
On the Analysis of Co-occurrence of Anti-patterns
and Clones

Fehmi Jaafar1, Angela Lozano2, Yann-Gaël Guéhéneuc3, and Kim Mens4
1 Concordia University of Edmonton, Alberta. Canada.

2 The Software Languages Lab. Vrije Universiteit Brussel, Belgium
3 Ptidej Team, École Polytechnique de Montréal, QC, Canada

4 The RELEASeD group, Université catholique de Louvain, Belgium
E-Mails: fehmi.jaafar@concordia.ab.ca, alozanor@vub.ac.be, yann-gael.gueheneuc@polymtl.ca, Kim.Mens@uclouvain.be

Abstract—
In software engineering, a smell is a part of a software system’s

source code with a poor quality and that may indicate a deeper
problem. Although many kinds of smells have been studied to
analyze their causes, their behavior, and their impact on software
quality, those smells typically are studied independently from
each other. However, if two smells coincide inside a class, this
could increases their negative effect (e.g., spaghetti code that is
being cloned across the system). In this paper we report results
from an empirical study conducted to examine the relationship
between two specific kind of smells: code clones and anti-patterns.
We conducted our study on three open-source software systems:
Azureus, Eclipse, and JHotDraw. Results show that between 32%
and 63% of classes in the analysed systems present co-occurrence
of smells, and that such classes could be five times more risky
in term of fault-proneness.

Index Terms—Code smells, Anti-patterns; Clones; Faults
proneness; Software Quality;

I. INTRODUCTION

To help software developers and analysts to maintain a sys-
tem and evaluate its quality, Beck and Fowler [?] introduced
the concept of smells in software system as ”bad structures in
the code that suggest the possibility of refactoring”. Indeed,
smells are indicators of a poor quality of a source code
with respect to reusability, maintainability, efficiency, and
portability [?]. Beck and Fowler presented a list of 22 smells
discovered in object-oriented source code [?]. One of these
smells indicated code clones, others smells are considered as
indicators of the presence of design smells, i.e., anti-patterns.

On the one hand, clones are often considered as a mark of
poor or lazy programming style because they deteriorate the
changeability of a source code: if a clone needs to be main-
tained, we shall propagate the maintenance changes to the rest
of duplicated instances [?], [?]. Other negative consequences
attributed to clones are unintentionally incomplete changes
and bugs [?]. However, in the software engineering literature,
claims and counterclaims about whether clones are harmful
or not remains an open and interesting research question.
For example, Kasper and Godfrey [?] have discussed the

advantages and disadvantages associated with using specific
patterns of clones. In addition, they have showed how code
clones are usually used as a principled engineering tool.

On the other hand, another important subset of smells spec-
ified anti-patterns, design defects that describe bad solutions
to recurring design problems [?]. In contrast to code-level
smells like clones, anti-patterns are coarse-grained and can
be represented at the design level. Previous work [?], [?]
have reported that the existence of anti-patterns in a software
source code co-occurred with a high probability of change and
fault-proneness, and thus, the maintenance activities of a the
software system became more complicated and difficult.

As it was not clear from previous work [?], [?] if the
interference of these smells could increase or decrease the
risk of bugs, we report in this paper an empirical study to
analyze the resulting impact of the interference of these code
smells on fault-proneness. In addition, we provide empirical
evidences of co-occurrences of two different smells indicating
two different problems: duplicating code and poor design.

Indeed, using smell occurrences extracted from three open-
source systems, we answer the following research questions:

• RQ1: What is the percentage of classes participating in
anti-patterns and clones? This question provides quan-
titative data on the number of cases with which anti-
patterns and clones occur and co-occur in the releases
of the studied systems. We find that, between 32% and
63% of classes in the five analysed systems present co-
occurrence of smells.

• RQ2: What is the impact on fault-proneness for a class
that participates in anti-patterns and clones? Our motiva-
tion is to investigate if the co-occurrence of anti-patterns
and clones is related to higher or lower fault-proneness.
We find that classes presenting co-occurrence of anti-
patterns and clones are at least 3 times more risky to
occur faults than the rest of classes.

The rest of the paper will contain the following sections:
Section ?? relates our study with previous work. Section ??
describes the steps of our data analysis process to examine the
co-occurrence of anti-patterns and clones in software systems.
Section ?? reports the design of our empirical study. Section



?? presents the answers of the research questions based on
the study results, while Section ?? reports several observations
from our results and discuss the threats to validity of our study.
Finally, Section ?? concludes our paper and outlines future
work.

II. RELATED WORK

In this section we discussed some previous work related
to code smells specification and analysis. In particular, we
focus on papers that presented anti-patterns specification, code
clones detection, and fault proneness analysis.

A. Smells Co-occurrence

There has been some efforts to verify if a class can present
the symptoms of different kind of smells like clones and anti-
patterns. For example, in a previous work [?], we showed
evidence found of five possible relations (Plain Support, Mu-
tual Support, Rejection, Common Refactoring, and Inclusion)
among four bad smells (God Class, Long Method, Feature
Envy, and Type Checking). Our work in this paper is different
as we focus on the co-occurrence between two kind of smells:
clones and anti-patterns.

Palomba et al. [?] conducted an empirical investigation
involving 13 code smell types and 395 releases of 30 software
systems. The results of the study highlighted six pairs of
code smells that frequently co-occur together. For example,
the authors reported that they found an unexpected relationship
between smells such as between Message Chains and Refused
Bequest.

Garg et al. [?] studied the co-occurrences of 7 code smell
types in Chromium and Mozilla. The authors reported the
percentage of smells co-occurring over the change history of
such projects, and showed that the co-occurrence of some bad
smells are more commun such as the co-existance of Data
Clumps and Code Duplication. In the same context, Fontana
et al. [?] reported an emprical analysis of code smells co-
occurrence in a set of 111 open source systems. The authors
found that Classes in the analysed software systems attract
many smells. In particular, God Classes can be related to many
other smells such as Data Class and Brain Method.

In another previous work [?], we detected evidences of smell
mutations. Indeed, we modeled the evolution of code smells
using Markov chains to show the phenomena of anti-patterns
mutation. Then, we evaluated the fault-proneness of classes
that participated in mutated and non-mutated anti-patterns. In
fact, we reported that the principal cause of this phenomena
is the structural changes performed by developers during the
maintenance phase, and that specific mutations (such as from
LargeClass to MessageChain) are very unsafe regarding the
fault-proneness of the participated classes.

Our study is complementary to these previous works since
it considers a quantitative and qualitative analysis of the co-
occurrence of clones and anti-patterns and to investigate the
relation of such co-occurrences with the quality of software
systems.

B. Smells impact on Code Quality

One of the first published study that pointed out the possible
impact of smells on cede quality was published by Chidamber
and Kemerer [?]. Indeed, the authors proposed a set of
object-oriented design metrics that has been used by various
subsequent studies [?], [?]. The main lesson learned from the
results of these studies is the following: the more complex the
code is, the more risk of faults is notified.

Khomh et al. [?] analyzed the participation of classes in
anti-patterns in object-oriented software systems with their
stability (the state of remaining unchanged) and correctness
(the state of being free from fault). Indeed, the authors showed
evidences that such classes are more change and fault-prone
than the rest of classes in the analyzed software systems.

In our previous work [?], we reported the results of an em-
pirical study that evaluate the impact of dependencies between
anti-patterns and the rest of classes on fault-proneness. That
study presented evidences that classes with static relationships
among anti-patterns are more fault-prone. More ever, we
noticed that classes co-changed with anti-patterns during the
maintenance of software systems had a higher risk of faults.

Several papers explored the relation between clones and
faults. In particular, Aversano et al. found that several late
propagations were linked to fault-fixes [?]. This specific
pattern of clone evolution may be the result of inconsistent
changes of a clone pair [?]. Juergens et al. showed that from
3 to 23% of the unintentionally inconsistent changes on clones
were related to faults [?]. Indeed, if a code fragment contains
a fault and that fragment is cloned in different places, the same
fault appear in all the duplicated instances. Thus, code cloning
can increase the probability of fault propagation [?] [?].

However, other previous work did not exclude that, in some
contexts, clones can be a practical way to design and im-
plement software features. For example, Kapser and Godfrey
[?] introduced eight cloning patterns that they noticed their
presence in software systems. These patterns present good
motivations for cloning, like Templating, which occurs when
the design of the new software feature is already known and
a previous solution could be used to implement it [?].

Indeed, previous studies [?], [?] investigated independently
the impact of clones and of anti-patterns on software quality.
The purpose of this paper is to analyze the impact of co-
occurrence of clones and anti-patterns on fault-proneness and
to investigate their impacts on software quality. Concretely,
we study in this paper whether the existence of anti-pattern
and clones in the same classes makes the code more difficult
to maintain.

III. METHODOLOGY

In this section we present the components of our study. As
shown in Figure ??, we detect a set of anti-patterns in the
source code of the analysed software systems using DECOR
[?]. Then, we use CCFinder [?] to detect duplicated code
describing clones in the software systems. Finally, we evaluate
the fault-proneness of different set of classes using a heuristics



presented in previous work by Sliwersky et al.. [?] Thus, we
can address the following research questions:

• RQ1: What is the percentage of classes participating in
anti-patterns and clones?

• RQ2: What is the impact on fault-proneness for a class
that participates in anti-patterns and clones?

A. Detecting Anti-patterns

To detect the set of classes involved in anti-patterns automat-
ically, we use DECOR tool based on PADL [?] (the Pattern and
Abstract-level Description Language meta-model) and POM
framework[?] (Primitives, Operators, Metrics) developed and
used in several previous empirical studies to analyse anti-
pattern occurrences and impacts [?][?]. PADL is a meta-model
to describe the elements of object-oriented software systems
and the relationships between them [?]. POM is a PADL-
based framework used to spot anti-patterns by implementing
and analysing more than 60 metrics.

We focus on the 15 anti-patterns documented by Brown
et al. [?]. These anti-patterns show recurring problem in the
implementation and the maintenance of software code. These
anti-patterns were evaluated in a previous work [?] and hence
we could validate our results using this previous data.

In this study, we include the following list of anti-patterns:

• AntiSingleton: a class participates in this anti-pattern if
it involves a mutable variables that may be considered
as global variables. This anti-pattern makes the code
inflexible and very difficult to test code as it introduces a
dependency through a side-channel that is not explicitly
given as a parameter to constructors or other functions
that use it.

• BaseClassShouldBeAbstract: a class that has many sub-
classes without being abstract. This anti-pattern makes
the design more complicated because it does not promote
the creation of a hierarchical relationship via inheritance.
Thus, it increase the maintenance cost of software sys-
tems.

• Blob: this anti-pattern is detected in a source code of
a software system where one class monopolizes the
processing, and a set of related classes save the data.
Thus, features are implemented in just one class. If class
is involved in a Blob, it could include a lot of unnecessary
code. This makes the maintenance activities performed by
developers harder as they cannot discriminate the useful
code from the not useful code.

• ClassDataShouldBePrivate: a class participates in this
anti-pattern if its fields are public and by consequence
violates the principle of encapsulation in object-oriented
paradigm. This anti-patterns is the cause of confusion
and lack of understanding of the source code during the
maintenance phase. This increases the maintenance cost
and the chance of introducing errors.

• ComplexClass: if a class includes at least one complex
method, it is involved in this anti-pattern. We evaluate the
complexity of a method using the Cyclomatic complexity.
The Cyclomatic complexity is a software metric of the
number of linearly independent paths inside the method.
This anti-pattern make the testing activities harder as it
implies a high number of test cases to achieve adequately
the test coverage of the complex method.

• LargeClass: if a class includes at least one large method, it
is involved in a LargeClass anti-pattern. The large method
is evaluated using the number of line of code (the LOC
metric). Indeed, this metric gives developers an idea about
the size of a method and thus they can predict the amount
of effort during the maintenance phase to understand and
update the code. This anti-pattern increase the effort to
develop, maintain and test a software system as previous
studies have showed that effort is highly correlated with
LOC. Indeed, a class with larger LOC values take more
time to develop and to maintain.

• LazyClass: if a class contains a limited number of at-
tributes and methods, then it is considered as a LazyClass.
This anti-pattern increase the Cyclomatic complexity of
the software system as it only delegates its requests to
other more complicated classes.

• LongMethod: this anti-pattern specifies the case of a
class when it contains just one large method regarding
the number of line of code. This anti-pattern make the
maintenance and the testing phase of software system
more difficult as a set of shorter methods will help the
developers in understanding and updating the class.

• LongParameterList: this anti-pattern specifies the case of
a class when it includes at least one method with a
high number of parameters regarding the average number
of parameters per methods in the rest of classes in the
software system. This makes the maintenance of the
affected class more complicated, as more parameters a
method has, the more complex it is.

• ManyFieldAttributesButNotComplex: if a class contains
many attributes but a very limited number of line of code,
it is considered as ManyFieldAttributesButNotComplex
anti-pattern as it do not contain functionalities to manage
independently its data.

• MessageChain: this anti-pattern specifies the case when
class needs a long chain of method invocations to im-
plement one functionality. This anti-pattern makes the
software system more memory and resource consuming
as it implies watching out for high number of sequences
of method calls to use a data or implement a simple
feature.

• RefusedParentRequest: this anti-pattern specifies a sce-
nario of polymorphism breaking when a class redefines
an inherited method using empty bodies. This anti-pattern
reduce code clarity and organization as the related super-
class and subclass are completely different.

• SpaghettiCode: if a class contains or implies a procedural
structure (instead of an object-oriented structure), it is



Fig. 1. Overview of our study to analyze the co-occurrence of clones and anti-patterns

involved in a SpaghettiCode anti-pattern. The existence
of such class is the cause of the existence of limited
number of classes with large methods and that icludes
a single, multistage process flow. SpaghettiCode makes
the software system very difficult to update or to reuse,
and thus, increases the maintenance cost.

• SpeculativeGenerality: if a class is defined as an abstract
class and contains a very few children, some of its
methods may not be used, and thus, it is considered as an
anti-pattern. This anti-pattern adds complexity, extra code
to maintain and test, and make the code less readable.

• SwissArmyKnife: this anti-pattern specifies the scenario
of a class that contains some methods divided into dis-
junct sets of many methods. Indeed, this scenario includes
the use of a high number of unrelated functionalities. A
SwissArmyKnife is problematic as it provides a compli-
cated interface difficult to understand and to maintain.

B. Clone identification

We use CCFinder [?] to detect the clones in the source code
of software systems. CCFinder is a token based clone detection
tool which used suffix tree matching algorithm to detect
clones. This tool extracts tokens from the source code using
lexical analysis. CCFinder has been widely used for clone
detection in numerous previous work [?] [?]. In Addition,
CCFinder presented the best trade-off between precision and
recall in accordance with other tools and techniques [?].

We choose CCFinder as it has a better performance, scala-
bility, and recall at the expense of a lower precision [?], [?].
Although this means that more false positives are identified,
CCFinder does not require the code to be compilable and does
not depend on the syntax of the language [?].

The study reported in this paper is done by analusing the
Type 1 clones specified in the literature [?] [?]. In fact, if two
or more entities in a software system are exactly the same,
these entities are considered as exact clones or Type 1 clones.
Previous work [?], [?], [?], and [?], pointed out that Type 1



clones cloud increase maintenance effort and bug introduction
risks in case of change inconsistency among clones.

C. Analyzing the Fault Proneness

We evaluate the fault-proneness by analysing the change
report and fault report included in software repertories. We
mine the project’s version-control systems (CVS1 and SVN2)
to identify changes committed for each class to fix faults.
Indeed, we analyse the commit message co-occured with a
maintenance activities to detect bug-fixing commits. For this,
we use a Perl script used successfully in previous work [?],
implements the heuristics by Sliwersky et al. [?]. Those heuris-
tic search for commit message that contain some words such
as ”bug” and ”fault” and performed during the maintenance
phase of the studied release of a system (in the period between
the publication date of the studied release and the publication
date of the next release).

The bug identifier found in the commit log message is then
compared with the project’s list of known bugs to determine
the list of files (and classes) that were changed to fix a bug.
Finally, our script check the locations of changes performed
on this list of files with CCFinder and DECOR results to keep
files in which a code smell and a fault occurred in the same
location of the file.

We perform the fault proneness analysis for the period
during the maintenance phase of each studied release, starting
from the publication date of the studied release and the
publication date of the next release.

IV. STUDY DESIGN

In this section we explain the approach used in our study
and the analyzed software systems.

The design of our study follows the Goal-Question-Metric
(GQM) approach [?]: the goal of our study is to investigate
the co-occurrence of anti-patterns and clones. The quality
focus is the identification of the risk specific smells in term
of fault-proneness. The perspective is that of researchers and
practitioners who should be aware of the hidden co-occurrence
of clones and anti-patterns to make informed maintenance
activities. The context of this study is three java software
systems, Azureus, Eclipse, and JHotDraw.

A. Analyzed Systems

We use several criteria to select five datasets. We selected
open-source systems because the availability of data reposito-
ries and that other researchers can replicate our study. Second,
we choose different sizes of systems from different domains.
Third, we selected datasets with change log history.

Azureus (renamed Vuze)3 is is a BitTorrent client written
in Java to transfer files via the BitTorrent protocol4. Azureus
(version 2.5.0.0) dataset contains 2,296 and 4,004 Java files
and classes respectively.

1http://cvs.nongnu.org/
2http://subversion.apache.org/
3http://www.vuze.com/
4http://www.bittorrent.org/

Eclipse5 is an integrated development environment written
mostly in Java and used to develop applications. Eclipse
(version 2.0) dataset contains 6,751 and 10,156 Java files and
classes respectively

JHotDraw6 is a two-dimensional graphics framework for
structured drawing editors that is written in Java. This software
system is used to create several editors and it provides func-
tionalities for saving, loading, and drawing. JHotDraw (version
5.4b1) dataset contains 727 and 826 Java files and classes
respectively.

V. STUDY RESULTS

Table ?? summarizes the data obtained by analyzing
Azureus, Eclipse, and JHotDraw. We validated a randomly
selected set of anti-pattern occurrences and clones manually.
In the following we will answer our research questions and
discuss some examples from the results of the empirical study.

A. What is the percentage of classes participating in anti-
patterns and clones?

1) Motivation: A better evaluation of the impact of smells
is essentiel to better focus on maintenance activities. Since
anti-patterns can be considered as design-level smells while
code clones are code-level smells, being aware of the co-
occurrence of these smells can help software developers to
identify the most important files for maintenance activities
such as refactoring and tracking. Furthermore, not all smells
are equally risky [?] as different smells have different “bad”
properties and thus have different probabilities to lead faults
in a software system.

In this research question, we are detection the cases of co-
occurrences of anti-patterns and clones. Our purpose is to help
developers to identify the entities that share numerous kind
of smells in order to prioritize reviews and testings activities
towards the most most risky parts of code. We report here the
first study that report the distribution of cloned files among
anti-pattern. We will discuss in the next section some lessons
learned from this distribution.

2) Approach: First, we detect the set of anti-pattern occur-
rences in the analyzed systems using DECOR. Second, we
identify clones in the source code using CCFinder. Then, we
measure the frequency with which anti-patterns and clones
occur and co-occur in the studied systems. Specifically, we
analyse for each system the overall number of classes, the
number of classes participating in anti-patterns the number of
classes having clones, and the number of classes participating
both in anti-patterns and clones. Then, we report the percent-
ages of the different kind of anti-patterns that share clones.

5http://www.eclipse.org/
6http://www.jhotdraw.org/



Fig. 2. Distribution of the percentage of co-occurrence of anti-pattern and clones in Azureus

Fig. 3. Distribution of the percentage of co-occurrence of anti-pattern and clones in JHotDraw

3) Results: Table ??, Figure ??, Figure ??, and Figure
??, summarize the RQ1 results. We observed in the three
analyzed systems that between 52% and 99% of anti-pattern
classes contain clones, while between 59% and 78% of clones
are participating in anti-pattern. For example, in Azureus, we
detect 4,004 different classes, 1306 of them are participating
in one or more of the 15 anti-patterns considered in this study.
For clone analysis, we found that 2194 classes in Azureus are
involved in clones type 1, and 1304 of them are ivolved in anti-
patterns and clones. Indeed, having clones and anti-patterns is
a frequent observation in the analyzed systems.

Figures ??, Figure ??, Figure ??, and Table ?? report
for each anti-pattern and studied system the percentage of

the anti-pattern’s occurrences that share clones. For example,
more than 12% of anti-patterns had clones in Azureus are
RefusedParentBequest. We notice that the anti-patterns that are
large by default, i.e., Blob, LongMethod, LongParameterList,
and LargeClass do not have a much larger percentage of
internal clones. Contrary to intuition, anti-patterns resulting
in large classes are not the most affected by clones. Future
work will include the examination of a potential statistical
relationship between code clone and anti-pattern’s sizes.



Fig. 4. Distribution of the percentage of co-occurrence of anti-pattern and clones in Eclipse

TABLE I
DESCRIPTIVE STATISTICS OF THE OBJECT SYSTEMS (CAC: PRESENTING CO-OCCURRENCE OF ANTI-PATTERN AND CLONE)

System Release # files # line of codes # classes # anti-pattern classes # clone classes # classes CAC
Azureus 2.5.0.0 2,296 432,799 4,004 1306 2194 1304
Eclipse 2.0 6,751 1,355,899 10,156 6050 6449 4370
JHotDraw 5.4b1 727 70,398 826 691 466 364

�




�

	
Having clones and anti-patterns is a very frequent

observation: at least, more than 52% of anti-pattern
classes have clones, while 59% to 78% of classes with
clones are participating in anti-patterns.

B. What is the impact on fault-proneness for a class that
participates in anti-patterns and clones?

1) Motivation: To the best of our knowledge, we present in
this paper the first study to investigate whether co-occurrence
of anti-patterns and clones correlates with fault proneness. Our
purpose is to evaluate the fault proneness of a class if it belongs
to an anti-pattern, it contains a cloned code, or it presents co-
occurrence of anti-patterns and cloned code, and to compare
these fault-proneness of the rest of files in the three analysed
software systems.

We report in the following a quantitative analysis to inves-
tigate whether the co-occurrence of bad code smells elevates
the chance that the corresponding segment of code is faulty.
While a lot of attention has been paid to the study of code
clones [?][?], and also, independently, anti-patterns [?], this
study goes a step further by investigating the likelihood
and implications of co-occurrence of these smells for fault-
proneness. Indeed, while an individual codes smell might

have negative impact on the quality and the correctness of
a software system, the co-occurrence of two different kinds of
smell, such as anti-patterns on the one hand, and code cloning
on the other hand, could be a sign that there is a greater risk
of problems.

2) Approach: For each system, we identify whether a class
undergoes faults during the developing phase of the studied
systems as described in Section ??.

Then, we use Chi-squared’s test [?] to check whether
the difference in fault-proneness between classes sharing the
considered anti-patterns and clones and other classes is sig-
nificant. Chi-squared’s test is a nonparametric statistical test
to evaluate the significance of the association (contingency)
between two set of data. Indeed, an inferential test such the
Chi-squared’s test is used in order to understand whether the
overall population medians are significantly different, based
on a sample median. In this case, the considered population is
the set of classes of the considered systems. The considered
sample used in the Chi-squared’s test is the set of classes
of the specific analyzed version. We test the following null
hypothesis:

• HRQ20 : The proportions of faults involving classes having
a co-occurrence of anti-pattern and code clones, and
the rest of classes are the same. If we reject the null
hypothesis HRQ20 , the proportion of faults carried by



TABLE II
FAULT PRONENESS AND CHI-SQUARED’S TEST RESULTS IN AZUREUS,

JHOTDRAW, ECLIPSE, LUCENE AND XALANJ (CAC: PRESENTING
CO-OCCURRENCE OF ANTI-PATTERN AND CLONE)

Faulty Clean
Number of classes CAC in Azureus 1042 262
Number of the rest of classes in Azureus 356 636
Number of anti-patterns in Azureus 604 702
Number of clones classes in Azureus 512 1682
Chi-squared’s test for Azureus 2.2e-16
Odds-ratio for Azureus 7.1052
Number of classes CAC in JHotDraw 282 82
Number of the rest of classes in JHotDraw 120 143
Number of anti-patterns in JHotDraw 185 506
Number of clones in JHotDraw 166 300
Chi-squared’s test for JHotDraw 2.2e-16
Odds-ratio for JHotDraw 4.0982
Number of classes CAC in Eclipse 1876 2494
Number of the rest of classes in Eclipse 650 6136
Number of anti-patterns in Eclipse 929 5121
Number of clones in Eclipse 726 5723
Chi-squared’s test for Eclipse 2.2e-16
Odds-ratio for Eclipse 7.1008

classes having a co-occurrence of anti-pattern and code
clones is not the same as that of other classes.

Then, we calculate the odds ratio [?] to examine the likeli-
hood for a fault to occur for classes having a co-occurrence of
anti-pattern and code clones. The odds ratio is defined as the
ratio of the odds p that classes having anti-pattern and code
clones experience a fault in the future (experimental group), to
the odds q of the same event occurring in the other sample, i.e.,
the odds that other classes classes experience faults (control
group): OR = p/(1−p)

q/(1−q) .
The analysis done to answer this research question was

accomplished with the R statistical tool, and we chose a
confidence interval of 95 percent.

3) Results: Table ?? presents fault proneness analysis for
Azureus, JHotDraw, and Eclipse. Indeed, the result of Chi-
squared’s test and odds ratios when testing HRQ20 are signif-
icant for the three analyzed systems. The p-value is less than
0.05 and the odds ratio for fault-prone CAC classes (classes
presenting co-occurrence of anti-pattern and clone) is higher
than for fault-prone other classes. In addition, we observe that
this risk is higher than the cases when classes is involved just
an anti-pattern or in a cloned code.

For example, in Eclipse, we observe that the risk for a class
to be fault-prone if it has a co-occurrence of clone and anti-
pattern is at least 7 times higher than a class that hasn’t neither
a co-occurrence of clone and anti-pattern. Moreover, this risk
is higher than a class that has just an occurrence of an anti-
pattern and higher than a class that has just an occurrence of a
clone. Indeed, we can answer to RQ2 as follows: we showed
that classes having clones and anti-patterns are significantly
more fault-prone than other classes.

Then, we examine the fault-proneness of all kind of classes
in the analyzed systems. For example, in Azureus, we observe

that 46% of anti-pattern classes are faulty, 23% of clone
classes are faulty, 80% of classes having anti-patterns and
clones are faulty, while just 36% of the rest of classes are
faulty. In JHotDraw and Eclipse, we observe similar facts:
classes having anti-patterns or clones are more faulty than
other classes, and the risk of fault proneness increases if the
class has clones and participates in anti-patterns in the same
time. In the next section, we will discuss in more detail the
relation of these results with the reliability of software systems.

�
�

�
�

Classes having clones and anti-patterns are signifi-
cantly more fault-prone than other classes.

VI. DISCUSSION

In this section we are discussing some observations from
our empirical study and its threats to validity.

A. Differences in Smells Distribution

We notice that different software systems can have different
proportions of smell co-occurrences. This finding can be the
consequence of the fact that these systems were created in dif-
ferent contexts to resolve different problems and to implement
divergent requirements. Results show that the proportion of
classes participating to anti-patterns, having clones, and both,
has not relationship with the systems sizes. For example, in
Eclipse, the largest considered software system in this study,
we detected the smallest proportion of smell co-occurrence
(about 23% of the totality of classes as shown is Table
??). Several of the studied anti-patterns are not detected
This was the case for ManyFieldAttributesButNotComplex
anti-pattern. Clones are detected in all considered systems
with different proportion. Indeed, clones represent more than
50% of Azureus, Eclipse, and JHotDraw. This confirms the
observation of Baker [?] and Ducasse et al. [?] which observed
that clones exist at rates of over 50% of the effective lines of
code (ELOC) in COBOL and C systems.

B. Smell Co-occurrence and the Reliability of Software Sys-
tems

Software Reliability is an important attribute of software
quality. It is defined as the probability of failure-free operation
for a specified period of time in a specified environment [?].
A failure can occur if the observable behavior of a software
system is different from its expected behavior, while a fault
is a static software characteristic which causes a failure to
occur. Thus, in order to evaluate the reliability of systems,
many previous work used the number of faults per line as a
reliability measure [?], [?]. We showed in this paper that, in the
three considered software systems,classes with co-occurrence
of cloned code and anti-pattern are more fault-proneness, and
thus, less reliable, than other classes.

By revising Figure ??, Figure ??, and Figure ??, and
analysing the set of faulty classes, we noticed the high



proportion of co-occurrence of cloned code with one specific
anti-patterns: RefusedParentRequest. Indeed, in the case of the
RefusedParentRequest anti-pattern, developers were motivated
to create inheritance between classes only by the desire to
reuse the code in a superclass. But the superclass and subclass
are completely different. That incompatibility between the
cloned code of the superclass using for reuse and the semantic
of the subclass increase the fault-proneness of the two classes
and thus decrease their reliability.

C. Smell Co-occurrence and the Quality of Software Systems

The most involved anti-patterns in cloned code include the
following anti-patterns:

• RefusedParentRequest.
• Blob.
• ComplexClass.

Two common points between these anti-patterns: first, they
are the result of a misunderstanding scenario, as the example
of duplicating code when developers do not fully understand
the problem (incompatible inheritance for the RefusedPar-
entRequest anti-pattern, unchecked unused or dead code for
Blob and ComplexClass anti-pattern). Second, they describe
the inconsideration of the major design principles of Object-
Oriented Programming, such as the high cohesion and low
coupling. For example, the RefusedParentRequest anti-pattern
occurrences show a low cohesion as they implement a great
variety of inherited actions and are not focused on what
they should do. As another example, the Blob occurrences
introduce a high coupling as Blob contains the majority of the
implemented features, and the other related classes contain
only the data, which would make the code difficult to make
changes as well as to maintain it.

In comparison with Kapser and Godfrey study [?], our study
examine the co-occurrence of cloned code with bad smells
detected in three software systems which may increase the the
maintainability cost of the software system, and thus, reduce
their qualities. Our previous studies analyzed independently
the impact of anti-patterns [?] and clones [?] on change
propagation on fault-proneness. We thus reported that the
detection and the analysis of anti-patterns and clones allow us
to detect the critical elements of software systems since they
may represent the set of more risky files in terms of fault-
proneness. Other previous work showed that clones require
consistent changes [?] [?]. A consistent change is a change
performed at the same time to update cloned code with the
same instructions. We also observed in [?] the existence of
change dependencies between anti-patterns and other artefacts
in software systems. A misunderstanding of such dependencies
may increase the risk of faults. Thus, by spotting the sets of
co-occurrences of anti-pattern and clones, we detect the more
risky part of code in term of consistent change.

D. Threats to Validity

To discuss the threats to the validity of our empirical study,
we follow the guidelines provided in [?].

Construct validity threats concern the relation between the-
ory and observation. Indeed, the detection tools used to identfy
clones and anti-patterns involve a set of subjective specifica-
tion of smells. For this reason, the precision of DECOR and
CCfinder is a concern that we agree to accept. In case of
other smell specifications that are differ with the specification
used by CCFinder and DECOR, some clone and anti-pattern
occurrences may be missed during the detection phase. The
same problem could be the result of choosing the default
parameters of CCFinder [?]. We try to address the confounding
configuration choice problem for clone detection by choosing
a configuration that has been widely used for clone detection
in previous work [?] [?]. Although the set of data reported
in this study is large enough to claim our conclusions, more
analysis using other detection tools could be considered in
future work. Internal Validity Internal validity is the validity
of causal inferences in studies based on experiments. In this
paper, we are not claiming causation but we are reporting a
raise of the number of detected fault in the analysed software
systems that co-occurs with the involvement of classes in
anti-pattern and clone. As fault occurrence is a temporary
property, and anti-pattern or clone symptoms could be a long-
term property, we analysed changes and faults that occurred
during the development phase of the studied systems and we
limit our analysis on the co-occurrence of faults and smell
co-occurrences without claiming causation.

Reliability validity threats concern the possibility of repli-
cating this study. We presented in this paper all the details
to replicate our study. In addition, Azureus, Eclipse, and
JHotDraw source code repositories are publicly published,
as well as the two used tools DECOR and CCfinder. The
specification and the implementation of the fault analysis
heuristic iare also publicly published.

Conclusion validity threats concern the relation between the
treatment and the outcome. In this empirical study we used the
Chi-squared’s test and we paid attention to follow and respect
the assumptions of this non-parametric test.

Threats to external validity concern the possibility to gen-
eralize our observations. We accept that we could have dif-
ferent results if we analysed different object-oriented software
systems. In our empirical study, we chose a set of systems
with different features, size, and areas in order to reduce
the threat to the external validity. However, we agree that
more studies, preferably on industrial datasets and others
programming languages, are required to generalize the results
reported in this paper.

VII. CONCLUSION

We reported an empirical study investigating the co-
occurrence(in Azureus, Eclipse, and JHotDraw) of anti-
patterns and clones and the relations of co-occurrences with
class fault proneness. Study results show that the percentages
of classes involved in co-occurrences of anti-patterns and
clones range between 63% and 32%. We found also that
the number of classes sharing clones, anti-patterns, and both
increases/decreases consistently with the systems sizes. In



all systems, we found that class fault proneness odds ratios
significantly increase for classes that had co-occurrence of
anti-patterns and clones in comparison with the rest of classes
in the studied systems.

Our research schedule includes several extensions of this
work. Among others: (1) the analysis of the co-evolution
and co-change of classes participating in anti-patterns and
sharing clones, and (2) the replication of the study with other

specifications of anti-patterns and cloned code.

ACKNOWLEDGMENT

We thank the Wallonie-Bruxelles International (WBI) in
Belgium and the international internships of the Fonds
québécois de la recherche sur la nature et les technologies
(FRQNT) for supporting this research work.


