
An Approach to Formalise Security Patterns
Luis Sérgio da Silva Júnior

Bolsista do CNPq - Brasil
Instituto Federal De Educação,

Ciência e Tecnologia Do Ceará
Fortaleza, Brasil

Email: sergiosilvajr@gmail.com

Yann-Gael Guéhéneuc
École Polytechnique de Montréal

Montréal, Quebéc
Email: yann-gael.gueheneuc@polymtl.ca

John Mullins
École Polytechnique de Montréal

Montréal, Quebéc
Email: john.mullins@polymtl.ca

Abstract—The software engineering literature proposes many
methods, techniques and tools to ease software development,
among which design patterns. The main goal of design patterns is
to ease software development through the reuse of good practices
in software design and implementation. Design patterns pertain
to various domains, including security. In the context of security,
security patterns describe design and implementation solutions
intended to protect data from a set of possible threats or at
least to reduce the risk of their occurrences. Previous works on
security patterns defined these patterns and proposed strategies
to find occurrences of these patterns using techniques that detect
the relationships between software components. However, to the
best of our knowledge, these approaches did not describe the
behavioural aspects of the components, such as the internal
implementation of methods. Behavioural aspects are necessary to
investigate and validate the following characteristics: constraints
and scope. It is important to guide developers to the correct use
of security patterns and preventing wrong implementation and
security holes. This article proposes an approach, using Coloured
Petri Nets and a set of API already available in the Ptidej reverse-
engineering tool suite, to formalise and analyse the structural
and behavioural aspects of security patterns and identify their
occurrences in different kinds of software systems.

I. INTRODUCTION

Design Patterns are “good” solutions to recurring design
problems. They have many characteristics and usually are
classified with their goal, complexity and behaviour during
the system’s life cycle. Gamma et al. in their seminal book
[1], categorise design patterns as structural, behavioural, and
creational. The authors also describe how these classifications
have different behaviours that could be or not useful to
solve problems during the software development. The design
patterns presented in [1] are “generic” because they do not
pertain to a particular domain of application. The literature
describes also patterns specific to a set of particular domains,
including security patterns [2] and antipatterns [3].

In particular, security patterns have been introduced by
Joseph Yoder and Jeffrey Barcalo [4] and they have been
studied by several authors [5], [6]. Similar to design patterns,
each security pattern prescribes a structure and–or a behaviour
to avoid security problems. Typical security patterns include:

• Single Access Point: This pattern provides a ”single front
door” of a system. It proposes to be the only possible
way to access internal system resources from outside. In
other words, external entities must not access the system

directly. This pattern is the link between the system and
its customers.

• Roles: This pattern delegates different levels of access to
the system. Each level restricts the access to system’s
resources. The users are allowed to access only the
resources that they are supposed to get.

Yoder and Barcalow [4] present a classification of these
patterns based on their security properties, the threats that they
alleviate, their constraints on the structure and behaviour of
software components. However, to the best of our knowledge,
no previous work investigates if the behaviour of security
patters on a running system is correct, as expected from the
definitions of the patterns.

Consequently, we propose, through the example of a fic-
tional security pattern, a way to formalise it, verify if its
behaviour, previously defined during the example elaboration,
is correctly applied in a system and investigate if its implemen-
tation is correct. We use UML class diagrams, to exemplify
the pattern’s structure and formal methods to express its
behaviour and the temporal relationships. Formal methods
were originally proposed to be used in our approach due
their properties to use mathematical concepts to guarantee the
formalization during the current state and possible future states
of a system. On our scope, formal methods might guarantee
the expected behaviour from the security patterns during the
life cycle of a system. With these information (i.e., structure
from UML diagram and behaviour from formal methods), it
is possible to verify if these patterns are used correctly in
different systems.

Formal methods are a set of tools and techniques to describe
formally systems or sub-systems, components or properties of
a system. The OCL, object constraint language, is a language
to formalise constraints on internal entities of a system. Other
authors [7], [8] proposed extension of the original OCL:
TOCL or EOCL. These approaches expand the original OCL
and add some characteristics, such that temporal aspects in
TOCL [8] and help to minimize or eliminate ambiguous
modelling aspects. However, other formal languages exist to
specify a system and guarantee that it does not enter an in-
consistent state during its operation. Among these techniques,
we suggest the use of the Petri nets, due their capacity to
provide an abstract view of the resources of a system and
their mathematical properties. The Petri nets also have a set



of tools to simulate how the system would work and prevent
inconsistent states.

Petri net is a modelling technique that serves to detail the
possible states of a system. It also provides a simulation to
observe what happens with tokens and transitions and other
petri net entities. Petri nets were proposed by Petri [9]. They
are useful in areas where the behaviour must to be strictly
formalized (for example, real time systems, distributed systems
or concurrent systems).

A Petri net also provides a particular set of entities: tokens,
places, arcs and transitions that might provide a visual de-
scription to verify the changes on the internal resources of a
system.

Jensen [10] introduced Coloured Petri Nets to increase the
original abstractive representation of Petri nets using different
kind of tokens, guard conditions and other factors that might be
helpful to describe interesting problems with more abstraction
than its original concepts. We choose Coloured Petri nets
for their capacity of simulation and the graphic form to
see the behaviour of the modelled systems. An example of
Coloured Petri nets is depicted Figure 1. This example shows
a Coloured Petri net model of the classic algorithm: the Dining
philosophers.

II. STATE OF ART

Security Patterns have been the subject of many works.
The first authors to describe security patterns are Yoder and
Barcalow in [4], in which they proposed the use of security
patterns as recurrent solution to security problems. Authors
of [5] and [6] classified security patterns according to the
requirements that they fulfill, the kinds of threats against
which they must be effective, etc. Based on their classification,
in [11], the authors proposed a tool to check whether an
example of the Single Access Point pattern is correctly applied
in software systems. However, the authors did not describe
the method used to investigate the behavioural aspect of the
pattern. In the same work, the authors also compared between
a previous modelled pattern and a set of structures from an
example software and tried to detect occurrence in it. They
also analysed how accurate are the detected occurrences found
inside the example software based on all entities and associa-
tions found on the pattern detection. Authors of [12] presented
a study where they investigate if security patterns could be
detected by reverse-engineering techniques. The propose of
the study was a literature review about the use of reverse
engineering to patterns detection. The authors conclude that
security patterns are quite different from the design patterns
described by Gamma et al. and that the techniques used to
detect the two families of patterns are also different.

III. FORMALISING SECURITY PATTERNS

This work in progress has the main goal to propose an
approach and consequently, a tool, to describe formally the
security patterns originally proposed by [4] and verify if these
patterns are correctly implemented in a software. The expected
contributions of this work includes:

Fig. 1. Illustration of a Coloured Petri Net in CPN-TOOLS [13]

• Formalization of security patterns. It might be useful to
promote security requirements during software develop-
ment.

• Application of Petri net could be used to express the
behaviour of a security pattern. Petri nets also might
provide an easy way to manage the resources and the
states of a system due its graphic representation of
entities.

The process we adopt consists of investigating the oc-
currences of a security pattern in a software. The approach
consists in performing two types of analysis on the same
system:

• Structural analysis;
• Behavioural analysis.

A. Structural Analysis

The first step consists a generating a model from the chosen
security pattern. This model will be “compared” to the model
generated from the system. In this paper, we choose the PADL
meta-model from the Ptidej reverse-engineering tool suite to
model security patterns and the reflection Java API [14] to col-
lect structural information about the statements of the methods
declared in the system. Other choices are possible (including
other meta-models or dynamic analyses) and will be explored
in future work. The information gathered using reflection will
be considered as the structural model of the source code. After
these steps, the comparison is realised between each model
as in Figure 2. We seek a similar structure from the model
of the system that can be similar to the pattern model. We
plan to explore different matching techniques, in particular the
use of error-tolerant graph matching, as in our previous work
[15]. Then, the result of the comparison is the most similar
structure with the pattern model. The analysis should compare
all the structure (classes and their associations) from the PADL



Fig. 2. Illustration showing the comparison on the Structural analysis

Fig. 3. Illustration showing the Structural analysis

model. After the structural analysis, the structure acquired will
be used to provide information about its methods to the next
step. The summary of the this step is showed in Figure 3

B. Behavioural Analysis

In this step, the approach focuses on the behavioural infor-
mation about the pattern. This information is formalised by a
Petri net. In this Petri net, the entities (tokens, transitions, and
so on) describe the information about the behaviour and access
of the resources of the pattern. The data from the behaviour of
the system is gathered in a model. After the structural analysis,
the data from the entities that is not contained in the result of
the structural analysis will be discarded. Each entity from the
Petri net keeps the information about the behaviour of the
system. For example the token (type/color) describes a kind
of association. It could be used to express the data type of the
entity or resource that is necessary to investigate the behaviour.
The transitions and arcs have boolean expressions that could
be assumed to express the behaviour from the entities from
the pattern before and after the execution of a procedure. The
token that goes from an executed Transition to another Place
is assumed to represent a resource or variable value inside the
system. This information might be used to do a comparison
between the internal behaviour of the system with the Petri net
model. After the comparison between the models the result is a
measure of the closeness of the Petri net from the information
found in the Java system.

Thus, the approach will inform how close the pattern models
are to the system. The summary of the this step is showed in
Figure 4

Fig. 4. Illustration showing the comparison on the Behavioural analysis

C. Proposed tool

The tool under development is implemented in Java pro-
gramming language and is divided into two modules to observe
the structural and behavioural aspect of some security pattern.
The first module uses a model developed using the PADL API.
PADL is a tool provided by the Ptidej team that reproduces
a model of a pattern using its structure to define it using
resources with reflection API. The comparison is only to verify
the structure (classes and their associations). It is just an
approach to seek similarity between the diagram of system and
the model proposed and find probable candidates to investigate
the internal behaviour. The second one is a module that
extracts the behavioural aspects of the software. For example,
some constraint of some entity of software and compare it
with the constraints previously written by a formal modelling
approach. In this module, the tool uses the analysis of coloured
Petri nets. These Petri nets are implemented using CPN-
TOOLS [13]. The result of modelling using this tool is a
XML file with all the properties of this Petri net. Basically
a file ended by .cpn. The data extraction of theses Petri nets
was done by the framework JDOM.

IV. CASE STUDY

We now present a case study of applying our approach to
model structure and behaviour that is at the heart of several
security patterns found in [6]. The following patterns: Check
Point and Roles have a particular association inside their
structure. They have an entity called by Security Policy that
works like a connector and it can use a constraint to control
the quantity of instances of Roles, or to control the parameters
that the Role will receive or another. So the example could
be considered a sub–set of a pattern but that is not directly
considered a security pattern: the Sender–Receiver design.
This example shows the sending of a parameter betweens their
entities. The two instances must communicate with each one
to transfer the data in a one given path.

We use the the Sender–Receiver to exemplify our approach
and validate the idea. Future work includes formalising and
validating complete security patterns to assess if they are
correctly implemented in real software systems.

In this example, two entities exist called: Sender and Re-
ceiver. The Sender is an entity that call the Receiver to send



Fig. 5. Coloured Petri Net of model Sender / Receiver

Fig. 6. Class Diagram of Sender / Receiver

a string using the method toSend(String parameter).
The Receiver is an entity that receives the message and keep it
during all system life-cycle. These entities are represented in
the UML diagram and Petri net model in Figure 5 and 6. We
impose a single constrain on the message between the Sender
and Receiver: the size of the message cannot be longer than
10.

We now present an example of the use of the tool with the
Sender–Receiver. The following text explains all the steps to
analyse the information contained on this pattern and compare
with the external software.

A. Step 1 – Static Analysis

In this step, the tool compares the objects of the software
under analysis with the model of the Sender–Receiver design
created using the PADL meta-model. For this case study, we
created a single association between the two classes named
Sender and Receiver. The result is a PADL class with all
implementation describing the components (methods attributes
and association between these two entities).

After implementing the model in the first stage. A reference
of the object of the previous implemented PADL class is
needed to be analysed by the method designAnalysisOfEntity
in the implemented tool. This method has 3 parameters, the
following PADL model, an reference for the object that is
assumed to implement a fictional situation of the Sender–
Receiver design and the name of the entity that will be used to
do it. We are assuming now at this moment that it is necessary
to inform the software each class that is supposed to implement
the pattern.

The information from the reference of the external ob-
ject is captured and extracted from it using the Reflection
API provided by Java. In this paper, our use of the Java
API provides the relevant information about a target class,
its attributes, and its methods parameters, and the method

statements. The information provided by this API is used to
compare with the information in the PADL model, as said
before. The information from inside of the methods of the
entities is not obtained in this stage due properties of the Java
Reflection API. After the comparison, is generated a measure
to show how close is the original object model comparing
with the PADL Model. Each class is used and its variables,
methods signatures and parameters is compared. After that the
difference between the two entities might be viewed and show
how close is each one to other.

In summary, in its first step, the tool compares the structural
part of the given model of of the pattern implemented by
Java language and the PADL. The use of reflection Java API
is necessary to extract the data from static class files. After
all the comparison, the tool reports the classes in the system
potentially playing the roles of Sender and Received. We could
then use the typical measure from information retrieval, such
as precision and recall, to assess how accurate is the static
analysis. After the structural analysis the tool goes to its next
step, where the data is extracted from an existing Petri net
and try to extract the constraints and verify if these same
constraints appear inside of the file of the model structure.

B. Step 2 – Behavioural Analysis

In this step, the tool takes as input the Petri net model of
the Sender–Received design to extract information from the
Petri net.

To start the analysis, it is necessary to extract the data from
the Petri net. Each transition is considered a method call from
the previous place that is connected with it. Transitions have
guard inscriptions: Boolean conditions that enable or disable
the transition before it happens. They also have the Conditional
arc inscriptions. Arc inscription is, basically, a group of one or
more functions that could be considered close of OCL post-
condition: in other words, a condition that is checked during
the transition with conditional structure.

The method that is called to do the second analysis is called
behavioralAnalysis. It has three parameters. The first is a path
to the source file of the External entity. It is necessary to get
information inside the methods of some class. The Reflection
API provided by Java does not give this information. The
second parameter is a reference of this same entity. The
last one works like a parameter of the first module to send
the name of the method to be analysed and compared with
the formal model. After that the information from the Petri
Net file is extracted and disposed by a Java Structure to
represent the components of a Petri Net. Arc, Color, PetriNet,
Place, Token, and Transition are a group of representative
classes that is possible to obtain all the information provided
of the petri net source file. The information contained of
the transition sendMessage is captured and stored in an
Expression list. The same is done with the .java file. The
behaviour inside the method sendMessage from the Sender
class is obtained and keep in a list of Expressions. In this
context is necessary to explain two structures that will be
used to analyse the behavioural aspect. Expressions: might



be looked like condition or attribution of a variable during the
execution of a following hypothetical method. Variable: is used
to keep all the variables of the pattern class and compare if the
petri net model express some constraints or rules using these
same entities. The variables will be stored and compared with
the colors of the place of the petri net during the analysis.
The same procedure is necessary to execute with the petri
net model in the .cpn file. The expression condition on this
case has 1 element (the condition on the Arc between the
transition and the Receiver place); other elements could be
added, for example if the token value changes during the
transition. It’s considered an attribution expression. After this
step, the two lists of expressions and variables are compared
each one and the result is a simple list of differences between
them. During this comparison, the petri net color of each token
is comparable with the variables of the software. If they have
the same type, the comparison is considered positive. The same
procedure is realised with the Expression list.

In summary, in this step, on the one hand, the tool obtains
data on the transitions and associates it with the places from
the Petri net describing a security pattern. On the other hand,
the tool uses a Java extractor to obtain data on the statements
in the methods of a system. We cannot use reflection in Java
due to its practical limitations in this programming language
but conceptually, it is the same. Then, we define a measure
d ∈ [0, 1] that describes how close are the data expected from
the Petri nets and that found in the system methods. Our
computation of d is currently naive and we will improve it in
future work. Essentially if inside the transition of a Petri net,
we have only a simple guard condition and inside the analysed
method, we have a Boolean expression inside a conditional
structure (if or switch) plus an attribution that is located after
of if’s scope, then we compare each Boolean expression found
in the method with the guard condition found in the Petri
net’s transition. For each Boolean expression matching a guard
condition, we set the value of d closer to 1 wrt. the total
number of expected guard conditions from the Petri net. After
the comparison between each expression, the tool will look for
attributions inside the method. For example: if the variable a
before the method execution changes its value to a+1 after the
method execution, then we expect to see the same change in
the corresponding token in the Petri net. If the token changes
its value to a+1, then we assume that the token has the same
attribution. Again, with each matching attributions, we set
the value of d closer to 1 wrt. the total number of expected
attributions from the Petri net. After gathering this information
and computing d, the tool reports whether or not the pattern
is correctly implemented or not.

V. CONCLUSION AND FUTURE WORK

The proposed tool needs to evolve yet. It expected on the
following moment that it should to do a complete scan of a
Security Pattern. It will be helpful to expand the case study.
Thus, the next step is to implement this same procedure but
with the Single Access Point or others most usual patterns,
for example Roles or Session, and compare with an external

system that try to implement these patterns. It’s also necessary
to expand it in a second moment of this work to try to validate
it on systems that need it. Other approaches should try to
include different type of formal methods as EOCL, OCL or
others techniques and methods might be used only to compare
the results with the Petri Net model.

A brief consideration: For different criteria, sometimes the
implementation of some patterns could be different in a
language A from a language B. A clearly example is a pattern
implemented using Lua [16] programming language or other
script language. These languages might has different structures
to implement the same patterns. Lua [16] uses tables structure
instead object oriented programming. So the comparison might
produce difference results on a future version of the this tool.

Other topics of interest for future work include:
• Generate a validate version of the tool;
• Compare with more research works;
• Verify patterns using different languages.
• Realise a simulation from the pattern found to see if the

analysed behaviour is in the patterns scope.

Acknowledgment

The author would like to thank for their patience, dedication,
and help on previous version of this paper Venera Arnaoudova,
Foutse Khomh, and Wei Wu.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, 1st ed.
Addison-Wesley Professional, Nov. 1994. [Online]. Available:
http://www.worldcat.org/isbn/0201633612

[2] C. Steel, R. Nagappan, and R. Lai, Core security patterns : best practices
and strategies for J2EE, Web services, and identity management. Upper
Saddle River, NJ: Prentice Hall PTR,, 2006.

[3] W. J. Brown, R. C. Malveau, H. W. ”Skip” McCormick, and
T. J. Mowbray, AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. Wiley, Apr. 1998. [Online]. Available:
http://www.worldcat.org/isbn/0471197130

[4] J. Yoder and J. Barcalow, “Architectural patterns for enabling application
security,” 1998.

[5] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on security
patterns,” Progress in Informatics, vol. 5, pp. 35–47, Mar. 2008.

[6] R. Wassermann and B. H. C. Cheng, “Security patterns.”
[7] J. Mullins and R. Oarga, “Model checking of extended ocl

constraints on uml models in socle,” in Proceedings of the 9th
IFIP WG 6.1 international conference on Formal methods for
open object-based distributed systems, ser. FMOODS’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 59–75. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1772150.1772156

[8] P. Ziemann and M. Gogolla, “An extension of ocl with temporal logic,”
in Critical Systems Development with UML, 2002, pp. 53–62.

[9] C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, Institut
für instrumentelle Mathematik, Bonn, 1962.

[10] K. Jensen, “A brief introduction to coloured petri nets,” in Proceedings
of the Third International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, ser. TACAS ’97. London,
UK, UK: Springer-Verlag, 1997, pp. 203–208. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646481.691443

[11] M. Bunke and K. Sohr, “An architecture-centric approach to detecting
security patterns in software,” in Proceedings of the Third international
conference on Engineering secure software and systems, ser. ESSoS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 156–166. [Online].
Available: http://dl.acm.org/citation.cfm?id=1946341.1946357

[12] M. VanHilst and E. B. Fernandez, “Reverse engineering to detect
security patterns in code.”



[13] K. Jensen, L. Kristensen, and L. Wells, “Coloured petri nets and cpn
tools for modelling and validation of concurrent systems,” International
Journal on Software Tools for Technology Transfer, vol. 9, pp. 213–254,
2007. [Online]. Available: http://dx.doi.org/10.1007/s10009-007-0038-x

[14] Oracle, “Java reflection api,” http://docs.oracle.com/javase/tutorial/reflect/index.html.
[15] S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and Y.-G. Gueheneuc,

“Madmatch: Many-to-many approximate diagram matching for design
comparison,” 2011.

[16] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua: an
extensible extension language,” 1996.


