How Do Developers Toggle Breakpoints?

—An Empirical Study—

Fabio Petrillo, Hyan Mandian, Aiko Yamashita, Foutse Khomh, Yann-Ga&l Guéhéneuc
Polytechnique Montréal, QC, Canada
UniRitter, Brazil
Oslo and Akershus University College of Applied Sciences, Norway
E-Mails: fabio@petrillo.com, hyanmandian @hotmail.com,
aiko.yamashita@hioa.no,foutse.khomh @polymtl.ca,yann-gael.gueheneuc @polymtl.ca

Abstract—One of the most important tasks in software main-
tenance is debugging. Developers use debugging to fix faults and
also implementing new features. They spend at least 30% of
their time on debugging. They use interactive development envi-
ronments, like Eclipse, to perform their debugging activities. Yet,
to the best of our knowledge, very few studies investigated how
developers spend time and efforts during interactive debugging
sessions. In particular, when starting a new interactive debugging
session, developers must spend time and effort in finding where
to toggle useful breakpoints. Using the Swarm Debugging In-
frastructure (SDI), we report our analyses of debugging-related
data collected with 20 developers (12 students and 8 professional
freelancers) debugging five bugs found in the open-source project
JabRef. We collected more than 6 hours of developer’s debugging
data containing 207 breakpoints. Results of our analyses show
that, first, developers choose breakpoints purposefully; second,
breakpoint toggling is a hard task, especially for the first
breakpoint. We conclude that developers need tools that can
assist them in locating places to toggle breakpoints in the code.
These results show the potential benefits of sharing debugging
activities to support software maintenance and evolution. Finally,
we discuss some implications of our results for tool developers
and future debuggers.

I. INTRODUCTION

Debugging is a recurring and important activity during
software development, maintenance, and evolution [1]. During
debugging, developers use debuggers to detect, locate, and cor-
rect faults and—or implement new features. Interactive debug-
ging is one particular debugging process in which developers
use tools to investigate the execution of a program interac-
tively. Modern debuggers are often integrated in development
environments, e.g.,, DDD [2] or the debuggers of Eclipse,
Netbeans, Intellij IDEA, and Visual Studio. Debuggers allow
navigating through the code and toggling breakpoints to locate
and correct faults and—or implement new features.

Latoza et al. [3] showed that developers spend at least 30%
of their time on debugging. Debugging is a time-consuming
activity and improving the developers’ performance during
debugging could increase their productivity.

Tiarks and Rohms [4] observed that developers set a lot
of breakpoints at the beginning of their debugging activities
to discard irrelevant breakpoints as they debug. Setting break-
point is a difficult activity and supporting developers in setting
“right” breakpoints could also improve their productivity.

In previous work [5], we observed a strong correlation
between the time of the first breakpoint (p = —0.637) and

70

6 @
10 = 125.74x-0.72
o 50 .
£ \
[
E 20 ¢
3
§ 20
' o []
. - ® ,,,,,,,%\!,,., ——— 90
o
0
0 10 20 % y ” i

Time of First Breakpoint/Elapsed Time (%)

Fig. 1: Relation between time of first breakpoint and task
elapsed time

the total elapsed time of debugging activities, as reported
on Figure 1. Setting the first breakpoint is representative of
developers’ understanding of the bug and conditions their
productivity.

Maalej et al.[6] observed that capturing contextual infor-
mation requires the instrumentation of the IDE and continu-
ous observation of the developers’ activities within the IDE.
Recent studies by Storey et al. [7] showed that the newer
generation of developers, who is proficient in social media,
is comfortable with sharing such information. Developers are
nowadays opened, transparent, eager to share their knowledge,
and generally willing to allow information about their activities
to be collected by the IDE automatically. So, why shouldn’t
developers share their debugging activities?

We answer this question by introducing the concept of
Swarm Debugging to support a developer’s debugging activi-
ties using information collected from other developers’ debug-
ging activities. Swarm Debugging uses contextual information
obtained through the instrumentation of the debugger by the
Swarm Debugging Infrastructure (SDI). The SDI also provides
interactive tools and visualizations to share this data among
developers.

The concept of Swarm Debugging is based on the idea
that many developers, performing independently debugging
activities, are in fact building collective knowledge. Thus,
developers need support to collect, store, and share information

from and about their debugging activities, including but not
limited to breakpoint locations, visited statements, and tra-
versed paths, which establish a context for current and future
debugging activities by these and other developers.

Yet, to the best of our knowledge, there exist no study of the
habits in breakpoint settings of a set of participants fixing the
same set of bugs although such study would inform researchers
and tool builders to support developers during their debugging
activities.

Consequently, we report a case study to understand where
developers set breakpoints when debugging five real bugs
found in the JabRef Java open-source program. Our study
involves 20 developers (12 students and eight professional
freelancers).

We collect more than 6 hours of data related to their
debugging session activities (breakpoint setting and state-
ment/invocations stepping-ins and -overs, including 207 break-
points).

Using our data and its analyses, we answer the following
three research questions about the characteristics of break-
points:

RQ1: How much time do developers spend in a debugging
session before toggling their first breakpoint?

With this research question, we want to quantify in
time this effort. We find that, in average, participants
toggle their first breakpoint after 27% of their de-
bugging activity time.
RQ2: On what kind of statement do developers toggle their
breakpoints?

This question has for objective to observe if partici-
pants choose predominantly a kind of statement. We
find that 53% (111/207) of all toggled breakpoints
are on call statements and only 1% (3/207) on while-
loop statements.
RQ3: Do different developers toggle breakpoints at the line
of code, type or method for the same task?
We investigate if the locations of the breakpoints are
random or not by analysing exactly (line of code)
where each breakpoint was toggled. We report that
39 out of 207 breakpoints (about 20%) are toggled
at exactly the same lines of code when different
participants fix the same bugs. Alse, we want to
observe if participants toggle breakpoints simplisti-
cally or they chose rationally at the type level. We
observe that 10 types received 77% (160/207) of all
the breakpoints for different bugs by different devel-
opers. Finally, we want to observe if participants have
“preferred” methods in which toggling breakpoints,
independently of bugs or participant. We report that
37 methods received at least two breakpoints and /3
methods received five or more breakpoints.

Our results show that developers do not choose breakpoints
simplistically and that there is a rationale in their setting
breakpoints. We also show that for a same bug, different
developers set the same breakpoints. Thus, breakpoints could

be recommended across bugs and developers.

The remainder of the paper is organized as follows. Section
II provides some background about debugging and describes
Swarm Debugging. Section IIl presents the design of our
experiment. Sections IV-A, IV-B, IV-C show and discuss the
results of our research questions. Section V discuss the threats
to the validity of our study. Section VI summarizes related
work. Finally, Section VII concludes the paper and outlines
future work.

II. BACKGROUND

This section provides background information about debug-
ging, Swarm Debugging and the Swarm Debug Infrastructure
(SDI).

A. Debugging

The IEEE Standard Glossary of Software Engineering Ter-
minology defines debugging as the act of detecting, locating,
and correcting faults in a computer program. Debugging
techniques include the use of breakpoints, desk checking,
dumps, inspection, reversible execution, single-step operations,
and traces.

Araki et al.describe the debugging activity as an interactive
process where developers make hypotheses and verify them by
examining problems in a program [8]. Developers then refute
or validate their hypotheses until the problems are resolved.

Interactive debugging consists in using a debugger tool to
detect, locate, and correct a fault in a program. A process also
known as program animation, stepping, or following execution
[9]. Developers often refer to this process as simply debugging,
because several IDEs provide debuggers to support debugging.
However, while debugging is the process of finding faults,
interactive debugging is one particular debugging approach
in which developers use tools to investigate the execution of
a program interactively. We use the expressions interactive
debugging or stepping, but there is not yet a consensus on
what is the best name for this debugging process.

B. Foundations of Swarm Debugging

Software systems are nowadays usually large and complex.
Research works in software engineering provide approaches
to manage this complexity, regardless of the software de-
velopment processes, be them “traditional”, i.e., systematic
waterfall-like processes, or “modern”, i.e., agile processes
[10]. Recent research works recognize the fundamental impor-
tance of crowd-sourcing in software engineering [11]. Swarm
Debugging is crowd-sourcing applied to debugging activities
and inspired by the combination of swarm intelligence and
information foraging theory.

a) Swarm intelligence (SI): describes the behavior re-
sulting from the self-organization of social insects [12]. Self-
organization is the set of dynamic mechanisms enabling struc-
tures to appear at the global level of a system from interactions
among its lower-level components, without being explicitly
coded at the lower-levels.

Ant nests and the societies that they house are examples
of SI [13]. Individual ants can only perform relatively sim-
ple activities, the whole colony can collectively accomplish
sophisticated movement patterns. Ants achieve SI using infor-
mation encoded as chemical signals (pheromone) deposited by
other ants, e.g., indicating a path to follow or an obstacle to
avoid.

Similarly, large and complex software systems could be
also examples of SI. Individual developers usually can per-
form activities without having a global understanding of the
whole systems [14]. Developers achieve SI using information
encoded in software artefacts, most importantly source code
but also by-products produced during the development of soft-
ware, and shared through version-control systems. More, many
developers working independently by executing different tasks
and interacting locally could produce human-based complex
adaptive patterns.

In a bird’s eye view, software development is analogous
to some animal collective behavior and SI in which a group
agents interacting locally with one another and with their
environment, following simple rules, and whose interactions
lead to the emergence of a global behavior, previously un-
known/impossible by individual agents. We claim that the
similarities between the self-organization of ant nests and a
complex software systems is not a coincidence. Cockburn
suggested that the best architectures, requirements, and designs
emerge from self-organizing developers, growing in steps and
following their changing knowledge, and the changing wishes
of the user community [15].

b) Information foraging theory (IFT): is based on the
optimal foraging theory developed by Pirolli and Card [16]
to understand how people search for information. Optimal
foraging theory is rooted in biology and studies and theories
of how animals hunt for food. Lawrance et al.[16] extended
the concept and applied IFT to support debugging.

However, no previous work proposed the sharing of knowl-
edge related to fine-grained debugging activities. Differently
from work [16] that uses IFT on a model one prey/one preda-
tor, our approach models many developers working indepen-
dently in many debugging activities and sharing information
to allow SI to emerge. Debugging becomes a foraging process
in a swarm intelligence environment.

These concepts - SI and IFT - have led to the design of
a crowd-sourcing approach applied to debugging activities:
a different, collective way to doing debugging that collects,
shares, retrieves information from debugging sessions in order
to support (current and future) debugging activities.

To evaluate SD, we have built an infrastructure to support
itt Swarm Debug Infrastructure (see https://github.com/
SwarmDebugging). The Swarm Debug Infrastructure (SDI)
[17] implements the SD approach, providing a set of tools
for collecting, storing, sharing, retrieving, and visualizing data
collected during developers’ debugging activities.

Swarm Debugging works as follows. First, several devel-
opers perform their individual, lonely debugging activities.
During debugging, debugging events are collected by listeners

(Label A in Figure 2), for example breakpoints-toggling and
stepping events (Label B in Figure 2), that are then stored in
a debugging-knowledge repository (Label C in Figure 2). To
access this repository, services are defined and implemented
in SDI. For example, stored events are processed by dedicated
algorithms (Label D in Figure 2) (1) to create (several types
of) visualizations, (2) to offer (distinct ways of) searching, and
(3) to provide recommendations to assist developers during de-
bugging. Recommendations can pertain to the locations where
to toggle breakpoints. Storing and using these events allow
to share developers’ knowledge among developers, creating
a collective intelligence about the software systems and their
debugging.

We chose to instrument the Eclipse IDE, a popular IDE,
to implement Swarm Debugging and to reach a great number
of users. Also, we use services in the cloud to collect the
debugging events and to process these events and to provide
visualizations and recommendations from these events.

During debugging, developers analyze the code, toggling
breakpoints and stepping in and through statements. While
traditional dynamic analysis approaches collect all interac-
tions, states or events, SD collects only invocations explic-
itly explored by developers: SDI collects only visited areas
and paths (chains of invocations by e.g.,Step Into or F5 in
Eclipse IDE) and, thus, does not suffer from performance or
memory issues as omniscient debuggers [18] or tracing-based
approaches could.

We have defined domain concepts to model software
projects and debugging data in Swarm Debugging approach.
This meta-model has two main goals. First, it represents
the conceptual model of the SD approach. By definition, a
conceptual model is a mapping of the concepts and relations of
a domain, reflecting the real-world relationships and dependen-
cies. Thus, the meta-model summarises the central concepts
adopted in SD. Second, it presents the essential elements
necessary to build an infrastructure for SD.

The concepts are inspired and complement the simplified
FAMIX Data model[19] with debugging data. FAMIX exploits
meta-modelling techniques to make the data model extensible.
The simplified view of the FAMIX data model comprises the
main object-oriented concepts namely Type, Method, plus the
necessary associations between them namely Invocation and
Access.

The Swarm Debugging meta-model concepts (Fig. 3) in-
clude:

o Developer is an SD user, which creates and executes

debugging sessions.

e Product is the target software product. Product is a set
of source code projects (one or more).

« Task is a task to be executed by developers, like software
comprehension, bug location, software maintenance or
refactoring.

o Session represents a Swarm Debugging session. It relates
developer, project, and debugging events.

o Type represents classes and interfaces in the project.
Each type has a source code and a file. To simplify,

Single Debugging Session

M\
TN

—
oo
oo

o

y Collect data ‘;
(o)

e
\ — 0
N

evs/ Loy)

S

A~

Searc

Recommen

Crowd Debugging Sessions

(&) Py \
531; (3o) &) / ™

Debugging Information

O

|
A '
7\ Store data

- \\//'*" .
\

Transform information

Fig. 2: Overview of the Swarm Debugging approach

SD only considers types that have source code available
as belonging to the project domain, ignoring external
libraries.

o Method is a method, procedure or function associated
with a type, which can be invoked during debugging
sessions.

« Namespace is a container for types. In Java, for example,
namespaces are declared with the keyword package.

« Invocation is a method invoked from another method. It
is formed by a pair of methods: an invoking (caller) and
an invoked (called).

o Breakpoint represents the data collected when a devel-
oper toggles a breakpoint in an IDE. Each breakpoint is
associated with a type and a method if appropriate.

« Event is an event data that is collected when a developer
performs some actions during a debugging session, typi-
cally stepping events (step into a method, step over, run,
return to the caller, e.g.,).

C. The Swarm Debug Infrastructure

The Swarm Debug Infrastructure (SDI) is an implemen-
tation of Swarm Debugging, providing tools for collecting,
sharing, and retrieving debugging data collected during devel-
opers’ debugging sessions. SDI uses a data frugality approach
[20], collecting only paths that were intentionally explored
by developers, collecting only methods explicitly visited by
developers. It means that we collect only invocations where
developers call a method and intentional events (e.g., Step Into
or F5 in Eclipse IDE) for visiting a method invoked by an
analysed method.

SDI can complement other infrastructures like Mylyn[21],
Hipikat[22][23] and DebugAdvisor [24], with debugging ses-

sion data (either structured or unstructured), and analysing
fine-grained events to collect breakpoints or information about
debugged software areas. SDI, Hipikat, and DebugAdvisor
share the same essential idea: using previous data to support
debugging tasks. Moreover, SDI and Mylyn share the idea of
considering context-awareness in their activities.

III. EXPERIMENT DESIGN

This section presents the design of our experiment to
address the following three research questions:

RQ1: How much time do developers spend in a debugging
session before toggling their first breakpoint?
On what kind of statement do developers toggle their
breakpoints?
Do different developers toggle breakpoints at the line
of code, type or method for the same task?

RQ2:
RQ3:

To answer the research questions, we proceeded as follows
1.

A. Tasks

We use debugging tasks to start participants’ debugging
sessions. We choose to ask participants to find the locations
of true faults in an independent, open-source program. We
select JabRef? as object program. JabRef is a bibliography
reference manager developed in Java. It has faults publicly
reported in its issue tracker, its domain is easy to understand,
and it is composed of relatively independent packages and
classes (high cohesion, low coupling). We selected carefully
five faults reported against JabRef v3.2 in its issue tracker,
choosing tasks on which developers should have to stepping

! Artifacts are available on onhttp://swarmdebugging.github.io/publications
Zhttp://www.jabref.org/

Developer Task Product
———— Y
s
Namespace Session ! Project
) RARNARNNNNNNNNNNNNNNNNNNNNY _T_J
() 4 A
Breakpoint | Type
\ V \. V.
Invocation Method Event

C] SDmodel | FAMIX

Fig. 3: The Swarm Debugging meta-model

Task Average Times (min.)
318 13
667 31
669 11
993 28
1026 21

TABLE I: Elapse time by task (average)

different Java classes (from the JabRef user interface layer) to
achieve the fault. Thus, we ask participants to find the locations
of the faults described in issues 318, 667, 669, 993, and 1026
on JabRef issue’s track.

We estimate the developers’ effort on each task a posteriori
by calculating the averages of the elapse times for each task by
participants. Table I shows the average times (in minutes) for
each task. Participants spend 21 minutes to complete the tasks
in average. We believe that this amount of time is reasonable
and representative of simple bug fixing while inducing little
fatigue in participants.

B. Participants

We strive to have a sample of participants that is realistic
and representative of the industry. We recruit eight professional
developers through a freelancer-hiring Web site®. All are male.
Two are experts and three are intermediate in Java. They all use
Eclipse and its debuggers frequently. We also ask volunteers
among our undergraduate and graduate students at Polytech-
nique Montréal to participate in our experimental study and 12
students volunteered. They are expert or advanced developers

3https://www.freelancer.com/

(70%). They all used IDEs (70%) and debuggers (60%)
frequently. Hence, the participants are representative of junior
and established developers in early or mid-careers. We collect
all participant profile data from a survey applied before the
experiment. All data about expertise are informed by them,
but we confirmed all participants had enough expertise to
participate in the experiment because we used video session
recordings to evaluate their level of expertise.

C. Artifacts

We provide participants with two documents. The first doc-
ument is a tutorial (http://swarmdebugging.org/publications/
experiment/tutorial.html)explaining how to install and config-
ure the tools required for the experiment and how to carry
a warm-up task and the experiment. The warm-up task is
presented using a video that guides the participants*. The
second document presents the five issues with a description
and some steps to reproduce the faults. Again, we offer a
video demonstrating step-by-step how to reproduce the faults
to reduce the participants’ efforts.

We also provide a preconfigured Eclipse workspace to
participants and ask them all to install Java 8, Eclipse Mars 2,
the Swarm Debug Tracer plug-in v0.1. The Eclipse workspace
contain two Java projects: a Tetris game for the warm-up
task and JabRef v3.2 for the experiment. We use the warm-
up task on the Tetris game to confirm that the participants’
environments are correctly configured and that the participants
understand the experiment. Also, we require participants to
install and configure the Open Broadcaster Software® (OBS),
an open-source system for live streaming and recording.

“https://youtu.be/U1sBMpfL2jc
Shttps:/obsproject.com

We finally administer a post-experiment on-line question-
naire to the participants to collect information about the
experiment, including the follow questions:

1) Did you find the bug/issue?

2) Where is the bug/issue?

3) Why does the bug/issue happen?

4) Were you tired?

5) Describe your debugging experience.

D. Experiment Procedure

After installing their environments, participants perform the
warm-up task, which consists of starting a debugging session,
toggling a breakpoint, and debugging the Tetris program to
locate a given method. It was a truly trivial task that we used
to filter the participants. All participants who performed our
experiment executed correct the warm-up task °

After performing the warm-up task and an authentication
process, each participant realised debugging sessions to find
the locations of the five faults. They are informed that were
participating in a research experiment about debugging, but we
did not inform exactly what data are doing collect nor how.
We limited on one-hour maximum by task, but we suggested
participants spend about 20 minutes by a fault. We asked
participants to control their fatigue and move on to the next
task if they feel tired.

All debugging data (breakpoints, stepping, method invoca-
tions) were automatically and transparently collected by the
Swarm Debug Tracer and stored on our SDI Services. We
collect this data in the course of 8 days. We also collect
the video capture of the participant’s screens during their
debugging sessions. We thus obtain:

o Video captures, one per participant per task using OBS.
The videos are essential to control each execution quality,
and producing a reliable and reproducible evidence on our
results.

o The statements on which the participants’ toggled break-
points. We collect the real statement, from the line of
text in the code source, analysed during each breakpoint
creation (monitoring by the Swarm Debug Tracer). We
consider the following categories of statements’:

— call
— if-statement
— assignment
— return
— while-loop.
We thus can compute, for each participant on each task:

o Start Time (ST): the effective time when a developer
starts a task. We analysed each video, and we started
to counting when effectively the developer start a task
(when she start the Swarm Debug Session for example).
It means that we did not start to counting on time “00”
of the video, but only one starts the task.

SWe applied that warm-up task for 30 of freelancers, but only eight
freelancers performed the task correctly.
https://en.wikipedia.org/wiki/Statement_(computer_science)

o Time of First Breakpoint (FB): the time when a developer
toggles the first breakpoint.
o End time (T): the effective time when a developer finishes
a task.
o Elapse End time (ET): ET =T — ST
o Elapse Time First Breakpoint (EF): EF = F'B — ST
After their debugging sessions, participants fill the on-line
questionnaire and provide the video captures. We control
whether participants were successful or not comparing their
answers in the questionnaire, the video recording and the true
bug locations because we know each fault point (all tasks were
solved by JabRef’s developers).

I'V. EXPERIMENT RESULTS

We now present the data collected during our experiment
and the results of our analyses. We collect 28 video captures,
for more than 6 hours of developers’ activities. We have 38
debugging sessions by 20 developers, 207 breakpoints toggled
during the sessions, and more than 6,000 method invocations.
We used those data to answer follow research questions.

A. RQI: How much time do developers spend in a debugging
session before toggling their first breakpoint?

We normalise the times elapsed between the start of a
debugging session and the setting of the first breakpoint
(M FB) by the total duration of the task to compare tasks
and participants:

EF
MFB = — 1
BT (D

We find that, in average, participants spend 27% of task
time to toggle the first breakpoint (std. dev. 17%), i.e., about
1/4 of the participants’ times are used to locate where to toggle
their first breakpoints.

We conclude that toggling the first breakpoint is not
an easy task and developers need tools to assist them
in locating the places to toggle breakpoints.

B. RQ2: On what kind of statement do developers toggle their
breakpoints?

We classify the kinds of statements on which the partici-
pants toggled their breakpoints. We analysed each breakpoint
and obtained Table II, which shows that 53% (111/207) of
breakpoints are toggled on call statements and only 1%
(3/207) on while-loop statements.

Statement Number of Brekpoints %
call 111 53
if-statement 39 19
assignment 36 17
return 18 10
while-loop 3 1

TABLE II: Breakpoints by kind of statement

After grouping if-statement, return, and while-loop into
control-flow statements, we report in Figure 4 that 29% of
breakpoints are on control-flow statements, about 1/4. Devel-
opers prefer call statements because they would like to analyse
the software state before coming in a method. Furthermore,
call statements represent the behaviour of objects, while the
control-flow statements represent the behaviour of methods,
one level of abstraction lower. That result can be useful, for
instance, when debugger’s developers build a new breakpoints’
recommendation system who could use that result as a heuris-
tic to prioritise call statements to suggest breakpoints.

We results show that 53% (111/207) of breakpoints
are toggled on call statements and only 1% (3/207)
on while-loop statements.

mcall
® control flow
assignement

Fig. 4: Breakpoints by kind of statement - call, control flow
and assignment

C. RQ3: Do different developers toggle breakpoints at the line
of code, type or method for the same task?

We investigate each breakpoint to assess whether there are
breakpoints on the same line of code for different participants,
analysing breakpoints on the same task and on different tasks.
We group all breakpoints by task and count how many break-
points are toggled on the same line of code several times for
each task across participants. We reported the results in Table
ITII. We observe that 39 breakpoints out of 207 are toggled in
the exactly same line of code for the same task toggled by
different developers. That result shows that developers do not
choose breakpoints simplistically, as suggests [4], but there is
a rational in that decision because different developers toggle
the same line of code for the same task®.

We also analysed if a type had breakpoints for different
tasks. Thus, we group all breakpoints by type and count how
many breakpoints are toggled on the type for different tasks,
putting ”1” if a type had a breakpoint, producing Table IV.
We also count the numbers of breakpoints by type and how
many developers toggle breakpoints on a type.

We observe that ten types received breakpoints in different
tasks by different developers, receiving 77% (160/207) of

8In fact, that number could be higher if we have to consider a region
(a threshold) of code and not only a line of code. We chose counting only
the same line of code because it is an evidence that line was important for
debugging a task.

Task Type Line # same line
0318 AuthorsFormatter 43 5
0318 AuthorsFormatter 131 3
0667 BasePanel 935 2
0667 BasePanel 969 3
0667 JabRefDesktop 430 2
0669 OpenDatabaseAction 268 2
0669 OpenDatabaseAction 433 4
0669 OpenDatabaseAction 451 4
0993 EntryEditor 717 2
0993 EntryEditor 720 2
0993 EntryEditor 723 2
0993 BibDatabase 187 2
0993 BibDatabase 456 2
1026 EntryEditor 1184 2
1026 BibtexParser 160 2

TABLE III: Breakpoints in the same line of code by task

toggle breakpoints. For example, the type BibtexParser had

21% (44/207) of toggle breakpoints in 3 of 5 tasks by 13

different developers.

Finally, we count how many breakpoints are in the same
method across tasks and participants, indicating that there were
“preferred” methods for toggling breakpoints, independently
of task or participant. We find 37 methods received at least
two breakpoints and 13 methods that receive five or more
breakpoints during different tasks by different developers,
as reported in Figure 5. In special, the method EntityEd-
itor.storeSource received 24 breakpoints and the method
BibtexParser.parseFileContent received 20 breakpoints by
different developers on different tasks.

4 I
Our results show that developers did not choose
breakpoints simplistically, but there is a rational in
that decision, because different developers toggle the
same line of code for the same task and different de-
velopers toggle the same type or method for different
tasks.

J

That conclusion has an important implication: there are
places (line of code, type, or methods) that were toggled many
breakpoints in different tasks by several developers, showing
an opportunity to use those places as candidates for new
debugging sessions. In another hand, one could arguments that
we have a bootstrapping problem: we cannot know that these
methods are important until developers start to put breakpoints
in them. However, that issue is addressed by the time, because
using the Swarm Debug Infrastructure has a collaborative
approach (Swarm Debugging), on which previous debugging
data are accumulated, forming a dataset to be used on new
debugging sessions. Consequently, more developers use SDI,
and more they will improve the dataset about a software
system, closing a feedback positive cycle.

Type 0318 0667 0669 0993 1026 Breakpoints Dev Diversity
SaveDatabaseAction 0 0 1 1 1 7 2
BasePanel 1 1 1 0 1 14 7
JabRefDesktop 1 1 0 0 0 9 4
EntryEditor 0 0 1 1 1 36 4
BibtexParser 0 0 1 1 1 44 6
OpenDatabaseAction 0 0 1 1 1 19 13
JabRef 1 1 1 0 0 3 3
JabRefMain 1 1 1 0 4
URLUtil 1 1 0 0 0 4 2
BibDatabase 0 0 1 1 1 19 4
TABLE IV: Breakpoints by type in different tasks
EntryEditor.storeSource

BibtexParser.parseFileContent
AuthorsFormatter.format
OpenDatabaseAction.getSuppliedEncoding
BasePanel.setupActions
BibDatabase.checkForDuplicateKeyAndAdd
BibDatabase.insertEntry
AuthorsFormatter.normalizeName
JabRefDesktop.openExternalViewer
JabRefMain.main

BibtexParser.parse

EntryEditor. StoreFieldAction.actionPerformed
SaveDatabaseAction.run

o

5

=
o
=
[&)]
N
o

25

number of breakpoints

Fig. 5: Methods with 5 or more breakpoints

V. THREADS TO VALIDITY

As our experiment involved both students and professional
freelancer developers, the way the two kinds of participants
debug programs may be varied. Professional freelancer devel-
opers may tend to carefully and methodically toggle break-
points while students may not. Thus, we run our prediction
approach on the whole dataset, then on only freelancer dataset
in one and, and only on students dataset on the other hand.
This distinction allows us to access whether the debugging
activities of one kind of participant could be more “rich” for
breakpoint prediction than other.

Our results are subject to threats to their validity as any
other experiment study.

Construct Validity threats is related to the metrics used to
answer our research questions. We mainly used breakpoints
counts which are a precise measure. However, we considered
the breakpoints collected by our swarm debugging infrastruc-
ture (SDI). Any issue regarding the collection of breakpoints
with SDI would affect our results. To mitigate these threats,
we collected both SDI data and video captures of the screen
of participants. We compared information extracted from the

videos with the data collected by SDI and found that the
breakpoints collected by SDI are exactly those toggled by
developers.

Conclusion Validity threats concerns the violations of the
assumptions of the statistical tests, and how diverse is the
collected data. We reported results regarding percentages of
breakpoints toggled for different kinds of statements, and the
common breakpoints toggled on class/method for the same
and different tasks. We did not perform any statistical analysis
to answer our research questions. Thus, our results do not
suffer from any statistical assumptions. We do not claim
any causation relationship between the number/percentage of
breakpoints, the kind of statements, and the tasks or develop-
ers.

Internal Validity threats are related to the tools used to
collect the data and the subject systems. We use SDI and
any issue with SDI would affect our results. However, as we
validated the collection of breakpoints using the videos, the
threat related to SDI is mitigated. We also used videos to
identify when developers start and finish the tasks. We use
only one system in our study (i.e., JabRef). We performed our

study on a single system because we needed to have enough
data points from a single system to assess the effectiveness
of breakpoint prediction. We should collect more data on
other systems and check whether the system used can affect
our results. Each developer (e.g., freelancer) performed more
than one task on the same system. It is possible that a
participant may have become familiar with the system after
performing earlier tasks and would be knowledgeable enough
to toggle breakpoints when performing later tasks. However,
we didn’t observe any significant difference in performance
when comparing the performance of same developers for the
first and last task.

External validity threats concern the possibility to
generalise our results. We share our data and scripts
at http://swarmdebugging.org/publications/icsme2016. Further
studies with different sets of tasks and different participants
are required to verify our results and make our findings more
general.

VI. RELATED WORK

We now summarise works related to debugging.

a) Program Understanding: Previous work studied pro-
gram comprehension and provided tools to support program
comprehension. Maalej et al. [25] observed and surveyed
developers during program comprehension. They concluded
that developers need runtime information and reported that de-
velopers frequently execute programs using a debugger. Ko et
al. [26] observed that developers spend large amounts of times
navigating between program elements. Sillito et al. identified
the questions that developers ask when finding and extending
starting methods [27]. They described how developers answer
these questions during software maintenance activities.

Feature and fault location approaches are used to identify
and recommend program elements that are relevant to a task
at hand [28]. These approaches use bug report [29], domain
knowledge [30], version history and bug report similarity [28]
while others, like Mylyn [31], use developers’ interaction
traces, which have been used to study work interruption [32],
editing patterns [33], [34], program exploration patterns [35],
or copy/paste behaviour [36].

b) Debugging Tools for Program Understanding:
Some developers tend to print pieces of text
(e.g,System.out.print () in Java) to locate faulty
program elements but debugging tools are essential in
any programming environment [37]. They help developers
understand the dynamic behaviour of programs.

Hipikat [22], [23] is an Eclipse plug-in that for a project by
analysing links between stored artefacts and recommending
relevant ones. Also, Hipikat supports developers’ foraging by
reducing the cost of navigation among code and non-code
artefacts, such as bug reports, CVS logs, and e-mails [23].

Romero et al. [38] extended the work by Katz and Ander-
son [39] and identified high-level debugging strategies, e.g.,
stepping and breaking execution paths and inspecting variable
values. They reported that developers use the information

available in the debuggers differently depending on their
background and level of expertise.

JIVE [40], [41] is an Eclipse plug-in to analyse Java pro-
gram executions, providing two kinds of runtime visualisations
of Java programs - object diagrams and sequence diagrams.

DebugAdvisor [24] is a recommender system to improve
debugging productivity by automating the search for similar
issues from the past.

[9] studied the difficulties faced by developers when de-
bugging in modern IDEs. They reported that the nature of the
IDE affects the time spent by developers during debugging
activities.

c) Automated debugging tools: Automated debugging
tools require both successful and failed runs and do not
support programs with interactive inputs [42]. Consequently,
they have not been widely adopted in practice. Moreover,
automated debugging approaches are often unable to indicate
the “true” locations of faults [43]. Other more interactive
methods, such as slicing and query languages, help developers
but, to date, there has been no evidence that they significantly
ease developers’ debugging activities. However, recent studies
showed that empirical evidence of the usefulness of many
automated debugging techniques is limited [44]. Researchers
also found that automated debugging tools are rarely used in
practice [44]. In practice, at least in some scenarios, the time
to collect coverage information, manually label the test cases
as failing or passing, and run the calculations may exceed the
actual time saved using the automated debugging tools.

d) Advanced Debugging Approaches: Zheng et al. [45]
presented a systematic approach to statistical debugging of
programs in the presence of multiple bugs, using probability
inference and common voting framework to accommodate
more general bugs and predicate settings. Ko and Myers
[42], [46] introduced interrogative debugging, a process with
which developers ask questions about their programs outputs
to determine what parts of the programs to understand. Pothier
and Tanter [18] proposed Omniscient debuggers, and approach
to support back in time navigation across previous program
states. Delta debugging [47] by Hofer et al. purports that the
smaller the failure-inducing input, the less program code is
covered. It can be used to minimise a failure-inducing input
systematically. Ressia [48] proposed object-centric debugging,
focusing on objects as the key abstraction execution for many
tasks. Estler ef al. [49] discussed collaborative debugging sug-
gesting that debugging collaboration is perceived as important
by developers and can improve their experience. This result
founded our approach although we use asynchronous debug-
ging sessions. Chen and Kim [50] proposed mining Stack
Overflow QAs to leverage the large mass of crowd knowledge
to aid developers while debugging programs. Salvaneschi and
Mezini [51] presented RP Debugging to inspect and reason
about the flow of changes through a reactive programming
program.

VII. CONCLUSION

Debugging is a complex activity, both tedious and time
consuming. During debugging, developers explore the source
code of their systems, walking through different paths to locate
faults. Debugging activities, thus, developers produce a lot
of knowledge about systems. This information is however
lost after the end of the developers’ debugging activities.
To prevent this information loss and allow developers to
leverage knowledge of others’ debugging activities during a
new debugging activity, we introduce the concept of swarm
debugging and the Swarm Debugging approach (SD).

SD uses developers’ cooperative effort to capture and share
knowledge, collecting information that are usually discarded
in traditional debugging tools. The acquired knowledge is
presented to developers using visualizations.

In this work, we conducted a case study to observe how
developers toggle breakpoints. We collected debugging activ-
ities of 20 developers while they perform realistic debugging
activities, to fix five real bugs in the Java open-source system
JabRef, using our Swarm Debugging Infrastructure.

By analysing the statements on which the developers set
breakpoints, we found that breakpoints are usually toggled
on call statements (53% of breakpoints). Our results show
that developers do not choose breakpoints simplistically; there
is a rational behind each toggled breakpoint. We observed
that different developers toggle the same places for the same
task and different developers toggle the same type or method
for different tasks. This finding has an important implication:
there are locations (line of code, type, or methods) in the
code that are prime choices for breakpoints. There is therefore
an opportunity to recommend these locations to developers
during new debugging sessions. In addition, we found in this
paper that 53% (111/207) of breakpoints were toggled on call
statements and only 1% (3/207) on while-loop statements.

These observations call for an investigation of whether
breakpoints previously toggled by developers could help other
developers. Consequently, we introduce the concept of co-
breakpoints: developers who toggle breakpoints on a distinct
type also toggle breakpoints in other types.

We conducted a qualitative study and a controlled experi-
ment with professional developers to assess the effectiveness
of Swarm Debugging. Results show that collecting and sharing
debugging data is useful for bug location tasks. Developers can
use Swarm Debugging Infrastructure to record their debugging
data, allowing them to improve their debugging experience.

The promising results of our evaluation show the value of
SD and call for more studies on software debugging. SDI is
an open and freely available infrastructure that researchers can
use to perform new empirical studies about debugging and—or
software static and dynamic analysis. Developers can use SDI
to understand IDE users’ behaviours and requirements. This
knowledge base is important to create new tools, using novel
data mining techniques, to integrate different data sources. Ed-
ucators can leverage SDI tools to teach interactive debugging
techniques, tracing their students’ debugging activities and

evaluating their performance. Data collected by professional
developers using SDI could also be used to educate students,
e.g., by showing them examples of good and bad debugging
patterns.

Swarm Debugging brings actionable insights. First, software
developers follow similar paths when debugging similar faults,
hence researchers and tools vendors should explore recom-
mendation systems to suggest paths to developers. Second,
software developers follow certain patterns when navigating
and toggling breakpoints during debugging, hence researchers
and tools vendors should study, characterise, and use these
patterns to recommend certain paths to developers. Moreover,
following these two results, we also suggest that debugging
task could be divided into two activities, one of locating
the faults, which could benefit from the collective intelligence
of other developers and could be performed by dedicated
foragers, and one of fixing the bugs, which require deep
understanding of the program and could be performed by
dedicated builders. Hence, actionable results include recom-
mender systems and a change of paradigm in the debugging
of software programs.

Last but not least, the research community can leverage the
SDI to conduct more studies to improve our understanding of
developers’ debugging activities, which could ultimately result
into the development of whole new families of debugging tools
that are more efficient and—or more adapted to the particularity
of each debugging activity. Many open questions remain and
this work is just a first step towards fully understanding how
collective intelligence could improve debugging activities.

Our approach matches with a vision that IDEs should
incorporate a general framework to capture and exploit IDE
interactions, creating an ecosystem of developer-aware appli-
cations and plugins. Swarm Debugging is a first step towards
intelligent IDEs, context-aware programs that monitor and
reason about how their users interact with them, providing an
environment to support the next generation of IDEs for crowd
software engineering.

In future work, we plan to perform a large scale experiment
on interactive debugging, collecting data from several systems
and with different participants. We also intend to implement
breakpoint recommendation systems as well as visualisations
to support debugging, extending the Swarm Debug Infrastruc-
ture. Our ultimate goal is to improve the way developers debug
and introduce the idea of crowd-sourcing to debugging.

ACKNOWLEDGMENTS

We give our thanks to the developers who participated in our
case study, supporting and improving our work with several
insightful ideas and discussions. This work has been partly
supported by the Natural Sciences and Engineering Research
Council of Canada and the Canada Research Chair on Patterns
in Mixed-language Systems.

REFERENCES

[1] A.S. Tanenbaum and W. H. Benson, “The people’s time sharing system,”
Software: Practice and Experience, no. 2, pp. 109-119, apr 1973.
[2] P. Wainwright, “GNU DDD - Data Display Debugger,” 2010.

[3]

[4]

[5]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

T. D. LaToza and B. a. Myers, “Developers ask reachability questions,”
2010 ACM/IEEE 32nd International Conference on Software Engineer-
ing, vol. 1, pp. 185-194, 2010.

R. Tiarks and T. Rohm, “Challenges in Program Comprehension,”
Softwaretechnik-Trends, vol. 32, no. 2, pp. 19-20, May 2013. [Online].
Available: http://link.springer.com/10.1007/BF03323460

F. Petrillo, Z. Soh, F. Khomh, M. Pimenta, C. Freitas, and Y.-G.
Guhneuc, “Towards understanding interactive debugging,” in In Proceed-
ings of the 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS), August 2016, p. 10.

W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the Compre-
hension of Program Comprehension,” ACM Transactions on Software
Engineering and Methodology, vol. 23, no. 4, pp. 1-37, Sep. 2014.
M.-a. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The (R) Evolution of social media in software engineering,” in Pro-
ceedings of the on Future of Software Engineering - FOSE 2014. New
York, New York, USA: ACM Press, 2014, pp. 100-116.

K. Araki, Z. Furukawa, and J. Cheng, “A general framework for
debugging,” Software, IEEE, vol. 8, no. 3, pp. 14-20, May 1991.

I. Zayour and A. Hamdar, “A qualitative study on debugging under
an enterprise IDE,” Information and Software Technology, vol. 70, pp.
130-139, feb 2016.

T. Chow and D.-B. Cao, “A survey study of critical
success factors in agile software projects,” Journal of Systems
and Software, vol. 81, no. 6, pp. 961-971, jun 2008. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2013.02.027$\ backslash$nhttp:
/Minkinghub.elsevier.com/retrieve/pii/S0164121207002208http:
/Minkinghub.elsevier.com/retrieve/pii/S0164121207002208

T. D. LaToza and A. van der Hoek, “Crowdsourcing in Software
Engineering: Models, Motivations, and Challenges,” IEEE Software,
vol. 33, no. 1, pp. 74-80, jan 2016. [Online]. Available: http:
/lieeexplore.ieee.org/document/7367992/

S. Garnier, J. Gautrais, and G. Theraulaz, “The biolog-
ical principles of swarm intelligence,” Swarm Intelligence,
vol. 1, mno. 1, pp. 3-31, oct 2007. [Online]. Avail-
able: http:/link.springer.com/article/10.1007/s11721-007-0004- yhttp:

/Mink.springer.com/10.1007/s11721-007-0004-y
W. R. Tschinkel, “The architecture of subterranean ant nests:

beauty and mystery underfoot,” Journal of Bioeconomics,
vol. 17, no. 3, pp. 271-291, oct 2015. [Online]. Avail-
able: “http://dx.doi.org/10.1007/s10818-015-9203-6http://link.springer.

com/10.1007/s10818-015-9203-6

T. Ball and S. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 33-43, apr 1996. [Online]. Available: http:
/lieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=488299

A. Cockburn, Agile Software Development: The Cooperative Game,
Second Edition. Addison-Wesley Professional, 2006.

J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197-215, 2013.

F. Petrillo, Z. Soh, F. Khomh, M. Pimenta, C. Freitas, and Y.-G.
Guéhéneuc, “On the effect of program exploration on maintenance
tasks,” in Proceedings of the 2016 IEEE International Conference on
Software Quality, Reliability and Security (ORS), August 2016.

G. Pothier and E. Tanter, “Back to the Future: Omniscient
Debugging,” IEEE Software, vol. 26, no. 6, pp. 78-85, nov 2009.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.
htm?arnumber=5287015

S. Demeyer, S. Ducasse, and M. Lanza, “A hybrid reverse engineering
approach combining metrics and program visualisation,” Reverse
Engineering, 1999. ..., no. Section 3, 1999. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=806958

M. Fowler, “Datensparsamkeit,” 2016. [Online]. Available:
//martinfowler.com/bliki/Datensparsamkeit.html

M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, 2000,
pp. 1-11.

D. Cubranic and G. Murphy, “Hipikat: recommending pertinent soft-
ware development artifacts,” 25th International Conference on Software
Engivneering, 2003. Proceedings., no. Section 2, pp. 408—418, 2003.

D. Cubrani¢, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Transactions on

Software Engineering, vol. 31, no. 6, pp. 446-465, 2005.

http:

[24]

(25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala,
“DebugAdvisor: A Recommender System for Debugging,” in Proceed-
ings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering on European software engineering conference and

foundations of software engineering symposium - E. New York, New

York, USA: ACM Press, 2009, p. 373.

W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Transactions on
Software Engineering and Methodology, vol. 23, no. 4, pp. 31:1-31:37,
Sep. 2014. [Online]. Available: http://doi.acm.org/10.1145/2622669

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transaction on Software
Engineering, vol. 32, no. 12, pp. 971-987, dec 2006.

J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434-451, July/August 2008.
S. Wang and D. Lo, “Version history, similar report, and structure:
putting them together for improved bug localization,” in Proceedings of
the 22nd International Conference on Program Comprehension - ICPC
2014. New York, New York, USA: ACM Press, 2014, pp. 53-63.

J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,” in 2012 34th International Conference on Software Engineering
(ICSE). 1IEEE, jun 2012, pp. 14-24.

X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2014. New York, New York, USA: ACM Press,
2014, pp. 689-699.

M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, 2000,
pp. 1-11.

H. Sanchez, R. Robbes, and V. M. Gonzalez, “An empirical study of
work fragmentation in software evolution tasks,” in Software Analysis,
Evolution and Reengineering (SANER), 2015 IEEE 22nd International
Conference on, 2015, pp. 251-260.

A. Ying and M. Robillard, “The influence of the task on programmer
behaviour,” in Proceedings International Conference on Program Com-
prehension, june 2011, pp. 31-40.

F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study of
the effect of file editing patterns on software quality,” in Proceedings
Working Conference on Reverse Engineering, 2012, pp. 456—465.

Z. Soh, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, and B. Adams, “On
the effect of program exploration on maintenance tasks,” in Reverse
Engineering (WCRE), 2013 20th Working Conference on, Oct 2013, pp.
391-400.

T. M. Ahmed, W. Shang, and A. E. Hassan, “An empirical study of
the copy and paste behavior during development,” in Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, May
2015, pp. 99-110.

A. Chi, O. Nierstrasz, and T. Girba, “Towards a moldable debugger,”
in Proceedings of the 7th Workshop on Dynamic Languages and
Applications - DYLA 13, 2013, pp. 1-6. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2489798.2489801

P. Romero, B. du Boulay, R. Cox, R. Lutz, and S. Bryant, “Debugging
strategies and tactics in a multi-representation software environment,”
International Journal of Human-Computer Studies, vol. 65, no. 12, pp.
992-1009, dec 2007.

I. Katz and J. Anderson, “Debugging: An Analysis of Bug-Location
Strategies,” Human-Computer Interaction, vol. 3, no. 4, pp. 351-399,
dec 1987.

P. Gestwicki and B. Jayaraman, “Methodology and architecture of
JIVE,” in SoftVis 05 Proceedings of the 2005 ACM symposium on
Software visualization, vol. 1, no. 212, 2005, p. 95.

J. K. Czyz and B. Jayaraman, “Declarative and visual debugging in
Eclipse,” in Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange - eclipse '07, 2007, pp. 31-35. [Online]. Available:
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=1328279.1328286

A. Ko, “Debugging by asking questions about program output,” Pro-
ceeding of the 28th international conference on Software engineering -
ICSE 06, p. 989, 2006.

[43]

[44]

[45]

[46]

(471

J. RoBler, “How helpful are automated debugging tools?” in 2012 Ist
International Workshop on User Evaluation for Software Engineering
Researchers, USER 2012 - Proceedings, no. Section V, 2012, pp. 13—
16.

C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis ISSTA 11, p. 199, 2011.

A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
Debugging : Simultaneous Identification of Multiple Bugs,” Challenges,
vol. 148, pp. 1105-1112, 2006.

A. Ko and B. A. Myers, “Finding Causes of Program Output with the
Java Whyline,” in CHI 2009 - Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, Ed., New York, New
York, USA, 2009, pp. 1569-1578.

B. Hofer and F. Wotawa, “Combining slicing and constraint solving
for better debugging: the CONBAS approach,” Advances in Software
Engineering, vol. 2012, p. 13, 2012.

[48]

[49]

[50]

[51]

J. Ressia, A. Bergel, and O. Nierstrasz, “Object-centric debugging,” in
Proceedings - International Conference on Software Engineering, 2012,
pp. 485-495.

H. C. Estler, M. Nordio, C. a. Furia, and B. Meyer, “Collaborative
debugging,” Proceedings - IEEE 8th International Conference on Global
Software Engineering, ICGSE 2013, pp. 110-119, 2013.

F. Chen and S. Kim, “Crowd debugging,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2015. New York, New York,
USA: ACM Press, 2015, pp. 320-332. [Online]. Avail-
able: http://hunkim.cse.ust.hk/papers/chen-crowd-debugging-fse2015.
pdthttp://dl.acm.org/citation.cfm?doid=2786805.2786819

G. Salvaneschi and M. Mezini, “Debugging for reactive programming,”
in Proceedings of the 38th International Conference on Software
Engineering - ICSE ’16. New York, New York, USA: ACM Press,
2016, pp. 796-807. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2884781.2884815

