
Design Pattern Application: Pure-Generative
Approach vs. Conservative-Generative Approach

Hervé Albin-Amiot 1, Yann-Gaël Guéhéneuc 2

École des Mines de Nantes
4 rue Alfred Kastler

BP 20 722
44 307 Nantes cedex 3

France

1 Soft-Maint
4, rue du Château de l’Éraudière

BP 72 438
44 324 Nantes cedex 3

France

2 Object Technology International Inc.
2670 Queensview Drive

Ottawa, Ontario, K2B 8K1
Canada

{albin, guehene}@emn.fr

1. Context and Problems

Since their emergence, design patterns have
been widely accepted by software practitioners.
Their contribution covers the definition, the design,
and the documentation of software. Design patterns
describe solutions to recurrent architectural
problems. Design patterns are meant to improve
certain software quality characteristics. For
example, the design patterns proposed in
[Gamma95] are defined to improve the flexibility
and the understandability characteristics of software
quality.

For our discussion we summarize software
developments in two kinds: Development of large
applications (such as accounting application or
billing systems); and, development of large
framework (such as window system [SunAWT] or
networking system [Zweig90]). In one hand, when
developing large applications, the developers need
to abstract the functional and non-functional
requirements of the application. They must be
particularly careful with the specifications of the
business rules and policies of the application, while
the language and the code implementing the
application are not really important. On the other
hand, when developing large frameworks, the
developers need to abstract the potential extension
and implementations of the framework. They must
be particularly careful with the architecture, the
design, and the implementation of the framework,
which is, at least, as important as the functionalities
provided.

In this position paper, we present two tools that
help the developers in implementing large
applications and large frameworks, using design
patterns. Scriptor [Scriptor] (Section 2) is an

industrial-strength application generator.
Developers use it to generate large applications
from scripts stating their functional and non-
functional requirements. PatternsBox [PatternsBox]
(Section 3) is an academic conservative application
generator. Developers use it to implement design
patterns in existing applications. PatternsBox
modifies or creates only the required code artifacts
(class, interface, fields, methods) to implement the
design patterns, leaving the rest of the code
untouched.

In Section 4, we present the advantages and the
limitations of the two approaches, and a
comparison of these with respect to the use of
design patterns.

Finally, in Section 5, we conclude and present
some future directions, which consist in combining
the pure-generative and the conservative-generative
approaches.

2. Pure Generation: Scriptor

Scriptor is an industrial tool developed by SOFT-

MAINT (SODIFRANCE group, Nantes, France).
Scriptor is a tool to define and apply generative

scripts on a model. Scriptor is based on an
interchangeable meta-model, for instance, the UML
meta-model. The entities and relationships defined
in the meta-model are reified as Java classes.
Textual scripts and Java actions can be defined and
bound with each of these classes. After the tool has
loaded a model, it can instantiate the previously
defined classes and apply the scripts, for example,
to generate code. The tools defines:
• An interchangeable meta-model, the best

known being the UML meta-model.

 1/3

This paper has been accepted at the OOPSLA 2001 workshop on Generative Programming.

• A WYSIWYG interface to define scripts,
which can execute Java-defined actions. The
scripts and Java actions are associated with the
entities described in the meta-model.

• A module to load models from an Integrated
Software Engineering Environment (ISEE),
like Rational Rose, Paradigm+, or any other
ISEE supporting XMI.

• A generation module to apply scripts on a
model. The result may be the code or the
documentation corresponding to the model.
This module uses a pure-generative approach
with a user-defined tag mechanism: The
developers must carry out each modification in
the ISEE and re-import the model in Scriptor
before performing a new generation. If the
developers modify the results of the generation
by hand, outside of the tags, and perform a new
generation, their modifications are lost.

There is no specific support for design pattern

application in Scriptor (patterns are described in the
scripts), however design patterns can be applied in
a systematic way or in selected cases using tags in
the source model.

In Scriptor, the reference is the model.

3. Conservative Generation:
PatternsBox

PatternsBox is an academic tool being

developed at the Computer Science Department of
the ÉCOLE DES MINES DE NANTES, France.

PatternsBox is a tool to instantiate design
patterns. The term instantiation is commonly used
to identify the task of adaptation and
implementation of a design pattern solution in a
particular context. The tools defines:
• A meta-model, which is tailored for the

definition of design patterns, with respect to
the instantiation and the detection aspects.

• A repository of design patterns. The design
patterns are first-class entities, described in
terms of the meta-model.

• A user interface to select a particular design
pattern, adapt it to a specific context (number
of actors, names of the actors, relations,
cardinality).

• A source-to-source transformation engine,
(JavaXL). A design pattern knows how to
instantiate itself. Using this knowledge, the
mechanisms associated with the meta-model
and JavaXL, a design pattern is able to
instantiate itself in a given source code. The
main interest of using a source-to-source
transformation engine is the conservation of
the code previously written by the developers
(comments, layout, structure, idioms,…). The

instantiation mechanism is a conservative-
generative solution to the instantiation of
design patterns.

In PatternsBox, the reference is the user

source code.

4. Comparison of the Two
Approaches

With the respect of our first preoccupation,

which is the application of design patterns, this
section is an attempt to summarize the advantages
and the drawbacks of the two aforementioned
generative techniques.

The main interest of a pure-generative

approach, such as proposed by Scriptor, lays in the
hiding of the generated code. Developers never
need to look at the instantiated code. They define
the functional and non-functional requirements of
the application using scripts and UML diagrams,
and they generate the source code from these
scripts and diagrams. Developers implement design
patterns directly in the UML diagrams, for instance,
by explicitly stating that a class must follow the
Singleton pattern. They are not interested in the
code associated with the design pattern. Thus, they
rely completely on the tool to generate the
equivalent code and there are no sophisticated
parameterization capabilities at the scripts and
diagrams level.

In a pure-generative approach, the developers
must rely completely on the tool to generate the
correct and most efficient implementation of a
design pattern. Once the code is generated and
released to the customers, there is no way to track
down what design patterns have been applied and
where they have been applied.

This approach is particularly efficient to
provide software at low cost by helping developers
to focalize only on the business logic of the
application. However, if code artifacts or other
implementation aspects have a real importance, like
during the development of a framework, it seems
that this approach is inadequate.

The main interest of conservative-generative

approach, such as proposed by PatternsBox, lays in
the conservation of all the attributes of the source
code. Developers explicitly choose the artifacts in
their source code that play a role in a design
pattern, adapt the design pattern to these artifacts by
parameterization, and then instantiate the design
pattern in their source code. No other change is
performed on the source code. However the
developers must identify the artifacts on which to
apply a design pattern. They must take care of the
conflicts that arise when applying a design pattern

 2/3

on an artifact that cannot comply with the desired
design pattern. This process is less robust and less
productive but more efficient than the one using a
pure-generative technique.

It seems that for developments where
implementation techniques have a great
importance, like for the definition of class libraries
and frameworks, conservative-generative approach
is really interesting because it provides a good
granularity in the interaction with the developer
during development stage. In other cases where the
details of the implementation is less important than
the functionalities provided, this approach is
unnecessary costly and even dangerous, if the
model of the application must be the only reference.

5. Conclusion and future

Code generation is a very promising

technology for the development of quality code.
Code generation eases the whole development life
cycle by transferring the effort of writing quality
code to the effort of defining high-level
abstractions, such as design patterns, UML
diagrams, and generation scripts.

However, pure-generative approaches and
conservative-generative approaches have
drawbacks: In a pure-generative approach, the
developers have no or little control over the code
generated. The code generated may be of good
quality with respect to certain quality
characteristics, it is not generated to be read by
humans, and it does not provide cognitive to help
the developers understand the code without the
associated scripts and UML diagrams. In a
conservative-generative approach, the developers
need to write most or a great part of the code by
hand, while meticulously defining, implementing
and documenting the design decisions mangled
with the source code. Then, the developers can
improve certain quality characteristics according to
their knowledge and understanding of the code.

A solution would be to combine the two
approaches, by improving the cognitive and the
documentation aspects of the generated code and by
helping to refine the source code gradually (without
loosing the modifications made by the developers).

6. Bibliography

[Gamma95] E. Gamma, R. Helm, R. Johnson,

J. Vlissides ; Design Patterns : Elements of
Reusable Object-Oriented Software ; Addison-
Wesley Professional Computing Series, 1995.

[PatternsBox] Information available at:
 http://www.emn.fr/albin/

[Scriptor] Information available at:
 http://www.qualitec.fr/scriptorUS.htm

[SunAWT] Information available at:

 http://java.sun.com/j2se/1.3/docs/guide/awt/
[Zweig90] J. Zweig, R. Johnson ; The

Conduit: A Communication Abstraction in
C++ ; Proceedings of the C++ Conference,
pp. 191–204, 1990.

 3/3

