
Studying the Relation between Anti-patterns in
Design Models and in Source Code

Bilal Karasneh
Leiden Institute of Advanced CS

LIACS
Leiden, the Netherlands

b.h.a.karasneh@liacs.leidenuniv.nl

Michel R.V. Chaudron
Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden
chaudron@chalmers.se

Foutse Khomh and Yann-Gaël Guéhéneuc
Génie Informatique et Génie Logiciel

École Polytechnique de Montréal
Montréal, Canada

{foutse.khomh, yann-gael.gueheneuc}@polymtl.ca

Abstract—There exists a large body of work on the specification
and detection of anti-patterns in the source code of software
systems. However, there are very few studies on the origins of the
occurrences of anti-patterns in the source code: do the very design
of the systems lead to the occurrences of anti-patterns or are
anti-patterns introduced during implementation? Knowing when
anti-patterns are introduced could help software designers and
developers improve the quality of the source code, for example
by eliminating fault-prone anti-patterns early during the design
of the systems, even before their implementation. Therefore, we
detect occurrences of anti-patterns in design models and in the
source code of some systems, trace these occurrences between
design and implementation, and study their relation and impact
on the source code. First, we analyze both the UML design models
and the source code of 10 open-source systems and show that anti-
patterns exist in design models. We observe that, on average, 37%
of the classes in the design models that belong to anti-patterns
also exist in the source code and also play roles in the same
anti-patterns. Second, we investigate two open-source systems to
assess the impact of the anti-patterns in their design models on
the source code in terms of changes and faults. We show that
classes that have anti-patterns in the design models have more
changes and faults in the source code. Our results suggest that
the design of the systems lead to anti-patterns and that the anti-
patterns impact negatively the change- and fault-proneness of
the classes in the source code. Thus, designers should be wary of
anti-patterns in their design models and could benefit from tools
that detect and trace these anti-patterns into the source code.
Index Terms—Anti-patterns, design models, source code.

I. INTRODUCTION

Many researchers and practitioners propose and use ap-
proaches to assess the quality of the source code of software
systems and, consequently, do not pay attention to the quality
of the design models of the systems. Yet, if the implementa-
tions of the systems follow their design models, the quality of
the design models is important and could impact the quality of
the source code. Therefore, we ask the following question: do
the very design of the systems lead to the occurrences of
anti-patterns or are anti-patterns introduced during imple-
mentation? Some studies [1]–[3], investigated the evolution
of anti-patterns in systems and observed that anti-patterns are
not necessarily introduced only in the source code during
development and evolution. They reported that many classes
are “born” as anti-patterns. Yet, there are few studies about
the impact that anti-patterns occurring in the design models of

systems have on their source code, because it is challenging
to collect convincing data.

In this paper, towards answering our questions above, we
conduct two studies. We conduct these studies using both
hand-made, designers’ models of software systems and the
implementation of these models as source code. To the best
of our knowledge, these are among the only studies using
designers’ models and the corresponding source code. There
are also the only studies in which design anti-patterns [4] are
detected in true design models and in models of the design of
the source code obtained through reverse-engineering.

First, we consider four anti-patterns, Complex, Large, Lazy,
and LongMethod classes, and study 10 open-source systems
for which design models and source code are available, by
detecting and tracing occurrences of anti-patterns in designs
and source code. We choose these anti-patterns because they
are reported to increase systems’ change-and fault-proneness
[5] and they are a source of technical debt that should be
managed by developers. We report on the possibility to detect
these anti-patterns in designs and on their prevalence both in
the design models and source code of the systems. We also
trace manually the classes in the models with those in the
source code to assess whether the same classes experience the
same anti-patterns. Results show that 37% of the classes in
the design models that belong to anti-patterns also exist in the
source code and play roles in the same anti-patterns.

Second, we focus on seven types of anti-patterns, Complex,
Large, Lazy, Blob, ClassDataShouldBePrivate, RefusedParent-
Bequest, and BaseClassShouldBeAbstract classes, and study
the effect that anti-patterns from the design models have on the
change- and fault-proneness of the classes in the source code.
For two open-source systems, for which we have different
versions of their design models and source code, we compute
changes and faults for four categories of classes: classes in
source code and–or designs belonging or not to anti-patterns.
Results show that there are significant differences in terms of
changes and faults between the different categories of classes.
Classes appearing in design models (i.e., classes that were
modelled during the conception) have more changes and faults
than classes that appear only in the source code (i.e., classes
that were added only later during the implementation of the
system). Classes that have anti-patterns in designs and that

exist in source code have more changes and faults than classes
in designs and source code without anti-patterns.

This result suggests that anti-patterns that appear early on
during the conception of the system (i.e., in design models)
impact negatively the source code. Designers should be wary
of these anti-patterns and would benefit from tools that can
track and control these anti-patterns as early as possible.
Preventing anti-patterns during the design phase could improve
the quality of the source code of a system and prevent the
system from experiencing problems related to anti-patterns
(i.e., more changes and faults [5]).

This paper makes the following contributions: (1) we
show that anti-patterns exist in design models and they can
be detected; (2) we show that the anti-patterns that occur in
design models percolate to the source code; (3) classes that are
modelled during the design phase tend to have more changes
and faults than others; and, (4) classes that have anti-patterns in
designs have more changes and faults in the code than others.

We organize the paper as follows: We present related work
in Section II. We provide background information in Section
III. We describe the first study and its results in Section IV.
We report on the second study in Section V. We discuss our
studies in Section VI. We conclude the paper and outline future
works in Section VII.

II. RELATED WORK

Since their inception in software engineering, design pat-
terns (i.e., reusable solutions to recurring design problems) [6]
and anti-patterns (i.e., poor solutions to design and implemen-
tation problems) [4] have been the subject of many research
works, which focused on their specification [7], detection [8],
and on the analyses of their impact and life-cycle [1]–[3].

There are many research works on the definition, specifica-
tion, detection, correction, and the life-cycles of code smells
and design anti-patterns. For the sake of space and because we
focus on code smells and design anti-patterns in this paper, we
describe here three works that (1) showed that code smells and
design anti-patterns do impact negatively class change- and
fault-proneness, (2) studied the introduction and removal of
some anti-patterns qualitatively, and (3) reported four lessons
on their life-cycles. We describe specification and detection
techniques in Section III.

Khomh et al. [9] investigated the impact of anti-patterns
on classes in object-oriented systems by studying the relation
between the presence of anti-patterns and the change- and
fault-proneness of the classes. The authors showed that in 50
out of 54 releases of the four systems, classes participating in
anti-patterns are more change and fault-prone than others.

Vaucher et al. [2] studied the “God class” design anti-
patterns, which describes large classes that “know too much or
do too much”. Although literature postulated that God classes
are created by accident as functionalities are incrementally
added by developers to central classes over the course of
their evolution, they assumed that, in some systems, a God
class is created by design as the best solution to a particular
problem because, for example, the problem is not easily

decomposable or strong requirements on efficiency exist. They
studied the life-cycles of God classes in the source code
of Eclipse JDT and Xerces: how they arise, how prevalent
they are, and whether they remain or they are removed as
the systems evolve over time. They distinguished between
those classes that are God classes by design (good code) from
those that occurred by accident (bad code). They concluded
with prevention refactorings and mechanisms to track the
appearance and disappearance of design anti-patterns.

Following this previous study, Tufano et al. [1] studied five
design anti-patterns in the evolution histories of the source
code of Android, Apache, and Eclipse and drew four lessons
from their study regarding the life-cycles of the anti-patterns:
(1) classes often play roles in these anti-patterns from their
inception in the systems, (2) the metric values of the classes
that start to play role in the anti-patterns during the evolution
have specific trends, (3) refactoring operations, in addition to
other changes, may lead to the introduction of these anti-
patterns, and (4) time pressure is the main reason for these
anti-patterns. Thus, the authors confirmed that the occurrences
of anti-patterns are not necessarily due to developers’ lack of
skills but could be due to the very design of the systems.

All these studies considered occurrences of code smells and
design anti-patterns in the source code of the studied systems
(and their revisions) or in design models reverse-engineered
from the source code of these systems. They did not study
the prevalence of the antipatterns in design models created
before (and–or during) development in comparison to that
in the source code implementing these design models. The
following study aims at confirming the observations that, in
some designs, code smells and design anti-patterns are present
from the very beginning of the inception of the systems.

A few research studies investigated the effect of using UML
on software maintenance. Arisholm et al. [10] conducted a
controlled experiment using students to evaluate the impact of
UML documentation on the software maintenance. The results
show that the availability of UML documentation may improve
the functional correctness of changes. Dzidek et. al [11]
conducted a controlled experiment using professional software
developer and found that using UML significantly improves
the functional correctness of changes during maintenance.
Fernández-Sáez et al. [12] conducted a family of experiments
consisting of one controlled experiment and three replications
with students, to investigate whether and how the level of
details (LoD) of UML diagrams impacts maintenance tasks.
Results show that there is no strong statistical evidence of the
influence of different LoDs. However, they conclude that low
LoD helps for modification of the source code and high LoD
helps to understand the system.

The study of Nugroho et al. [13] is close to our study,
where they investigate the impact of using design models
(class diagrams and sequence diagrams) on the quality of the
implementation measured by defect density. Their study was
conducted using industrial systems. The result shows that the
classes appearing in the design models have significantly lower
defect density than those that are not in the design models.

To the best of our knowledge, we propose the first study on
the impact of anti-patterns in design models on the change-
and fault-proneness of (corresponding) classes in source code.

III. BACKGROUND

We conduct our studies using the design models of some
open-source software systems, selected randomly from the
UML Repository. We use existing tools to detect occurrences
of anti-patterns in design models and source code.

A. UML Repository

Many researchers argue that the lack of sharable and
searchable design models impairs the ability to perform and
replicate empirical studies, thus slowing down the rate at
which novel, effective approaches are defined and studied
[14]–[16]. The absence of an open community of software
designers is also an impediment to the uptake of modeling. The
UML Repository1 attempt to overcome this lack. It is a unique
repository containing pairs of designers’ models (mostly UML
class diagrams) linked to the corresponding source code, when
available. It is a free online repository (free registration is
required for full use). The two first authors built the UML
Repository using design models found on the Internet in
open-source repositories and by approaching researchers in
our community [17]. The UML Repository aims to grow an
active community of researchers and practitioners interested in
design modeling: experts, developers, teachers, and students.

The UML Repository contains dozens of pairs of design
models and source code written in C++ and Java as well as
metadata and other information, including design metrics and
occurrences of anti-patterns retrieved on design models and
source code. It is searchable to find suitable case studies. It
currently2 contains 810 UML design models with URLs to
the corresponding source code if available. It uses a dedicated
subsystem, Img2UML, for converting images of UML dia-
grams, e.g., class diagrams, in JPEG and NMP format into
XMI files [18]. Img2UML uses image recognition techniques
to recognize UML diagram elements in images, including
class names, attributes, operations, and relationships between
classes. It generates XMI files that are compatible with many
UML CASE tools [19]–[21].

B. Anti-patterns Specification and Detection

For this study, we specify the Lazy Class in terms of the
number of methods defined in the classes. We detect Complex
Classes using the number of methods and the relationships
among classes: a class that defines many methods and that
has many relationships (in or out) is inherently complex. Long
Method can only be computed on classes from the source code
because we need the number of statements in the methods.
Finally, we specify Large Classes as the “opposite” of a Lazy
Class, in terms of the number of methods in the class. A Blob
class is a large class that declares many fields and methods
with a low cohesion. We specify ClassDataShouldBePrivate

1http://models-db.com/
2As of October 17th, 2015.

as a class that exposes its field. A RefusedParentBequest
class is a class that redefines inherited methods. Finally, a
BaseClassShouldBeAbstract anti-pattern is a class that has
many subclasses without being abstract.

The details of the specification and detection of the anti-
patterns is outside the scope of this paper because we mostly
adapt and–or reuse the specifications and detection algorithms
used in previous work. Indeed, we use the Ptidej3 tool suite,
which implements the anti-pattern detection approach DECOR
(Defect dEtection for CORrection), to identify occurrences
of anti-patterns in both design models and source code [7].
DECOR is an approach based on the automatic generation
of detection algorithms from rule cards. It proposes the de-
scriptions of different anti-patterns and provides generation
and detection algorithms. It converts anti-patterns descriptions
automatically into detection algorithms and identifies the oc-
currences of these anti-patterns in design models describing
either class diagrams or the source code of a system.

We apply DECOR in three steps: first, we reuse/define
rule cards describing the anti-patterns of interest through a
domain analysis of the literature. From the rule cards, we
generate a detection algorithms. Finally, we apply the detection
algorithms on the design models and source code of systems
to detect the occurrences of the anti-patterns. DECOR has
appropriate performance, precision, and recall for our study.
It has been reported [7] to achieve a precision of more than
60% and a recall of 100%.

DECOR can be applied on any object-oriented system
through the use of the PADL [22] meta-model and POM
framework [23]. PADL describes the structure of systems and
a subset of their behavior, i.e., classes and their relationships.
POM is a PADL-based framework that implements more than
60 structural metrics. We apply DECOR on models obtained
either from the class diagrams available in the UML repository,
by parsing the corresponding XMI files, or by parsing the
corresponding C++ and Java source code.

IV. ORIGINS OF ANTI-PATTERNS

For the first study, we randomly selected ten open-source
systems from our UML Repository that are available in
Github, SourceForge, and Google code. Table I presents the
characteristics of the systems used in the study. We now report
the results of the detection of anti-patterns in the design models
and the source code of the 10 systems. First, we report about
some analysis of the numbers of classes in the design models
and their source code. Then, we comment about anti-patterns
detected in both design models and their source code.

A. Descriptive Statistics

Table II shows an overview of classes in the designs and
source code, whose proportions are computed using Equa-
tion 1. As expected, the numbers of classes in the source code
are higher than in the designs, but we found that some classes
in the designs are missing in the source code. We also expected

3http://www.ptidej.net

TABLE I
STUDIED SOFTWARE SYSTEMS

Project Name Descriptions URLs

ArgoUML An open source UML
modeling tool

http://argouml.
sourceforge.net

Annoyme
Adds beautiful typewriter
sounds to Desktop
keyboards

https://github.
com/dedeibel/
annoyme

JCoAP
Java implementation of the
Constrained Application
Protocol (CoAP)

https:
//github.com/
dapaulid/JCoAP

JGAP
Package of Genetic
Algorithm and Genetic
Programming

http://jgap.
sourceforge.net

Kartjax
Cross-platform, tools to
create object, animation
and map

https:
//code.google.
com/p/kartjax/

Mars Simulation
Project to create a
simulation of future
settlements on Mars

http://mars-sim.
sourceforge.net

Msv Poker Poker Game (poker server
and poker client)

https:
//github.com/
mihhailnovik/
msvPoker

Neuroph

Lightweight Java neural
network framework to
develop network
architecture

http://neuroph.
sourceforge.net

Syntax-analyzer Syntax analyzer for (*.lng)
file

https://github.
com/myzone/
syntax-analyzer/

Wro4j Web resource optimizer
for Java

http:
//code.google.
com/p/wro4j

TABLE II
CLASSES IN DESIGN MODELS VS. CLASSES IN SOURCE CODE

Project Names # Classes
in Models

Classes in
Source Code

Proportions
of Classes

Annoyme 17 59 0.29
ArgoUML 51 909 0.03
JCoAP 21 52 0.40
JGAP 19 191 0.10
Kartjax 29 36 0.80
Mars Simulation 32 953 0.03
Msv Poker 22 55 0.40
Neuroph 26 179 0.15
Syntax-analyzer 26 34 0.76
Wro4j 28 289 0.10

this observation because the designs are conceptual models
and are often refined by developers during implementation.
However, these refinements are not always documented back
in the designs.

Number of classes in a project models
Number of classes in a project source code

(1)
No. of classes exist in both (Models and Source code)

Number of classes in Models
(2)

No. of classes exist in both (Models and Source code)
Number of classes in Source code

(3)
No. of same anti − patterns in the same classes in

both (Models and source code)
No. of classes exist in both (Models and Source code)

(4)

TABLE III
PROPORTIONS OF CLASSES IN BOTH DESIGN MODELS AND SOURCE

CODE

Project Names

Classes
Existing in
Models and
Source Code

Proportions
of Classes

according to
Equation (2)

Proportions
of Classes

according to
Equation (3)

Annoyme 14 0.82 0.24
ArgoUML 44 0.86 0.05
JCoAP 3 0.14 0.06
JGAP 18 0.95 0.09
Kartjax 1 0.03 0.03
Mars Simulation 29 0.91 0.03
Msv Poker 13 0.59 0.24
Neuroph 24 0.92 0.13
Syntax-analyzer 1 0.04 0.03
Wro4j 11 0.39 0.11

Table II shows the ratios of the numbers of classes in the
design models over the number of classes in the implemen-
tation (i.e., the source code) while Table III shows the ratios
of the numbers of classes that exist both in design models
and the source code over respectively, the number of classes
in the design model and the number of classes in the source
code. We did a manual checking for design models and the
source code for each system to find classes that exist in
both of design models and source code. We chose to report
ratios because we observed that, although the majority of
classes in design models are also present in the source code,
there are still some classes that were modelled during the
conception of the system (i.e., present in the design model)
but not implemented in the source code. In general, classes
in the design models represent only a fraction of the total
numbers of classes contained in the source code of a system.
In Section IV-B, we show that anti-patterns in design models
are transferred to the implementation.

B. Anti-patterns Statistics

We can only detect three of the four considered anti-patterns
in the design models: Complex Class, Large Class, and Lazy
class. We can detect LongMethod only in the source code
because designs are abstract representations of the systems and
they contain only method signatures without the implementa-
tion details needed to compute the lengths of the methods.
This observation shows that other source of information are
needed to compute some anti-patterns in design models, e.g.,
requirements, and that some design-specific anti-patterns may
exist and should be studied in future work. Table IV reports
the numbers of anti-patterns found in the design models and
the source code of the systems.

We observe that, in JCoAP, Kartjax, and Syntax-analyzer,
the numbers of anti-patterns in the design models is higher
than in the source code, which is unexpected but can be
because of (1) the small sizes of these systems and (2) the
difference between their design models and implementation.
Reason (2) could be due to either the design models being
outdated or them being used only as sketches while developers
changed the designs during implementation, “on the fly”.

TABLE IV
ANTI-PATTERNS IN BOTH DESIGN MODELS AND SOURCE CODE

Project Names

Anti-
patterns
in the

Models

Anti-
patterns
in the
Source
Code

Long-
Method

Anti-
patterns
in the
Source
Code

Same
Anti-

patterns
in the
Same

classes in
Models

and
Source
Code

Annoyme 10 16 0 5
ArgoUML 18 524 270 10
JCoAP 4 2 0 3
JGAP 13 252 130 5
Kartjax 17 4 2 1
Mars Simulation 22 370 206 3
Msv Poker 11 18 8 4
Neuroph 12 41 27 4
Syntax-analyzer 9 5 1 1
Wro4j 25 215 135 12

TABLE V
PROPORTIONS OF CLASSES IN DESIGN MODELS THAT TRANSFER THE

SAME ANTI-PATTERNS IN SOURCE CODE

Project Names
Anti-

patterns in
the Models

Same
anti-patterns
in the same

classes in
CD and Sc

Proportions
of same

classes have
same

anti-patterns
in CD and Sc

Annoyme 10 5 0.50
ArgoUML 18 10 0.56
JCoAP 4 3 0.75
JGAP 13 5 0.38
Kartjax 17 1 0.06
Mars Simulation 22 3 0.14
Msv Poker 11 4 0.36
Neuroph 12 4 0.33
Syntax-analyzer 9 1 0.11
Wro4j 25 12 0.48
Average 0.37

Future work should introduce a concept of distance between
designs and source code and study the causes for short or long
distances.

We compute the proportions of classes that play the same
roles in the same anti-patterns in design models and source
code based on Equation 4 and Table V shows the proportions
of these classes. There is a significant proportions of classes
playing the same roles in the same anti-patterns in both design
models and source code: 37% of classes in design models.
If we put aside JCoAP, Kartjax, and Syntax-analyzer, the
proportions of classes playing the same roles in the same anti-
patterns in design models and source code is 39%.

C. Anti-patterns Details

We now focus on individual anti-patterns and their occur-
rences in the design models and the source code.

a) Complex Class: Regarding the Complex Class anti-
pattern, very few occurrences are found in design models,
which means that architects and designers’ tend to avoid

Fig. 1. Numbers of Complex classes in designs and source code

Fig. 2. Numbers of Large classes in designs and source code

excessively complex classes. However, developers do not seem
to follow the same care during implementation as we observe
proliferations of occurrences of the Complex Class anti-pattern
in the source code of ArgoUML, JGAP, Mars, and Wro4j as
shown in Figure 1.

We explain this observation by two facts. On the one hand,
design models tend to be sketches of the actual implementation
and, hence, do not contain all the details and complexity of the
source code while the source code must, by its very definition,
contain the actual algorithms, which may be intrinsically
complex to implement. On the other hand, complex classes
in source code tend to arise because of the lack of time for
developers to research the best (i.e., simplest) implementation.
Hence, it is our experience and observation that source code
tends to be inherently more complex than necessary and,
therefore, more complex than the design models.

b) Large Class: Occurrences of the Large Class anti-
pattern are generally absent from both design models and
source code, except for Wro4j, whose design contains five
occurrences, as shown in Figure 2. As reported by Vaucher
et al. [2], Large Classes are sometimes present in systems
because they are the best solution to some problems, for
example when the problem is not easily decomposable. Yet,
such cases seem to be rare in design models: only one system
out of 10 contains occurrences of the Large Class for the
same reasons as mentioned above: designers focus on the
essentials of classes, developers lack time to introduce proper
abstractions and, thus, their tendency to “grow” classes to
implement new features.

Fig. 3. Numbers of Lazy classes in designs and source code

Fig. 4. Numbers of classes with Long Methods in designs and source code

c) Lazy Class: Lazy class, which is the most frequent
anti-patterns among the four considered anti-patterns, is more
prevalent in designs than in source code as shown in Figure
3.

We explain this result by the fact that designers try to
anticipate future evolutions of the systems, which often leads
to many abstract classes that do not contain necessarily enough
behavior to justify their existence: they are Lazy classes by
very definition (and specification in our detection technique.

However, Figure 3 shows that, in all systems but ArgoUML,
these excessive abstractions are “corrected” later by developers
during the implementation of the systems.

d) Long Method: Occurrences of the Long Method anti-
pattern are also introduced in the source code in large number
by developers as shown in Figure 4.

Again, we explain this observation and the difference be-
tween design models and source code in two ways. First,
designs do not contain all the details necessary to identify
Long Methods because of their very nature as sketches. Sec-
ond, developers tend to implement features as fast as possible,
under time pressure, and thus cannot take the time required to
refactor their code and to avoid long methods.

D. Discussions

We could detect only three of the four considered anti-
patterns in design models. We could not find occurrences of
the Long Method anti-pattern in design models because its
detection is based on the numbers of Line of Code (LOC)
of the methods, which is usually not available in design

models. Also, we observed that some anti-patterns appear in
designs and the same classes in the source code have different
anti-patterns. We relate this to the common practice, in both
open-source and commercial software development, whereby
developers change the designs and evolve the source code
during implementation and do not update the design models.

Table III shows that some classes contained in the design
models disappear in the source code, which can be considered
in two ways. First, having a class in a design model and not
having this class in the source code could be a design violation.
For example, a designer could have introduced a Facade
between two subsystems, which is later removed by developers
for the sake of simplicity of implementation or performance of
execution. Such a removal could yield to unintended accesses
to some subsystems and also reduce information hiding.

However, having less information in design models and not
in source code such as classes, can also be the result of a
lack of traceability in the project, because developers may
have refined the design during implementation while failing to
document the modifications and updating the design models.
Indeed, updates and changes to the source code without
updating the design models is a common malpractice observed
by many researchers and practitioners. Hence, our results
confirm the software engineering lore that design models are
not synchronized with their source code by developers.

In addition, we observe that most of the classes that are
in the design models and disappear in source code are Lazy
Classes as shown in Figure 3, which confirms our intuition
about developers refining the designs because Lazy classes are
the result of excessive abstractions. With a better knowledge
of the system under development, developers may decide to
remove some of the abstractions that result from designers’
speculations about future evolutions of their systems.

The average proportion of the classes that exist in both
the design models and the source code, and which have the
same anti-patterns in both artifacts is 37%, which represents
an important proportion of the total numbers of occurrences
of the anti-patterns contained in the design models. Hence, by
acting early on these anti-patterns, designers and developers
could improve the quality of their systems.

Defects contained in design models are known to be particu-
larly expensive if they are not fixed quickly because classes in
the designs are the backbone of the source code and, in most
designs, are the most important classes in the source code.

Overall, our results confirm that (1) classes in design models
may have anti-patterns, which translate to the source code and
(2) classes in both design models and source code have the
same anti-patterns for 37% of classes in the design models.

V. DESIGN ANTI-PATTERNS IMPACT ON SOURCE CODE

For the second study, we selected ArgoUML and Wro4j
because we can access the class changes and bug reports for
all of their versions. For ArgoUML, we use nine different
versions and for Wro4j we use six different versions. This
study includes comparing classes that exist in both the design
model and the source code, with classes that exist only in the

TABLE VI
MODELED AND NON-MODELED CLASSES

Project Names Modeled classes Not-Modeled classes Total
ArgoUML 88 2,731 2,819
Wro4j 197 876 1,073

TABLE VII
MEANS OF NUMBERS OF CHANGES IN ARGOUML AND WRO4J

Project Name Categories Mean

Changes
ArgoUML Modeled classes 22

Non-modeled classes 7.78

Wro4j Modeled classes 15.17
Non-modeled classes 6.56

source code, in terms of changes and faults. We also compare
classes from the design models that have anti-patterns with
those that do not have anti-patterns.

A. Compare classes in the models and classes that exist only
in the source code

We divided classes from the source code into two sets: (1)
modeled classes, that exist in the design models and source
code, and non-modeled classes, that exist only in the source
code. To compare the change- and fault-proneness of these
two sets of classes, we collected classes in the design models
and their corresponding classes in the source code of the two
systems. Table VI summarises both sets for both the ArgoUML
and Wro4j systems. We checked the normality of changes and
faults in both ArgoUML and Wro4j and observed that they are
not normally distributed. Therefore, we use Mann-Whitney test
to compare the means of the number of changes and of faults
between both sets.

We use IntelliJ IDEA4 to find the corresponding classes in
the source code to the classes in the models.

e) Results: Tables VII and VIII show the means of
the numbers of changes and faults, respectively, for both
modeled classes and non-modeled classes in both ArguUML
and Wro4j. There are significant differences between modeled
and non-modeled classes in both ArgoUML and Wro4j for
both changes and and faults.

f) Discussions: Classes in the designs with correspond-
ing classes in the source code have more changes and faults
than classes that exist only in the source code in both Ar-
goUML and Wro4j among their different versions. We explain
this result: classes in designs describe the core classes in
source code, so they have more changes between versions.

Also, when it comes to faults, there is a positive relation
between the numbers of changes and the number of faults
[24]. Therefore, because classes among the Modeled classes
have more changes, they tend to have more faults. Moreover,
if the design of a system has problems, these problems could
be transferred to the source code. Indeed, the implementation
should follow the design, which results in developers transfer-
ring problems from the design to the source code. Next, we

4http://www.jetbrains.com/idea/

TABLE VIII
MEANS OF NUMBERS OF FAULTS IN ARGOUML AND WRO4J

Project Name Categories Mean

Bugs
ArgoUML Modeled classes 0.82

Non-modeled classes 0.42

Wro4j Modeled classes 2.91
Non-modeled classes 1.04

TABLE XI
ANTI-PATTERNS AND NO-ANTI-PATTERN CLASSES

Project Name Anti-patterns
Category

No-anti-patterns
Category Total

ArgoUML 56 32 88
Wro4j 130 69 199

show the relation between the numbers of changes and two
code metrics, Line of Code (LOC) and average Cyclomatic
Complexity (AvgCyc). Table IX shows the correlations be-
tween numbers of changes in ArgoUML and Wro4j with LOC
and AvgCyc. It shows that the numbers of changes in Modeled
classes have significantly higher correlations with LOC than
Non-modeled classes in both ArgoUML and Wro4j: Modeled
classes that have have higher LOC have more changes.

Table X shows the correlation between faults, LOC and
AvgCyc: the numbers of faults in Modeled classes have
significantly higher correlations with LOC than Non-modeled
classes in both ArgoUML and Wro4j. More faults exist in
Modeled classes that have higher LOC. AvgCyc does not
have any correlations with Modeled classes or Non-modeled
classes.

B. Comparison of classes that have/do not have anti-patterns
in the design

We now divide classes in design models with corresponding
classes in the source code into two sets: (1) anti-pattern
classes, which contains classes that have anti-patterns in the
designs and (2) no-anti-patterns classes, which contains classes
that do not have anti-patterns in the designs.

We again use the Mann Whitney test to compare the means
of the numbers of changes and faults between both sets
because the changes and faults are not normally distributed
in the both systems. Table XI summarizes both sets for
ArgoUML and Wro4j. We collected anti-patterns, changes, and
faults for each class, then entered this data into a database5.

g) Results: Table XII shows the means of numbers of
changes for both sets for both ArguUML and Wro4j. Table
XIII shows the means of numbers of faults for both sets, for
ArguUML and Wro4j.

Mann Whitney tests show that there are significant differ-
ences between the anti-patterns and no-anti-patterns sets in
ArgoUML and Wro4j in terms of changes and faults.

h) Discussions: We observe that classes that have anti-
patterns in the designs and corresponding classes in the source
code of ArgoUML and Wro4j have more changes and faults
in the implementation. The broken windows theory [25] states

5http://Models-db.com/SANER2016/ArgoUML Wro4j.zip

TABLE IX
CORRELATIONS BETWEEN CHANGES, LOC, AND AVERAGE CYCLOMATIC COMPLEXITY

Systems Categories Correlations R2 FormulasAvgCyc LOC

Changes
ArgoUML Modeled classes 0.30 0.74 0.54 Y= 0.727 + 0.018(LOC)

Non-modeled classes 0.21 0.43 0.19 Y=1.352+0.004(LOC)+0.092(AvgCyc)

Wro4j Modeled classes 0.06 0.62 0.39 Y=-1.937+0.315(LOC)
Non-modeled classes -0.00 0.38 0.17 Y=6.191+0.104(LOC)(Avg)(Cyc)

TABLE X
CORRELATIONS BETWEEN FAULTS, LOC, AND AVERAGE CYCLOMATIC COMPLEXITY

Systems Categories Correlations R2 FormulasAvgCyc LOC

Bugs
ArgoUML Modeled classes 0.35 0.53 0.32 Y=-0.54+0.001(LOC)+0.041(AvgCyc)

Non-modeled classes 0.13 0.26 0.07 Y=0.07+0.000(LOC)

Wro4j Modeled classes 0.02 0.60 0.35 Y=-0.266+0.060(LOC)
Non-modeled classes -0.01 0.40 0.18 Y=0.953+0.026(LOC)-0.417(AvgCyc)

TABLE XII
MEANS OF NUMBERS OF CHANGES IN ARGOUML AND WRO4J

Project Name Categories Mean

Changes
ArgoUML Anti-patterns 30.8

No-anti-patterns 06.59

Wro4j Anti-patterns 16.60
No-anti-patterns 12.26

TABLE XIII
MEANS OF NUMBERS OF FAULTS IN ARGOUML AND WRO4J

Project Name Categories Mean

Bugs
ArgoUML Anti-patterns 1.20

No-anti-patterns 0.15

Wro4j Anti-patterns 3.16
No-anti-patterns 2.38

that a broken window may lead to a general degradation of
the whole environment and we argue that developers should
solve these design problems before transferring them to the
source code to reduce implementation and maintenance effort.

Similarly, we argue that when design problems are not fixed
quickly, they tend to propagate in the system causing other
problems. It is therefore, important to track and fix design
problems as early as possible in the development cycle. The
results of this study show that software organizations can
make use of anti-patterns detection tools like Ptidej during
the design phase and track and fix anti-patterns in their
software system as early as the design phase. Thus, anti-
patterns detection tools will help prevent defects that could
occur because of anti-patterns. Indeed, the refactoring of anti-
patterns should be easier and less costly at modeling level than
during implementation.

Table XIV and Table XV show the correlations between
numbers of changes and faults in Anti-patterns classes and
No-anti-patterns classes with both LOC and AvgCyc. Table
XIV shows that the numbers of changes have significantly
higher correlations with LOC in No-anti-patterns classes than
Anti-patterns classes in both ArgoUML and Wro4j: in systems
with anti-patterns, size is not the only factor affecting change-

proneness. The occurrence of anti-patterns also contributes to
the occurrence of changes.

Table XV shows the correlations between numbers of faults,
LOC, and AvgCyc in ArgoUML and Wro4j: the numbers
of faults in No-anti-patterns classes have significantly higher
correlations with LOC than Anti-patterns classes in both
ArgoUML and Wro4j. More faults occur in bigger No-anti-
patterns classes. For Anti-pattern classes, there is no strong
correlation with LOC, which means that faults exist no matter
the size of the classes. For AvgCyc, the correlations with
changes is higher in Anti-patterns classes, which means that
complex classes have more changes.

VI. DISCUSSIONS

This section discusses the threats to validity of our studies
following common guidelines for empirical studies [26]. It also
provides preliminary recommendations.

i) Threats to construct validity: concern our implicit
assumption that each anti-pattern is of equal importance.
Future work must study the impact of the anti-patterns found
in models in well-used dependent variables, such as class
change- and fault-proneness, to assert whether all anti-patterns
in models have similar impact in the source code during
implementation and maintenance.

j) Threats to internal validity: concern our selection of
systems, tools, and analysis method. The accuracy of Ptidej
impacts our results. However, Ptidej has been successfully
used in multiple studies [1], [2], [8], [9] and has been reported
to achieve high precision and recall [7]. However, other anti-
pattern detection techniques and tools should be used to
confirm our results.

In addition, the level of details of UML models affects
the detection of anti-patterns in the models, for example
we could not detect occurrences of the Long Method anti-
pattern in models. It is possible that the lack of detailed
information in models also affected the detection of other anti-
patterns. However, because the detection of these anti-patterns
require only high-level information about methods, relations,
and hierarchies (which are contained in the model), we are

TABLE XIV
CORRELATIONS BETWEEN CHANGES, LOC, AND AVERAGE CYCLOMATIC COMPLEXITY

Systems Categories Correlations R2 FormulasAvgCyc LOC

Changes
ArgoUML Anti-patterns classes 0.41 0.67 0.44 y=0.997+0.017

No-anti-patterns classes 0.33 0.85 0.72 Y=0.149+0.028(LOC)

Wro4j Anti-patterns classes 0.06 0.59 0.35 Y=0.989+0.245(LOC)
No-anti-patterns classes 0.02 0.70 0.48 Y=-0.698+0.465(LOC)

TABLE XV
CORRELATIONS BETWEEN FAULTS, LOC, AND AVERAGE CYCLOMATIC COMPLEXITY

Systems Categories Correlations R2 FormulasAvgCyc LOC

Bugs
ArgoUML Anti-patterns classes 0.48 0.61 0.42 Y=-0.90+0.001(LOC)+0.054(AvgCyc)

No-anti-patterns classes 0.35 0.81 0.65 Y=-0.072+0.001(LOC)

Wro4j Anti-patterns classes -0.01 0.57 0.49 Y=0.377+0.046(LOC)
No-anti-patterns classes 0.01 0.70 0.48 Y=-1.534+0.097(LOC)

confident about the validity of our results but will replicate
our study with other techniques and tools in the future.

Finally, we manually traced classes in design models in the
source code of the studied systems. It is possible that other
traceability links could have been established, which could
impact the results of our study. Future work includes devising
automated designs-to-source code traceability algorithms.

k) Threats to reliability validity: concern the possibility
of replicating this study. Every result obtained through empir-
ical studies is threatened by potential bias from the used data
sets [27]. To mitigate these threats, we performed our study
using 10 systems. In addition, we attempted to provide all the
necessary details required to replicate our study. The UML
Repository and the source code repositories of the 10 systems
are publicly available and so is the source code of the Ptidej
tool suite used to compute metrics and detect the occurrences
of the anti-patterns.

l) Threats to external validity: concern our use of ten
open-source systems and our conclusion based on this data
set. These systems that used in our studies are available in
the UML Repository. It has different sizes and belong to
different domains. In the studies (2, 3) we used two open
source software projects, and made our conclusion based on
these two systems. Nevertheless, further validation on a larger
set of systems is desirable, considering systems from different
domains as well as systems from same domains.

m) Recommendations: Kitchenham et al. [28] presented
preliminary guidelines for empirical research in software en-
gineering. Following these guidelines, to assist researchers,
we recommend the use of the UML Repository because it is
open and contains UML models and URLs to some of their
source code when available. Thus, researchers can reuse and
share their results on a common base of designs and source
code. We encourage researchers to join the UML Repository
community and share their models.

Our study is a preliminary study on the impact anti-patterns
in design models. More empirical studies are needed using
more systems to refine our conclusions. We hope that others
will use the UML Repository to bring new results.

We recommend that designers be wary of anti-patterns
in their designs because they transfer and negatively impact
change- and fault-proneness of the corresponding classes in
source code. They should use tools to identify and remove
anti-patterns in their designs.

VII. CONCLUSION

In this paper, we performed two studies to investigate the
relation between quality of the design and the source code. In
the first study, we investigated whether models produced by
designers before the implementation of software systems con-
tain anti-patterns. We also examined whether the occurrences
of the anti-patterns in models translate into the source code,
affecting the same classes in models and the source code. We
conducted an empirical study on the prevalence of four anti-
patterns: Complex Class, Large Class, Lazy Class, and Long
Method, using both the architects and designers models of
the ten systems (selected from the UML Repository) and the
source code of these systems. Our results showed that, on
average, 37% of the classes in the models that belong to anti-
patterns also exist in the source code and also play roles in the
same anti-patterns. Hence, we showed that anti-patterns appear
very early. Designers would benefit from help to identify and
control these anti-patterns as early as possible. Therefore, it
would be wise for maintenance teams to detect these anti-
patterns early in the design phase to save time and effort.

In the second study, we conducted two sub-experiments.
In the first, we find that classes in the designs have more
changes and faults than others that exist only in the source
code. This provides evidence that the quality of the classes
that appear in the design is important. In the second, seven
types of anti-patterns detected in the design phase: (1) Com-
plex class, (2) Large class, (3) Lazy class, (4) Blob class,
(5) ClassDataShouldBePrivate, (6) RefusedParentBequest, (7)
BaseClassShouldBeAbstract. We find that classes in the de-
signs that have anti-patterns have more changes and faults in
the source code.

We conclude that the quality of the design is important, and
in our case we measure the quality based on anti-patterns. We

should detect anti-patterns early at design stage, and solve it
to: (1) Avoid transfer it to the implementation. (2) Reduce
number of changes in classes in the source code. (3) Reduce
number of faults in classes in the source code.

In addition, we expect that problems in the design can
propagate to other problems in the source code, which could
occur in the same classes or their corresponding classes.
Therefore, avoiding anti-patterns may help to avoid much
problems in the source code.

Future work includes analyzing more pairs of models and
their corresponding source code as well as analyzing more
projects to propose prevention techniques. Because refactoring
are easier at design level, we aim to propose a technique to
automatically refactor anti-patterns detected in models.

ACKNOWLEDGMENT

This work has been partly funded by the Canada Research
Chair on Patterns in Mixed-language Systems and the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D.
Lucia, and D. Poshyvanyk, “When and why your code starts to
smell bad,” in Proceedings of the 37th International Conference on
Software Engineering. ACM Press, May 2015. [Online]. Available:
https://dibt.unimol.it/staff/oliveto/pubs/c80.pdf

[2] Stéphane Vaucher, Foutse Khomh, Naouel Moha, and Y.-G. Guéhéneuc,
“Tracking design smells: Lessons from a study of god classes,” in
Proceedings of the 16th Working Conference on Reverse Engineering
(WCRE), G. Antoniol and A. Zaidman, Eds. IEEE Computer Society
Press, October 2009, pp. 145–154, 10 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/WCRE09b.doc.pdf

[3] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of
bad smells in object-oriented code,” in Quality of Information and
Communications Technology (QUATIC), 2010 Seventh International
Conference on the, Sept 2010, pp. 106–115.

[4] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,
and T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures,
and Projects in Crisis, 1st ed. John Wiley and Sons, March
1998. [Online]. Available: www.amazon.com/exec/obidos/tg/detail/-/
0471197130/ref=ase\ theantipatterngr/103-4749445-6141457

[5] Foutse Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory
study of the impact of code smells on software change-proneness,” in
Proceedings of the 16th Working Conference on Reverse Engineering
(WCRE), G. Antoniol and A. Zaidman, Eds. IEEE Computer Society
Press, October 2009, pp. 75–84, 10 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/WCRE09a.doc.pdf

[6] B. Venners, “Leading-edge java – a conversation with erich
gamma,” May–June 2005, part I–V. [Online]. Available: http:
//www.artima.com/lejava/articles/gammadp.html

[7] Naouel Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur,
“DECOR: A method for the specification and detection of code and
design smells,” Transactions on Software Engineering (TSE), vol. 36,
no. 1, pp. 20–36, January–February 2010, 16 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/TSE09.doc.pdf

[8] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané,
Y.-G. Guéhéneuc, G. Antoniol, and E. Aimeur, “Smurf: A SVM-
based incremental anti-pattern detection approach,” in Proceedings
of the 19th Working Conference on Reverse Engineering (WCRE),
R. Oliveto and D. Poshyvanyk, Eds. IEEE Computer Society
Press, October 2012, pp. 466–475, 10 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/WCRE12a.doc.pdf

[9] Foutse Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering (EMSE), vol. 17,
no. 3, pp. 243–275, August 2012, 27 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/EMSE11b.doc.pdf

[10] E. Arisholm, L. Briand, S. Hove, and Y. Labiche, “The impact of uml
documentation on software maintenance: an experimental evaluation,”
Software Engineering, IEEE Transactions on, vol. 32, no. 6, pp. 365–
381, June 2006.

[11] W. Dzidek, E. Arisholm, and L. Briand, “A realistic empirical evaluation
of the costs and benefits of uml in software maintenance,” Software
Engineering, IEEE Transactions on, vol. 34, no. 3, pp. 407–432, May
2008.

[12] A. M. Fernández-Sáez, M. Genero, D. Caivano, and M. R. Chaudron,
“Does the level of detail of uml diagrams affect the maintainability of
source code?: a family of experiments,” Empirical Software Engineering,
pp. 1–48, 2014.

[13] A. Nugroho and M. R. Chaudron, “The impact of uml modeling on
defect density and defect resolution time in a proprietary system,”
Empirical Softw. Engg., vol. 19, no. 4, pp. 926–954, Aug. 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10664-013-9243-2

[14] R. P. L. Buse and T. Zimmermann, “Information needs for software
development analytics,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 987–996. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337343

[15] R. France, J. Bieman, and B. H. Cheng, “Repository for model driven
development (remodd),” in Models in Software Engineering. Springer,
2007, pp. 311–317.

[16] R. France, J. Bieman, S. Mandalaparty, B. Cheng, and A. Jensen,
“Repository for model driven development (remodd),” in Software
Engineering (ICSE), 2012 34th International Conference on, June 2012,
pp. 1471–1472.

[17] B. Karasneh and M. R. V. Chaudron, “Online img2uml repository:
An online repository for UML models,” in Proceedings of the 3rd
International Workshop on Experiences and Empirical Studies in
Software Modeling co-located with 16th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2013),
Miami, USA, October 1, 2013., 2013, pp. 61–66. [Online]. Available:
http://ceur-ws.org/Vol-1078/paper8.pdf

[18] B. Karasneh and M. Chaudron, “Img2uml: A system for extracting
uml models from images,” in Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on, Sept
2013, pp. 134–137.

[19] E. Architect, “2011 sparx systems pty ltd., creswick, victoria, 3363,
australia,” 2000.

[20] V. Paradigm, “Visual paradigm for uml,” Visual Paradigm for UML-
UML tool for software application development, 2014.

[21] U. StarUML, “modeling tool. multilingual project. version 5.0. 2.1570,”
2005.

[22] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multi-
layered framework for design pattern identification,” Transactions
on Software Engineering (TSE), vol. 34, no. 5, pp.
667–684, September 2008, 18 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/TSE08.doc.pdf

[23] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi, “Fingerprinting
design patterns,” in Proceedings of the 11th Working Conference
on Reverse Engineering (WCRE), E. Stroulia and A. de Lucia,
Eds. IEEE Computer Society Press, November 2004, pp. 172–
181, 10 pages. [Online]. Available: http://www.ptidej.net/publications/
documents/WCRE04.doc.pdf

[24] D. Radjenovic, M. Hericko, R. Torkar, and A. ivkovic, “Software
fault prediction metrics: A systematic literature review,” Information
and Software Technology, vol. 55, no. 8, pp. 1397 – 1418,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584913000426

[25] J. Q. Wilson and G. L. Kelling, “Broken windows,” Atlantic monthly,
vol. 249, no. 3, pp. 29–38, 1982.

[26] R. K. Yin, Case study research: Design and methods. Sage publications,
2013.

[27] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, January 2007. [Online]. Available:
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4027141

[28] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg, “Preliminary guidelines for empirical
research in software engineering,” Software Engineering, IEEE Trans-
actions on, vol. 28, no. 8, pp. 721–734, Aug 2002.

