Gerd Ascheid, Rainer
Leupers, and Heinrich Meyr. A SW Performance Estimation Framework
for Early System-Level-Design using Fine-Grained Instrumentation. In
DATE’06: Proc. of the Design Automation and Test in Europe Conference,
pages 468–473, 2006.

[127] K. Khordoc and E. Cerny. Semantics and Verification of Action Diagrams
with Linear Timing. ACM Trans. Des. Autom. Electron. Syst., 3(1):21–50,
1998.

[128] Albert Carl Jan KIENHUIS Kienhuis. Design Space Exploration of Stream-
based Dataflow Architctures: Methods and Tools. PhD thesis, Delft Univer-
sity of Technology, 1999.

[129] Holger Knublauch, Mark A Musen, and Alan L Rector. Editing Description
Logic Ontologies with the Protege OWL Plugin. In In Description Logics,
2004.

[130] Donald E. Knuth. The Stanford GraphBase, chapter Roget Components,
pages 512–519. Addison Wesley Publishing Company, 1994.

[131] Cedric Koch-Hofer, Marc Renaudin, Yvain Thonnart, and Pascal Vivet. ASC,
a SystemC Extension for Modeling Asynchronous Systems, and Its Applica-
tion to an Asynchronous NoC. In NOCS ’07: Proc. of the First International
Symposium on Networks-on-Chip, pages 295–306, Washington, DC, USA,
2007. IEEE Computer Society.

[132] Thomas Kropf. Introduction to Formal Hardware Verification: Methods and
Tools for Designing Correct Circuits and Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1999.

Bibliography 297

[133] Wido Kruijtzer, Pieter van der Wolf, Erwin de Kock, Jan Stuyt, Wolfgang
Ecker, Albrecht Mayer, Serge Hustin, Christophe Amerijckx, Serge de Paoli,
and Emmanuel Vaumorin. Industrial IP Integration Flows Based on IP-
XACTTMStandards. In DATE’08: Proc. of the conference on Design, au-
tomation and test in Europe, pages 32–37, New York, NY, USA, 2008. ACM.

[134] Marcello Lajolo, Mihai Lazarescu, and Alberto Sangiovanni-Vincentelli. A
Compilation-Based Software Estimation Scheme for Hardware/Software Co-
Simulation. In Proc. of the International Workshop on Hardware/Software
Codesign, pages 85–89, May 1999.

[135] J. Lapalme, E.M. Aboulhamid, G. Nicolescu, L. Charest, F.R. Boyer, J.P.
David, and G. Bois. .NET Framework - a Solution for the Next Generation
Tools for System-Level Modeling and Simulation. In DATE’04: Proc. of the
Design Automation and Test in Europe Conference, volume 1, pages 732–733,
2004.

[136] James Lapalme. Esys.net : a new .net based system-level design environment.
Master’s thesis, Universite de Montreal, 2003.

[137] James Lapalme, El Mostapha Aboulhamid, and Gabriela Nicolescu. A new
efficient EDA tool design methodology. ACM Transaction on Embedded
Computing Systems, 5(2):408–430, 2006.

[138] James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, Luc Charest,
Franois R. Boyer, Jean Pierre David, and Guy Bois. Esys.NET: a New So-
lution for Embedded Systems Modeling and Simulation. SIGPLAN Not.,
39(7):107–114, 2004.

[139] James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, Luc Charest,
Franois R. Boyer, Jean Pierre David, and Guy Bois. .NET Framework - a So-
lution for the Next Generation Tools for System-Level Modeling and Simula-
tion. DATE’04: Proc. of Design Automation and Test in Europe Conference,
1:732–733, Feb. 2004.

[140] James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric
Rousseau. Separating Modeling and Simulation Aspects in Hardware/Soft-
ware System Design. Microelectronics, 2006. ICM ’06. International Confer-
ence on, pages 202–205, Dec. 2006.

[141] James Larus and Christos Kozyrakis. Transactional Memory. Commun. ACM,
51(7):80–88, 2008.

[142] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Clay-
pool, 2006.

[143] Edward A. Lee and Stephen Neuendorffer. MoML A Modeling Markup Lan-
guage in XML, Version 0.4. Technical Report ERL/UCB M 00/12, University
of California at Berkeley,, 2000.

298 System level design with .Net technology

[144] Jesse Liberty. Programming C#: Attributes and Reflection, O’Reilly,
http://www.ondotnet.com/pub/a/dotnet/excerpt/prog csharp ch18/index.html,
2001.

[145] D. B. Lomet. Process Structuring, Synchronization, and Recovery Using
Atomic Actions. In Proceedings of an ACM conference on Language design
for reliable software, pages 128–137, 1977.

[146] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
1995.

[147] Grant Martin. Systemc tools. In European SystemC Users Group Meeting.

[148] Kenneth L. McMillan and David L. Dill. Algorithms for Interface Timing
Verification. In ICCD ’92: Proc. of the IEEE International Conference on
Computer Design on VLSI in Computer & Processors, pages 48–51, 1992.

[149] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans-
actions on Software Engineering, 26(1):70–93, 2000.

[150] A. Mel’cuk. Dependency in Linguistic Description.
http://www.olst.umontreal.ca/FrEng/Dependency.pdf.

[151] Giovanni De Micheli. Synthesis and Optomization of Digital Circuits.
McGraw-Hill, USA, 1994.

[152] Rocco Le Moigne, Olivier Pasquier, and Jean-Paul Calvez. A Generic RTOS
Model for Real-time Systems Simulation with SystemC. In DATE’04: Proc.
of the Design Automation and Test in Europe Conference, pages 82–87, 2004.

[153] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa:
an Extraction Tool for SystemC Descriptions of Systems-on-a-Chip. In EM-
SOFT ’05: Proceedings of the 5th ACM international conference on Embed-
ded software, pages 317–324, New York, NY, USA, 2005. ACM.

[154] José M. Moya, Fernando Rincón, Francisco Moya, and Juan Carlos López.
Improving Embedded System Design by Means of HW-SW Compilation on
Reconfigurable Coprocessors. In ISSS’02: Proceedings of the 15th interna-
tional Symposium on System Synthesis, pages 255–260, 2002.

[155] MSDN. Dynamic-link libraries, http://msdn.microsoft.com.

[156] Eric K. Neumann and Dennis Quan. Biodash: A Semantic Web Dashboard for
Drug Development. In Pacific Symposium on Biocomputing, pages 176–187,
2006.

[157] James Newkirk and Alexei A. Vorontsov. How .NET’s Custom Attributes
Affect Design. IEEE Software, 19(5):18–20, 2002.

[158] Ralf Niemann. Hardware/Software Co-Design for Data Flow Dominated Em-
bedded Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

Bibliography 299

[159] Open SystemC Initiative (OSCI). Functional specification for SystemC 2.0,
2001. http://www.systemc.org.

[160] Open SystemC Initiative (OSCI). SystemC user guide, 2001.
http://www.systemc.org.

[161] Samir Palnitkar. Verilog R©HDL: a Guide to Digital Design and Synthesis,
second edition. Prentice Hall Press, Upper Saddle River, NJ, USA, 2003.

[162] T. Parr. Stringtemplate documentation,
http://www.antlr.org/stringtemplate/index.tml, 2003.

[163] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers. Pragmatic Bookshelf, first edition, May
2007.

[164] Claudio Passerone, Massimiliano Chiodo, Wilsin Gosti, Luciano Lavagno,
and Alberto Sangiovanni-Vincentelli. Evaluation of Trade-offs in the Design
of Embedded Systems via Co-Simulation. Technical Report UCB-ERL-96-
12, University of California, Berkeley, Computer Science Department, Uni-
versity of California, Berkeley, 1996.

[165] H. D. Patel, D A. Mathaikutty, D. Berner, and S. K. Shukla.
SystemCXML: An extensible systemc front end using XML,
http://systemcxml.sourceforge.net/. http://systemcxml.sourceforge.net/,
2005.

[166] Hiren D. Patel and Sandeep K. Shukla. Tackling an abstraction gap: co-
simulating SystemC DE with bluespec ESL. In DATE’07: Proceedings of the
conference on Design, automation and test in Europe, pages 279–284, San
Jose, CA, USA, 2007. EDA Consortium.

[167] James A. Payne. Introduction to Simulation: Programming Techniques and
Methods of Analysis, chapter 2, pages 11–22. McGraw-Hill, 1982.

[168] F. Pereira and D.H.D. Warren. Definite Clause Grammars for Language Anal-
ysis - a Survey of the Formalism and a Comparison with Augmented Transi-
tion Networks. In Artificial Intelligence Journal, Vol. 13, 1980.

[169] Hector G. Perez-Gonzalez and Jugal K. Kalita. GOOAL: a Graphic Object
Oriented Analysis Laboratory. In OOPSLA ’02: Companion of the 17th an-
nual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 38–39, New York, NY, USA, 2002. ACM.

[170] Frédéric Pétrot, Denis Hommais, and Alain Greiner. A Simulation Environ-
ment for Core Based Embedded Systems. In Proc. of the 30th Int. Simulation
Symp., pages 86–91, Atlanta, Georgia, April 1997.

[171] Frédéric Pétrot, Denis Hommais, and Alain Greiner. Cycle Precise Core
Based Hardware/Software System Simulation with Predictable Event Prop-
agation. In Proceeding of the 23rd Euromicro Conference, pages 182–187,
Budapest, Hungary, September 1997. IEEE.

300 System level design with .Net technology

[172] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46 – 67, 1977.

[173] Hector Posadas, Jesús Ádamez, Pablo Sánchez, Eugenio Villar, and Francisco
Blasco. POSIX Modeling in SystemC. In ASPDAC’05: Proc. of the Asia
South Pacific Design Automation Conference, pages 485–490, 2006.

[174] E. Prudhommeaux and A. Seaborne. SPARQL Query Language for RDF.
Technical Report REC-rdf-schema-20040210, World Wide Web Consortium,
Jan. 2008.

[175] Kaye R. Seamless with C-bridge: C Based Co-Verification. In Technical
Papers, Mentor, page 27, 2002.

[176] H. Reichel R. Deutschmann, M. Fruth and H.-C. Reuss. Trace Checking
with Real-Time Specifications. In 5th Symposium on Formal Methods for
Automation and Safety in Railway and Automotive Systems, 2004.

[177] Debbie Richards. Merging Individual Conceptual Models of Requirements.
Requir. Eng., 8(4):195–205, 2003.

[178] D. F. Robinson and L. R. Foulds. Acyclic digraphs in Digraphs: Theory
and Techniques, chapter 3.6, pages 86–90. Gordon and Breach Scientific
Publishers, 1980.

[179] D. F. Robinson and L. R. Foulds. Digraph structure, in Digraphs: Theory and
Techniques, chapter 2, pages 43–62. Gordon and Breach Scientific Publishers,
1980.

[180] Bertil Roslund and Per Andersson. A Flexible Technique for OS-Support in
Instruction Level Simulators. In 27th Annual Simulation Symposium, pages
134–141, La Jolla, CA, April 1994. SCS, IEEE Press.

[181] Luc Séméria, Koichi Sato, and Giovanni De Micheli. Synthesis of Hardware
Models in C with Pointers and Complex Data Structures. IEEE Transactions
on VLSI Systems, 9(6):743–756, 2001.

[182] Wuwei Shen, Kevin Compton, and James Huggins. A UML Validation
Toolset Based on Abstract State Machines. In ASE ’01: Proceedings of the
16th IEEE international conference on Automated software engineering, page
315, Washington, DC, USA, 2001. IEEE Computer Society.

[183] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A Practical OWL-DL Reasoner. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5(2):51–53, 2007.

[184] S. Smith, M. Ray Mercer, and B. Brock. Demand Driven Simulation: BACK-
SIM. In DAC’87: 24st Design Automation Conference, pages 181–187, San
Diego, CA, June 1987. ACM/IEEE, IEEE Press.

Bibliography 301

[185] S. Stuijk. Predictable Mapping of Streaming Applications on Multiproces-
sors. PhD thesis, Eindhoven University of Technology, The Netherlands,
2007.

[186] Ralf’s Sudelbcher. Nst transactional memory, 2007.
http://weblogs.asp.net/ralfw/archive/tags/Software+Transactional+Memory/default.aspx.

[187] Stuart Sutherland. SystemVerilog tutorial.
http://www.systemverilog.org/techpapers/techpapers.html, 2003.

[188] Stuart Sutherland, Simon Davidmann, Peter Flake, and Phil Moorby. System
Verilog for Design: A Guide to Using System Verilog for Hardware Design
and Modeling. Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[189] B. D. Theelen. Performance Model Generation for MPSoC Design-Space Ex-
ploration. In QEST ’08: Proceedings of the 2008 Fifth International Confer-
ence on Quantitative Evaluation of Systems, pages 39–40, Washington, DC,
USA, 2008. IEEE Computer Society.

[190] K. C. Thramboulidis, G. Doukas, and G. Koumoutsos. A SOA-based Embed-
ded Systems Development Environment for Industrial Automation. EURASIP
J. Embedded Syst., 2008(1):1–15, 2008.

[191] Walter Tibboel, Victor Reyes, Martin Klompstra, and Dennis Alders. System-
Level Design Flow Based on a Functional Reference for HW and SW. In
DAC’07: Proc. of the Design Automation Conference, pages 23–28, 2007.

[192] Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hard-
ware/Software Introduction. John Wiley & Sons, Inc., New York, NY, USA,
2001.

[193] P.H.A. van der Putten and J.P.M. Voeten. Specification of Reactive Hard-
ware/Software Systems: The method Software/Hardware Engineering (SHE).
Ph.d., Eindhoven University of Technology, 1997.

[194] Peter Vanbekbergen, Gert Goosens, and Hugo De Man. Specification and
ananlysis of timing constraints in signal transition graph. In DAC’92: Pro-
ceedings of the 29th annual conference on Design automation, pages 302–
306, New York, NY, USA, 1992. ACM.

[195] Emmanuel Viaud, Frano̧is Pêcheux, and Alain Greiner. An Efficient TLM/T
Modeling and Simulation Environment Based on Conservative Parallel Dis-
crete Event Principles. In DATE’06: Proc. of the Design Automation and Test
in Europe Conference, pages 94–99, 2006.

[196] W3C. XSL Transformations (XSLT), 1999.

[197] Elizabeth A. Walkup and Gaetano Borriello. Interface Timing Verification
with Application to Synthesis. In DAC’94: Proceedings of the 31st annual
conference on Design automation, pages 106–112, New York, NY, USA,
1994. ACM.

302 System level design with .Net technology

[198] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[199] Wikipedia. Component Object Model — Wikipedia, The Free Encyclopedia.

[200] Wikipedia. .NET Reflector, 2008. http://en.wikipedia.org/wiki/.NET Reflector.

[201] Wikipedia. Managed code — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Managed code, 2009.

[202] Wikipedia. P/Invoke — Wikipedia, The Free Encyclopedia, 2009.

[203] Wikipedia. Virtual machine — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Virtual machine, 2009.

[204] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about Infin
thite Computation Paths. In Proceedings of the 24th IEEE Symposium on
Foundations of Computer Science, pages 185 – 194, 1983.

[205] World Wide Web Consortium (W3C). XML specification.
http://www.w3c.org, 2003.

[206] Roel Wuyts. Declarative Reasoning About the Structure of Object-Oriented
Systems. In Joseph Gil, editor, Proceedings of the 26th Conference on
the Technology of Object-Oriented Languages and Systems, pages 112–124.
IEEE Computer Society Press, August 1998.

[207] Sudhakar Yalamanchili. Introductory VHDL: From Simulation To Synthesis.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[208] Zhi Alex Ye, Nagaraj Shenoy, and Prithviraj Baneijee. A C Compiler for a
Processor with a Reconfigurable Functional Unit. In FPGA ’00: Proc. of the
2000 ACM/SIGDA eighth international symposium on Field programmable
gate arrays, pages 95–100, 2000.

[209] Ti-Yen Yen, Alex Ishii, Al Casavant, and Wayne Wolf. Efficient algorithms
for interface timing verification. Form. Methods Syst. Des., 12(3):241–265,
1998.

[210] Ti-Yen Yen, Wayne Wolf, Al Casavant, and Alex Ishii. Efficient Algorithms
for Interface Timing Verification. In EURO-DAC’94: Proceedings of the con-
ference on European design automation, pages 34–39, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

[211] Hong Zhu and Lingzi Jin. Scenario Analysis in an Automated Tool for Re-
quirements Engineering. Requirements Engineering, 5(1):2–22, 2000.

