JTEXxpert at the Fourth Unit Testing Tool Competition

Abdelilah Sakti
United Technologies Research
Center
Cork, Co. Cork, Ireland
saktia@utrc.utc.com

ABSTRACT

JTExpert is a software testing tool that automatically gen-
erates a whole test suite to satisfy the branch-coverage cri-
terion. It takes as inputs a Java source code and its depen-
dencies and automatically produces a test-case suite in JUnit
format. In this paper, we summarize our results for the Unit
Testing Tool Competition held at the fourth SBST Contest,
where JTExpert received 931 points and was ranked third.
We also analyze our tool’s performance.

Keywords

—Test-case generation; classes testing; unit testing; random
testing; static analysis.

1. INTRODUCTION

This paper describes and discusses the results obtained
by applying the test-case generation tool JTExpert [3] on
the benchmarks used to compare tools participating in the
unit-testing competition held as part of the International
Workshop on Search Based Software Testing (SBST) held in
Austin, TX, on May 16-17. More details on the competition
and the benchmarks can be found elsewhere [2].

In this competition, JTExpert received a total score equal
to 931 points and was ranked third. The total score sums up
the scores of four experiments evaluating the participating
tools using a given time budget: the 1°* uses 60 seconds,
the 2"% uses 120 seconds, the 3"¢ uses 240 seconds, and the
4" uses 480 seconds. JTExpert received 179.24 in the 1°¢,
231.11 in the 2™?, 250.92 in the 3"¢, and 269.73 in the 4°".

2. JTEXPERT

JTExpert is a software testing tool that has been devel-
oped to automatically generate a whole test suite that sat-
isfies the branch coverage criterion on a given Java source
code [3]. Table 1 summarizes the main features of JTExpert.
JTExpert automatically generates a JUnit test suite for the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 16-17 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4166-0/16/05.

DOL: http://dx.doi.org/10.1145/2897010.2897021

Gilles Pesant
Department of Computer and
Software Engineering
Ecole Polytechnique de
Montreéal
Montréal, Quebéc, Canada
gilles.pesant@polymtl.ca

Yann-Gaél Guéhéneuc
Department of Computer and
Software Engineering
Ecole Polytechnique de
Montréal
Montréal, Quebéc, Canada
yann-
gael.gueheneuc@polymtl.ca

Table 1: Features of the tool JTExpert

Prerequisites

Static or dynamic Dynamic testing

Software Type Java source code (.java)
Lifecycle phase Unit testing for Java projects
Environment Java

Knowledge required JUnit

Experience required

Input and Output of the Tool

Unit-testing knowledge

Input A Java source code and its depen-
dencies

Output A test-case suite in JUnit 4 format

Operation

Interaction Through the command line

Source of information https://sites.google.com/site/saktiabdel /

JTExpert
Maturity Still under development

Technology behind the tool | Random testing guided by static
analyses

Obtaining the tool and information

License

Cost Free
Support None
Empirical evidence about the Tool
Effectiveness See (3]
Efficiency See (3]
Scalability See (3]

Class Under Test (CUT). It can be used through a command
line interface. It takes as inputs a Java file (.java) and its
dependencies and automatically produces a test-case suite
in JUnit format. JTExpert is available as an executable Jar
file. It is based on four main components: a source code ana-
lyzer, a test-case candidates builder, an instances generator,
and a random search strategy.

2.1 Source Code Analyzer

JTExpert uses a Source Code Analyzer (SCA) to deter-
mine the set of methods that are likely to change the state
of a data member of the CUT and the set of methods that
may reach a given branch. The SCA analyzes the source
code to collect constants and path information about all the
branches of all methods. SCA provides JTExpert’s other
components with information to guide them throughout the
process of test-case generation.

2.2 Test Case Candidates Builder

JTExpert uses the Test Case Candidates Builder (TDCB)
to explore only relevant sequences of method calls. Using
the collected information by SCA, the test-case generation
problem is represented by a vector composed of means-of-

instantiation of the CUT, methods that are likely to change
the object state by changing a data member, and methods
that may reach the branch target. Thus, JTExpert repre-
sents a test-case candidate by: (1) a means-of-instantiation
of the class under test (i.e., a constructor, a method factory,
a data field, or method external from the CUT); (2) a se-
quence of method calls whose length (i.e., number of method
calls) is bounded by the number of declared data members
in the CUT, each method in a sequence being called in the
hope to put a given data member in a relevant state; (3)
a method call that is likely to reach the test target; (4) a
means-of-instantiation for each argument of the method.

The TDCB is a key novelty of JTExpert compared to
other tools because it prevents JTExpert exploring useless
sequences and thus to generate test cases faster without com-
promising coverage.

2.3 Instances Generator

JTExpert uses a customized instances generator based on
a seeding strategy and a dynamic strategy to diversify gener-
ated instances of classes. The seeding strategy gets collected
constants for each primitive data type or string and seeds
them while generating instances. It defines a seeding proba-
bility of each data type according to the number of collected
constants. Also, it seeds the null value with a constant prob-
ability while generating instances of classes. The diversifica-
tion strategy generates different instances by using different
means-of-instantiation (e.g., constructors, factory methods,
subclasses).

The instances generator improves JTExpert exploration
of the search space, reaching more branches, and thus in-
creasing code coverage for a given time.

2.4 Random Search Strategy

JTExpert uses a random search that targets every uncov-
ered branches at the same time: it does not focus on only one
branch, instead it generates a test-case candidate uniformly
at random for every uncovered branches. This strategy al-
lows JTExpert to reach a good branch coverage quickly be-
cause it does not waste efforts on unreachable branches and
it benefits from the significant number of branches that may
be covered accidentally.

3. BENCHMARK RESULTS

Table 3 presents the results of JTExpert aggregated per
benchmark. On average, JTExpert achieved 56.34% instruc-
tions coverage, 49.09% branch coverage, and 35.51% muta-
tion coverage. These results are in line with our expectations
except for classes where JTExpert gets 0% mutation cover-
age. In the following subsections, we highlight where our
tool performed more poorly and provide possible explana-
tions.

3.1 Compilation Errors

During the competition, JTExpert produced many un-
compilable test-case files that significantly affected its per-
formance. In all the experiments, JTExpert generated 37
uncompilable test-case files distributed as follow: 8 files dur-
ing the first experiment; 7 files during the second experi-
ment; 11 files during the third experiment, and 11 files dur-
ing the fourth experiment. Each uncompilable test-case file
received a score of 0 and —2 points as penalty. This prob-
lem specially affected four benchmarks: Chart-1, Chart-4,

Chart-26,and Math-44.

We analyzed these classes and observed that the first four
classes are abstract and the problem relates to the way JT-
Expert generates test cases for an abstract class. Actually,
JTExpert instantiates an abstract class by using a possible
stub and calls some methods from that stub. The problem
was that, during the generation of source-code, we omitted
to cast some variable from the abstract-class to the stub

type.

3.2 Time Management

In the results file, we observed that for many CUTs JTEx-
pert did not generate a test-case file. It could not generate
33 test-case files: 11 in the first experiment, nine in the sec-
ond experiment, seven in the third experiment, and six in
the fourth experiment. In general, JTExpert always gener-
ates a test-case file albeit an empty test-case file. We think
that JTExpert generated test-case files for these CUTs but
perhaps after the allowed time budget.

3.3 Low Branch Coverage

JTExpert achieved a weak branch coverage on the 16
benchmarks from the library Closure Compiler, com.google.
javascript.jscomp. We analyzed the results of all tools
and observed that this seems a general trend because all the
participating tools have poor performances on this set of
classes. The Closure Compiler is a JavaScript compiler and
its classes includes a parser, lexical analyzer, and syntacti-
cal analyzer. In general, to instantiate such a type of class,
a test-case generation tool must generate some strings that
respect certain regular expressions and syntax. Because ran-
domly generating such strings is almost impossible, a tool
will fail to instantiate the CUT or the classes required to call
its methods. Therefore, the low coverage achieved on classes
from this library represents only the exceptions raised in
constructors and public methods.

3.4 Mutation Coverage Measure

For many CUTs, the mutation coverage is very low com-
pared to the code coverage. JTExpert generated a test-case
file that reached more that 90% code coverage but, with 0%
mutation coverage. For example, in the benchmark Lang-37
at the third experimentation (240s) and run number 5, the
line coverage is equals to 94.67% with 0% mutation coverage.
In Table 3, this problem is clear in the benchmarks Chart-
1, Chart-12, and Chart-23 because it happened in all their
test-case files. It also partially affected other benchmarks
like Lang-36, Lang-41, and Lang-58 but it is not clear in
the aggregated results. This problem affects 244 test-case
suites generated by JTExpert.

During the set-up, we observed and mentioned a similar
problem in Defect4]j [1], the tool that measured the mutation
coverage. Actually, if Defect4j cannot measure the mutation
coverage for a test-case set, then it assigns a score of 0% of
mutation coverage. We think that this measurement prob-
lem is at the root of some large differences between the code
coverage and mutation coverage. Indeed, the organizers con-
firmed that this problem exists and affected 38 classes and
around 1,024 test-case sets generated by different tools.

4. ANALYSIS AND DISCUSSIONS

Because of the abstract-classes bug, JTExpert produced
37 uncompilable test-case files that represent almost 2.5%

Table 2: DETAILED RESULTS OF JTExpert ON THE SBST-CONTEST BENCHMARKS WITH A TIME
BUDGET EQUAL TO 240 SECONDS

. Coverage Total
Benchmark ~ Class Name Score | FailTests Mutation Branih Line | Mutant Branch Line
Lang-63 org.apache.commons.lang.time.DurationFormat Utils 37.83 2.33 0.73 0.96 0.99 329 133 229
Lang-41 org.apache.commons.lang.ClassUtils 32.74 4.62 0.56 0.86 0.91 346 216 268
Lang-33 org.apache.commons.lang3.ClassUtils 32.71 1.08 0.56 0.85 0.91 349 218 268
Time-5 org.joda.time.Period 28.85 0.67 0.67 0.93 0.97 467 64 288
Math-103 org.apache.commons.math.distribution.NormalDistributionImpl 28.56 2.42 0.46 0.67 0.76 108 18 42
Chart-11 org.jfree.chart.util.ShapeUtilities 28.33 3.5 0.39 0.68 0.80 418 116 193
Math-56 org.apache.commons.math.util. Multidimensional Counter 27.43 1.38 0.48 0.83 0.95 138 32 70
Chart-16 org.jfree.data.category.DefaultIntervalCategoryDataset 27.34 9.62 0.30 0.75 0.80 273 128 186
Math-2 org.apache.commons.math3.distribution. HypergeometricDistribution 26.77 0.17 0.79 0.94 0.99 175 26 66
Lang-57 org.apache.commons.lang.LocaleUtils 26.22 0.75 0.55 0.81 0.95 177 64 76
Time-13 org.joda.time.format.PeriodFormatterBuilder 26.04 4.29 0.50 0.83 0.93 1139 458 665
Lang-36 org.apache.commons.lang3.math.NumberUtils 25.19 0.62 0.43 0.85 0.96 812 352 373
Lang-43 org.apache.commons.lang.text. Extended MessageFormat 24.73 3.12 0.20 0.43 0.55 184 99 163
Lang-47 org.apache.commons.lang.text.StrBuilder 24.58 2.12 0.56 0.91 0.96 1642 496 700
Math-106 org.apache.commons.math.fraction. ProperFractionFormat 23.96 0.67 0.30 0.66 0.78 46 19 63
Lang-58 org.apache.commons.lang.math.NumberUtils 22.79 0.42 0.49 0.84 0.94 977 420 433
Time-4 org.joda.time.Partial 22.20 0.29 0.59 0.92 0.94 336 106 249
Lang-65 org.apache.commons.lang.time.DateUtils 21.57 0.67 0.42 0.78 0.91 406 175 208
Chart-7 org.jfr ata.time. TimePeriod Values 21.20 0.08 0.68 0.82 0.87 254 54 149
Math-91 org.apache.commons.math.fraction.Fraction 20.96 0.00 0.67 0.83 0.94 360 90 149
Time-10 org.joda.time.base. BaseSingleField Period 20.21 0.00 0.69 0.76 0.84 118 46 70
Chart-24 org.jfree.chart.renderer.GrayPaintScale 19.93 0.29 0.38 0.88 0.84 37 10 25
Lang-50 org.apache.commons.lang.time.FastDateFormat 19.54 0.00 0.68 0.83 0.93 689 228 455
Lang-59 org.apache.commons.lang.text.StrBuilder 19.38 0.46 0.58 0.92 0.97 1584 464 656
Chart-17 org.jfree.data.time. TimeSeries 17.42 0.92 0.25 0.55 0.61 428 138 280
Chart-20 org.jfree.chart.plot.ValueMarker 16.66 0.00 0.45 0.75 0.91 11 8 22
Lang-60 org.apache.commons.lang.text.StrBuilder 16.55 0.21 0.56 0.91 0.96 1584 464 656
Lang-37 org.apache.commons.lang3. ArrayUtils 15.79 0.00 0.63 0.81 0.94 2015 806 957
Math-52 org.apache.commons.math.geometry.euclidean.threed.Rotation 15.06 0.00 0.48 0.71 0.77 2706 122 327
Time-3 org.joda.time.MutableDateTime 14.89 0.12 0.23 0.87 0.86 90 63 247
Time-8 org.joda.time.DateTimeZone 8¢ 0.08 0.38 0.62 0.75 439 182 354
Time-23 org.joda.time.DateTimeZone 3.: 0.00 0.41 0.65 0.77 353 162 338
Time-7 org.joda.time.format.DateTimeFormatter 13.25 0.00 0.39 0.72 0.88 176 88 208
Math-88 org.apache.commons.math.optimization.linear.SimplexTableau 12.85 0.04 0.32 0.57 0.66 392 90 131
Math-21 org.apache.commons.math3.linear.RectangularCholeskyDecomposition 12.55 0.00 0.24 0.80 0.83 102 28 55
Math-93 org.apache.commons.math.util. MathUtils 12.20 0.04 0.47 0.64 0.68 892 223 227
Time-20 org.joda.time.format.DateTimeFormatterBuilder 11.98 0.00 0.43 0.70 0.80 1743 595 1034
Chart-23 org.jfree.chart.renderer.category. MinMaxCategoryRenderer 11.12 1.42 0.09 0.31 0.42 168 56 149
Math-67 org.apache.commons.math.optimization.MultiStart UnivariateRealOptimizer 10.91 0.25 0.23 0.43 0.61 149 34 90
Chart-3 org.jfree.data.time. TimeSeries 10.77 0.00 0.40 0.66 0.76 490 194 371
Chart-2 org.jfree.data.general. Dataset Utilities 10.16 0.00 0.28 0.51 0.58 794 548 808
Chart-6 org.jfree.chart.util.ShapeList 8.82 0.00 0.18 0.50 0.50 28 16 34
Chart-1 org.jfree.chart.renderer.category.AbstractCategoryltemRenderer 8.52 1.33 0.07 0.25 0.33 246 242 519
Chart-9 org.jfree.data.time. TimeSeries 8.47 0.04 0.26 0.53 0.61 435 140 280
Math-18 org.apache.commons.math3.optimization.direct. CMAESOptimizer 7.73 0.00 0.14 0.50 0.65 1613 276 467
Math-20 org.apache.commons.math3.optimization.direct. CMAESOptimizer 7.63 0.00 0.13 0.48 0.65 1601 272 458
Lang-28 org.apache.commons.lang3.text.translate. NumericEntity Unescaper 6.36 0.00 0.08 0.40 0.46 80 16 25
Closure-98 com.google.javascript.jscomp.ReferenceCollectingCallback 6.33 0.00 0.17 0.27 0.57 248 143 167
Time-11 org.joda.time.tz.ZonelnfoCompiler 5.51 0.00 0.14 0.32 0.36 419 193 385
Chart-12 org.jfree.chart.plot.MultiplePiePlot 4.57 0.04 0.10 0.41 0.52 164 84 187
Closure-100 com.google.javascript.jscomp.CheckGlobal This 4.34 0.00 0.08 0.18 0.43 98 56 45
Closure-99 com.google.javascript.jscomp.CheckGlobal This 4.04 0.00 0.07 0.17 0.42 112 62 45
Closure-14 com.google.javascript.jscomp.ControlFlowAnalysis 3.76 0.00 0.10 0.15 0.25 237 276 382
Closure-16 com.google.javascript.jscomp.Scoped Aliases 3.69 0.00 0.10 0.13 0.25 166 124 194
Closure-132 com.google.javascript.jscomp.PeepholeSubstituteAlternateSyntax 2.33 0.00 0.07 0.10 0.14 674 536 687
Closure-20 com.google.javascript.jscomp.PeepholeSubstituteAlternateSyntax 2.26 0.00 0.07 0.10 0.14 662 530 686
Math-39 org.apache.commons.math.ode.nonstiff. EmbeddedRungeKuttalntegrator 1.28 0.00 0.01 0.00 0.30 279 54 108
Chart-25 org.jfree.chart.renderer.category.StatisticalBarRenderer 1.05 0.00 0.01 0.07 0.11 372 90 181
Closure-74 com.google.javascript.jscomp.PeepholeFoldConstants 0.71 0.00 0.01 0.03 0.07 880 624 765
Math-7 org.apache.commons.math3.ode. AbstractIntegrator 0.69 0.00 0.06 0.05 0.22 82 58 127
Closure-130 com.google.javascript.jscomp.CollapseProperties 0.52 0.00 0.00 0.03 0.07 358 266 330
Closure-124 com.google.javascript.jscomp.Exploit Assigns 0.48 0.00 0.01 0.01 0.04 73 68 74
Math-64 org.apache.commons.math.optimization.general. LevenbergMarquardtOptimizer 0.20 0.00 0.00 0.00 0.05 1083 204 351
Math-44 org.apache.commons.math.ode. AbstractIntegrator 0.10 0.00 0.07 0.05 0.23 72 46 120
Closure-68 com.google.javascript.jscomp.parsing.JsDocInfoParser 0.00 0.50 0.00 0.00 0.00 482 589 936
Closure-46 com.google.javascript.rhino.jstype.Record Type 0.00 1.00 0.00 0.00 0.00 58 72 88
Chart-4 org.jfree.chart.plot.XYPlot -2.17 0.12 0.01 0.03 0.05 1369 966 1749
Chart-26 org.jfree.chart.axis. Axis -5.38 0.00 0.00 0.00 0.00 378 136 329
\ Total/Average [931.01 | [3551% 49.09% 56.34% | 78,664 29,172 47,608 |

Table 3: Synthesis: the Results of all Tools

‘ Metrics | JTExpert H Evosuite | T3 H Randoop ‘
88,068
Line Coverage 56.34 % | 60.79% [4874 % | 47.92%
Rank 2 ‘ 1 ‘ 3 ‘ 4
55,888
Branch Coverage 49.09 % | 4851 % [41.98% [3849 %
Rank 1] 2 | 3] 4
144,660
Mutant Coverage 3551 % | 33.50% [37.56 % [25.99 %
Rank 2] 3] 1] 4
[# [76,407 | 88,531 | 194,193 | 14,013,583 |
‘ Test Cases [Rank ‘ 1] 7| 3] 1]
o [# \ 37 | 13 | 0] 5728 |
‘ Uncompilable [Rank ‘ 3] 7| 1] 1]
[# [3,220 | 224 8010 | 190,493 |
‘ Broken test ‘ Rank ‘ 5 ‘ 1 ‘ 3 ‘ 7T ‘
- [# [04 | 451 482 | 359 |
‘ Fail test [Rank | 3] 7] 1] 1]
. [#®)] 104.14 | 96.63 | 63.54 | 126.98 |
‘T‘me | Rank | 3] 2 1] 1]
Line 166.43 181.54 128.74 129.85
Branch 284.31 309.37 224.81 201.65
Mutant 334.08 360.86 319.94 248.92
Score Details | Fail 269.33 300.67 321.33 239.33
Penalty -123.15 -25.79 -17.26 -72.81
Total 931.01 1126.65 977.57 746.95
Rank 3 1 2 4

of the CUTSs, 4% of the lines, 3% of the branches, and 2.5%
of the mutants. Also, because of the time-management bug,
JTExpert missed to generate 33 test-case files that represent
2% of the CUTs, 6% of the lines, 5.38% of the branches, and
2.7% of the mutants. Hat with standing, these bugs and
with the smallest number of test cases, Table 3 shows that
JTExpert outperformed the other tools in terms of branch-
coverage criterion and it is ranked second in terms of line-
coverage and mutation-coverage.

Table 3 presents a detailed comparison of the results of all
participant tools. JTExpert performed better than Evosuite
in terms of branch-coverage and mutation-coverage, whereas
Evosuite got better scores than JTExpert in terms of these
two criteria. This discrepancy could be explained by the way
the score is computed. Indeed, the score assigned to a given
class does not take in consideration the size of this class,
i.e, a small class has the same weight as a large class. If
we ignore the negative effects of the two bugs in JTExpert,
then we can conclude that JTExpert outperforms Evosuite
in large-size classes and Evosuite outperforms JTExpert in
small-size classes.

JTExpert outperformed T3 in terms of line and branch
coverage whereas T3 is better than JTExpert in terms of mu-
tation coverage which could be explained by the number of
test cases: JTExpert generated less than 40% of the number
of test-cases generated by T3. It is well known that the num-
ber of test cases can significantly affects mutation coverage.
The partial scores Line, Branch, and Mutant are in line with
the code coverage, JTExpert outperformed T3, whereas T3
outperformed JTExpert in terms of Fail and Penalty metrics
which could be explained by the time-management bug in
JTExpert: the negative scores in penalty mainly come from
the time required for test-cases generation. The metric Fail
summarizes the number of actual errors each tool has re-
vealed. To better understand the difference in terms of this
metric between T3 and JTExpert, we analyzed in-depth this
metric. Our analysis started at Table 3, where we observed
that the benchmarks Closure-46 and Closure-68 have a
value different to 0 in the FailTests column whereas the line

coverage equals to 0. This incompatible information leads
us to ask, how does a test-case set that does not cover any
line can reveal the actual errors? For those benchmarks,
we found that JTExpert generated many empty test-case
files (i.e., without any test case). Because an empty file
systematically generates execution error, Defect4j wrongly
considers that this file reveals an actual error. We think
that this is a bug in Defect4j that could affect also oth-
ers classes. Actually, Defect4j considers a test case to re-
veal an actual error if its execution fails on a buggy ver-
sion of the CUT regardless the reason why it failed. There-
fore, we conclude that any test case fails on the CUT may
wrongly be considered as revealing actual errors. To con-
firm this conclusion, we randomly selected three test-case
sets from Randoop results, one of them was generated for
the benchmark Lang-59 and contains three test cases that
fail on the CUT (i.e., toolName=randoop, timeBudget=60,
benchmarkName=Lang-59, runId=1). Indeed, in the result
log files, we found that instead of discarding these three test
cases, Defect4j considered them able to reveal the actual er-
rors in the buggy version of the CUT and assigned them 4
additional points in the scores. We reported this bug to the
organizer who will consider it in next workshops.

This analysis showed that a bug in Defcet4j has affected
the scores in terms of the Fail metric. We did not have
enough time to analyze the other metrics, but we believe
that the bug detected in Defect4j could also affect the mu-
tation scores.

5. CONCLUSION

In this paper, we reported and analyzed the results ob-
tained by JTExpert in the SBST Contest 2016. JTExpert
performed well compared to its results in the SBST Contest
2015. However, the SBST Contest 2016 showed us different
bugs and faults in JTExpert that must be tackled before
the next SBST Contest. Also, our analysis of the results
detected a bug in the contest platform that has affected the
scores of the participant tools.

Actually, the SBST Contest 2016 offered a good oppor-
tunity to test some ideas that we partially implemented in
JTExpert. We also learned, that the current version of JT-
Expert still needs more efforts to become a mature and ro-
bust software-testing tool.

We thank the SBST Contest organizers for helping in en-
hancing our tools and identifying new research directions
that will make JTExpert better.

6. REFERENCES

[1] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A
database of existing faults to enable controlled testing
studies for java programs. In Proceedings of the 201/
International Symposium on Software Testing and
Analysis, pages 437-440. ACM, 2014.

[2] U. R. Molina, R. Just, J. Galeotti, T. Vos, and . Unit
testing tool competition : Round four. In Software
Engineering, Search Based Software Testing Workshops
(ICSEW), 2016 IEEE 38th International Conference
on, MAY 2016.

[3] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc. Instance
generator and problem representation to improve
object oriented code coverage. IEEE Transactions on
Software Engineering, pages 1-1, To appear, 2015.

