
Improving Bug Location Using Binary Class Relationships

Nasir Ali1,2, Aminata Sabané1,2, Yann-Gaël Guéhéneuc1, and Giuliano Antoniol2
1 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada

2 SOCCER Lab, DGIGL, École Polytechnique de Montréal, Canada
E-mail: {nasir.ali,aminata.sabane,yann-gael.gueheneuc}@polymtl.ca,antoniol@ieee.org

Abstract—Bug location assists developers in locating culprit
source code that must be modified to fix a bug. Done manually,
it requires intensive search activities with unpredictable costs
of effort and time. Information retrieval (IR) techniques have
been proven useful to speedup bug location in object-oriented
programs. IR techniques compute the textual similarities be-
tween a bug report and the source code to provide a list of
potential culprit classes to developers. They rank the list of
classes in descending order of the likelihood of the classes
to be related to the bug report. However, due to the low
textual similarity between source code and bug reports, IR
techniques may put a culprit class at the end of a ranked
list, which forces developers to manually verify all non-culprit
classes before finding the actual culprit class. Thus, even with
IR techniques, developers are not saved from manual effort. In
this paper, we conjecture that binary class relationships (BCRs)
could improve the rankings by IR techniques of classes and,
thus, help reducing developers’ manual effort. We present an
approach, LIBCROOS, that combines the results of any IR
technique with BCRs gathered through source code analyses.
We perform an empirical study on four programs—Jabref,
Lucene, muCommander, and Rhino—to compare the accuracy,
in terms of rankings, of LIBCROOS with two IR techniques:
latent semantic indexing (LSI) and vector space model (VSM).
The results of this empirical study show that LIBCROOS
improves the rankings of both IR technique statistically when
compared to LSI and VSM alone and, thus, may reduce the
developers’ effort.

Keywords—Bug location, object-oriented, information re-
trieval, binary class relationships.

I. INTRODUCTION

Preliminary to any software maintenance task, a developer
must understand the source code. Due to incomplete/missing
documentation, software evolution, and software aging, de-
velopers may have difficulties to comprehend the source
code. Program comprehension-related activities are involved
in 50% to 90% of all software maintenance activities [1].
Thus, these difficulties to understand source code increase
maintenance costs.

A particular task during which these difficulties slow
down developers is that of bug location. To fix a bug,
developers must locate the bug in the source code of
a program: they must identify the classes (and–or parts
thereof) describing the unexpected behavior of the program.
Therefore, they must understand the source code enough to
identify the culprit classes and modify them to fix the bug.
Effectively automating this task could reduce maintenance

costs by reducing developers’ effort [2].
There exist several semi-automated bug-location tech-

niques (BLTs) for object-oriented programs [4], [5], [6],
[7]. These techniques typically analyse a bug report and
the source code of a program to report a list of the classes
ordered by their likelihood to be related to the bug. These
techniques mainly divide into three sets: static, dynamic,
and hybrid. To locate a bug, static BLTs [4], [5], [8]
use textual information extracted using static analyses on
the program source code whereas dynamic BLTs [7] use
textual information extracted from the execution traces of
a program. Hybrid BLTs [6] use both static and dynamic
analyses. In the following, we consider only static BLTs
because some bugs may prevent a program to compile or
it may not be possible to retrieve execution traces from a
program because it is not yet completed. Therefore, static
BLTs have advantages over dynamic ones because they do
not require a compilable program and can be applied at any
stage of its development or maintenance.

Static BLTs often use Information Retrieval (IR) tech-
niques [2], [6] to link bug reports to classes. IR-based tech-
niques, in particular the commonly-used Latent Semantic
Indexing (LSI) [9] and Vector Space Model (VSM) [4], have
proven useful for bug location [2]. An IR technique takes as
input some text extracted from a program class through static
analyses. Then, it computes the textual similarity between
the class and the bug report. A high textual similarity means
that the class and bug report share several concepts [4],
i.e., they are likely to be related to one another. Developers
should consider classes highly-similar to a bug report first
during their bug location task because they are more likely
related to the bug and, hence, cause of the bug.

However, due to the often low similarity between the
textual information extracted from source code and bug re-
ports, IR techniques may have poor accuracy, in particular IR
techniques may put the classes most related to a bug—from
the developers’ point of view—very low in the ranked list.
Consequently, many researchers proposed to use additional
information to improve the accuracy of IR techniques in
general [6], [10], and for bug location in particular [2].
They conjectured that other information combined with IR
techniques could be used to re-rank the classes for each bug
to bring the most relevant classes higher in the ranked list.

Yet, to the best of our knowledge, no previous authors

1

considered binary-class relationships (BCRs). BCRs include
use, association, aggregation, composition, and inheritance.
We conjecture that the existence of BCRs among classes is
a useful information to re-rank the list of culprit classes.
Our conjecture stems from the observations that developers
express the design and implementation of their programs in
terms of classes and the BCRs among these. For example,
the classes playing a role in implementing the “find/replace”
feature in a program would probably be related through some
BCRs. We therefore study the impact of using BCRs to
improve the ranking of classes to help developers during
their bug-location tasks. BCRs are extracted from source
code using static analyses. We exclude from our study
composition BCR that, in general, require dynamic analyses.

To test our conjecture, we propose LIBCROOS, an ap-
proach that uses LInguistic (textual) and BCRs of Object
Oriented Programs, to improve the accuracy of IR tech-
niques. In LIBCROOS, an IR technique creates a set of so-
called baseline links between a bug report and the classes
of a program. Then, each BCR among the classes acts like
an expert to vote on the baseline links. The higher the
number of experts voting [6], [10] for a baseline link, the
higher the confidence in the link, and the higher LIBCROOS
puts that class in its ranked list. Thus, LIBCROOS is a
complementary approach to any IR technique, which is, to
the best of our knowledge, the first approach to use BCRs as
experts to vote on the links between bug reports and classes.

We perform an empirical study to compare LIBCROOS
with two IR techniques alone: LSI and VSM. We eval-
uate the effectiveness of our proposed approach on four
programs—Jabref, Lucene, muCommander, and Rhino. Our
results show that LIBCROOS can statistically improve the
accuracy of the two IR techniques. Furthermore, we analyse
each BCR separately; we observe that the inheritance and
aggregation relationships help to improve the accuracy of
the two IR techniques more than the other relationships.
Results of our empirical study suggests that developers must
use more relationships among classes contributing to a same
feature.

This paper is organised as follows. Section II provides
a brief description of the state-of-the-art BLTs. Section III
describes proposed approach in details and sketches our
implementation. Section IV provides details on our empirical
study. Section V reports the results, discussions, and threats
to the validity of our findings. Finally, Section VI concludes
with future work.

II. RELATED WORK

Information retrieval (IR) techniques, bug, concept, fea-
ture location as well as binary class relationships are related
to our research work.
Bug or feature location is a search activity, whether a
developer searches the source code to find the classes that
are playing a role to implement a feature or cause a bug.

In the search results, developers tend to look at the top few
results only [6]. Many researchers have proposed automated
and semi-automated approaches to facilitate developers to
locate a feature or a bug. All the proposed approaches could
be divided into three categories, dynamic, static, and hybrid.
Static approaches have a benefit over dynamic and hybrid
approaches that they do not require compilable program.
Static analyses [8], execution traces [11], and IR techniques
[4], [5] have been used by researchers since the early works
on feature location [11]. Often, IR techniques [4], [5], [6],
use vector space models, probabilistic rankings, or a vector
space model transformed using latent semantic indexing.
Whenever available dynamic data [11], [6] proved to be
complementary and useful for traceability recovery by re-
ducing the search space. Recently, high-level documentation
was mapped into source code features using a variety of
information sources [6].

Poshyvanyk et al. [6] formulated the feature location
problem as combination of the opinions of different ex-
perts. They used a scenario-based probabilistic ranking of
event and an IR technique as experts to locate features
in the source code. Marcus et al. [5] proposed a LSI-
based approach to locate features in the source code. Their
approach allows developers to formulate queries in natural
language and results are returned as a list of source code
elements ranked by the relevance to the query. Ali et al. [12]
proposed COPARVO to recover traceability links between
object oriented programs and requirements. Authors parti-
tioned source code in four parts, in particular class, method,
variable name, and comments. Each source code part then
voted on recovered link by VSM. Their results show that all
source code partitions have their own importance in RT.

Robillard [8] proposed an approach that analyses the
topology of structural dependencies in a software system in
order to propose relevant program elements for the developer
to investigate. It takes as input a set of program elements of
interest to a developer and produces a fuzzy set describing
other elements of potential interest. Shao and Smith [13]
combined IR and static control flow information for feature
location. They used LSI to rank all the methods in a software
system by their relevance to a query. Then, for each method
in the ranked list, a call graph is constructed and assigned a
call graph score. The call graph counts the method’s direct
neighbours that also appeared in LSI ranked list. Finally,
they combined the LSI cosine similarity and call graph
score to produce a new ranked list. Zhao et al. [14] pro-
posed SNIAFL, a static, non-interactive approach to feature
location, technique. SNIAFL combines IR techniques with
a branch-reserving call graph (BRCG) for feature location.
They used VSM to generate an initial set of methods related
to a feature, and then they use BRCG to find more relevant
methods for the feature.

Object Oriented Programming is a method of implemen-
tation in which programs are organised as a collection of

2

collaborative objects [15]. As the real world entities, classes
in object oriented programs do not exist in isolation; they
cooperate through the BCRs between them. The main BCRs
are inheritance, association, aggregation, and using (use
relation)[15]. In our study, we will consider these four BCRs.
In object oriented programs, relationships are as important
as the objects themselves [16]. Class relationships allow
classes to share data, to define more complex structures or to
participate in the implementation of a program feature[15],
[17]. Therefore, classes involved in the implementation of
a feature (program behaviour) are probably linked by class
relationships. Program behaviour that deviates from its spec-
ification is called a bug[3]. Thus, to locate relevant classes
involved in the occurrence of a bug is similar to locating
classes involved in the implementation of the feature that has
not been correctly implemented. Based on this observation,
we believe that using information about BCRs to locate a
bug can be helpful.

Although class relationships are essential in the imple-
mentation of features and for program comprehension tasks,
they are not all explicit in the source code [18], [19]. It is
not an obvious task to recover class relationships in source
code. Indeed, many researchers propose various approaches
[20], [18] to extract class relationships in the source code.
Part of our approach is based on the approach proposed by
Guéhéneuc [18]. In this approach, authors formalised BCRs
based on 4 independent-language properties: exclusivity,
receiver type, life-time and the number of instances. Using
these properties and specific algorithms, they were able to
recover class relationships in the source code. They provided
this technique in the ptidej tool suite1 [21].

To the best of our knowledge, none of previous work
performed experiment to analyse what are important BCRs,
in particular at class-level, for bug location. In addition, how
BCRs could be combined with IR techniques to improve the
accuracy, in terms of ranking, for bug location. The work
presented in this paper is complementary to the existing
IR BLTs, because it exploits the BCRs of object-oriented
programs to improve the accuracy of IR techniques.

III. LIBCROOS

We now present the details of our approach for bug
location using BCRs, which uses textual information and
BCRs extracted from the source code to link classes to bug
reports. Figure 1 shows the high-level view of LIBCROOS.
It has three main modules, i.e., an IR engine, a relation
model, and a ranker. We give some details about the abstract
model of LIBCROOS and then explain each module.

A. LIBCROOS Abstract Model

Let B = {b1, . . . , bN} be a set of bug reports, C =
{c1, . . . , cM} be a set of classes, and R = {r1, . . . , rP }
be a set of BCRs.

1http://www.ptidej.net/download

Figure 1. High-level Diagram of LIBCROOS

Let L = {L1, . . . , LN} be a set where each Li is a set
of classes {c1, . . . , cj} linked to a bug bi; whose cosine
similarity is greater than 0. Let Q = {Q1,1, . . . , QN,P } be a
set in which each Qi,k is a subset of Li, in which all classes
are linked by rk. Q is produced by the relation model.

Finally, let us define four functions α, β, δ, and γ: the first
function, α(bi, cj), returns the similarity score σi,j between
a class cj and a bug report bi computed by the IR engine.
The function β(bi) returns the set Li of classes linked to a
bug bi. The function δ(Li, rk) returns the set Qi,k, and the
function γ(cj , Li, rk) returns 1 if cj ∈ Qi,k and 0 otherwise.

We also define ψi,j , a function that computes the final
similarity between a class cj and a bug bi by combining the
vote of each BCR, i.e., inheritance, association, aggregation,
and use relation, and IR technique, as:

ψi,j = λ

|R|∑
k=1

γ(cj , Li, rk)

|R|
+ (1− λ) σi,j (1)

where λ ∈ [0, 1], represents the weight of the IR tech-
nique. The higher the evidence, i.e., number of BCRs
(
∑
γ(cj , Li, rk)), the higher the new similarity ψi,j . In

the contrary, little evidence decreases ψi,j relatively to the
similarities of other cj ∈ Li. LIBCROOS model is thus
similar to the Trustrace model [10], the higher the evidence
for a link, the higher the similarity value of the link.

B. IR Engine

LIBCROOS uses some IR techniques as an engine to cre-
ate links between bug reports B and classes C. LIBCROOS
is not dependent on a particular IR technique, any IR
technique could be used with LIBCROOS. IR techniques
consider both bug reports and classes as textual documents.
For source code, we use a parser, e.g., a Java parser, to
extract all source code identifiers. The parser discard extra
information, e.g., data types, from the source code [12]. IR
techniques extract all the terms from the documents and
compute the similarity between two documents based on
the similarity of their terms and–or the distributions thereof.

3

With any IR technique, a high similarity value between two
documents suggests a potential link between them.

IR techniques take some pre-processed documents, as
explained in the following, as input to build a m× n term-
by-document matrix, where m is the number of all unique
terms that occur in the documents and n is the number
of documents in the corpus. Then, each cell of the matrix
contains a value wp,s, which represents the weight of the pth

term in sth document. A weight represents the importance
of a term in the corpus of all terms. Various term weighting
schemes are available to compute the weight of a term [4],
[22]. In this paper, we use the commonly-used TF/IDF [4]
weighting scheme.

The similarity between two documents is measured by
the cosine of the angle between their corresponding vectors
of terms’ weight. Cosine values are in [−1, 1] but negative
values are discarded and a link has thus a value in]0, 1],
because similarity cannot be negative between two docu-
ments and 0 similarity means that two documents would
not share any textual information. Different IR techniques
[4], [22], [5] can be used to compute the similarity between
bug reports and source code files. In this paper, we use the
IR techniques LSI and VSM. Thus, LIBCROOS IR engine
generates a set L.

C. Relation Model

The relation model is the part of LIBCROOS that provides
the BCRs between classes. In LIBCROOS, each BCR is
treated as an expert that votes on the links recovered by
the IR engine. The relation model takes as input the set L
provided by the IR engine and the source code or binary
code of the program. It produces as output the set Q using
analyses based on models of the source code [18].

Step 1: PADL Model Creation (PADL Model Creator):
We use the Ptidej tool suite[21] and its PADL meta-model
(Patterns and Abstract-level Description Language) to build
PADL models of object-oriented programs. A PADL model
is a representation of a program compliant with the PADL
meta-model. Such model includes the main constituents
that represent the structure and part of the behaviour of
a program, i.e.,ie classes, interfaces, member classes and
interfaces, methods, attributes, inheritance.

The Ptidej tool takes as input the C++ or Java source code
or binaries of programs and generates PADL models of these
programs. The Ptidej tool suite essentially divides into a
set of parsers, an implementation of the PADL meta-model,
and language-dependent extensions to the meta-model to
integrate, within a PADL model, constituents particular to a
programming language. For example, the PADL meta-model
does not define a constituent to describe C++ destructors,
this constituent is provided along with the C++ parser to
allow the modelling of C++ programs with possible highest
precision. The C++ and Java source code parsers are based
on the parsers provided by the CDT and JDT Eclipse plug-

ins. The Java binary code parser uses the BCEL library.

Step 2: BCRs among classes recovering (BCRs Re-
covery): Using PADL and based on an extensive literature
review [18], we implemented analyses to uncover BCRs in
the source code of programs and make them explicit in their
PADL models.

Theoretically, we assume that a BCR exists between two
classes if any method of one of the two classes invokes
at least one method of the other. Then, we define four
properties of any potential BCR but inheritance: we exclude
inheritance because it is explicit in the source code of
programs in C++ (through the : syntax) and Java (through
the extends keyword). We need dedicated analyses to
recover all BCRs but inheritance because, in mainstream
programming languages, such as C++ and Java, these rela-
tionships are not explicit in the source code but implemented
by developers from the design documents using various
idioms.

These properties are: (1) exclusivity of the participation
of the instances of the classes involved in the BCR, (2)
the types of the receivers of the messages exchanged, (3)
the life-time of the instances of the classes involved in the
BCR, and (4) the multiplicity of the instances of the classes
involved in the BCR. We use these properties to define
uniquely each BCR, from the least constraining in terms
of the values of the properties to the most constraining: use,
association, aggregation, and composition.

We do not recall here the sets of values for each properties
for lack of space and because the reader may find all details
in a previous work [18]. Also, we do not further consider
composition because it requires dynamic information that
would either be gathered through dynamic analyses or
through incomplete static analyses. These properties and
their values essentially allow identifying the various idioms
used by developers to implement BCRs.

When defining the properties of any BCR (but inheri-
tance and composition), we make sure that we can identify
these values of the properties using PADL constituents,
in particular: classes, methods, and fields, and method
invocations between methods. Thus, our analyses mainly
consist in identifying potential BCR among classes and
then refining these candidates using the values of their
properties. These analyses are source code analyses, because
they use essentially information extracted from the source
code. However, we abstract these analyses to make them
operate on PADL models so that we can recover BCRs from
various programming languages.

When applying these analyses on a PADL model, we
obtain a new PADL model that contains all the constituents
from the original model plus constituents representing ex-
plicitly the BCRs: instances of the Use, Association, Aggre-
gation, and Implementation constituents of an extension to
the PADL meta-model.

4

Step 3: Linked Classes Extraction (BCRs Filter): Based
on the model built in Step 1 and refined in Step 2 and the
set L provided by the IR engine, we build the set Q. For
each BCR rk of R, we iterate over each Li of L. If the
PADL model of the program indicates for a class cj of Li a
BCR rk between cj and another class cl of Li, then cj and
cl are selected as elements of Qi,k. At the end, of this step,
we associate to each bug bi four sets:
• Qi,1, the classes linked by an inheritance relationship

and linked to the bug bi;
• Qi,2, the classes linked by a use relationship and linked

to the bug bi;
• Qi,3, the classes linked by an association and linked to

the bug bi;
• and, Qi,4, the classes linked by an aggregation and

linked to the bug bi.

D. Ranker

The ranker assigns weights to different BCRs and similar-
ity computed by IR engine to re-rank the classes linked to a
bug. The ranker takes the set L generated by the IR engine
and the set Q generated by the relation model as input. It
uses the function γ(cj , Li, rk) to get the total number of
BCRs for each cj . For example, if a Bug1 is linked to a class
c1 and the relation model indicates that c1 ∈ Q1,1, i.e., there
exist an inheritance relationship between c1 and another
class of L1 while c1 /∈ Q1,2, c1 /∈ Q1,3, and c1 ∈ Q1,4, then
the ranker observes that the total number of relationships

found for c1 is 2, i.e.,
4∑

k=1

γ(cj , Li, rk) = 2. Then, the ranker

assigns weights to the similarities σi,j computed by the IR
engine and γ(cj , Li, rk) provided by the relation model.
Based on Equation 1, the ranker computes the final similarity
ψi,j for each link and then re-ranks the classes linked to a
bug bi based on their similarities.

IV. EMPIRICAL STUDY

We perform an empirical study on four programs and with
two state-of-the-art IR techniques to assess the accuracy of
our proposed approach for bug location. This study provides
data to assess the accuracy, in terms of ranking, of the
improvement brought by LIBCROOS over two “traditional”
IR techniques, using LSI and VSM alone.

The goal of our empirical study is to evaluate the ef-
fectiveness of our novel approach for bug location against
traditional LSI and VSM-based approaches. In addition, we
analyse which BCR helps to improve IR technique accuracy
the most. The quality focus is the ability of LIBCROOS to
link a bug report to appropriate classes in the source code in
terms of ranking [6]. The perspective is that of practitioners
and researchers interested in locating bugs in source code
with greater accuracy than that of currently-available bug-
location approaches based on IR techniques. The objects of

our empirical study are four open-source programs, Jabref2,
Lucene3, muCommander4, and Rhino5.

A. Research Questions, Hypothesis, and Variables

The research questions that our empirical addresses are:
RQ1: Does LIBCROOS provide better accuracy, in terms of

ranking, than IR techniques?
RQ2: What are the important BCRs that help to improve IR

techniques accuracy more than the others?
To answer our research questions, we perform four exper-

iments on Jabref, Lucene, muCommander, and Rhino using
LIBCROOS, LSI, and VSM. We use a measure of ranking
[6] to measure the accuracy of proposed and IR techniques to
answer our research questions. LSI and VSM return ranked
lists of classes for each bug in descending order of the
textual similarities between the bug report and the classes.
LIBCROOS returns a similar ranked list in descending order
of the similarities computed using Equation 1. If a culprit
class is lower (has a higher rank) in the ranked list then a
developer must spend more effort to reach this actual culprit
class because she must assess more candidate classes to
solve the bug. Thus, the higher is a culprit class in a ranked
list (decreased rank), the less is the developers’ effort and
the more accurate is an approach.

For RQ1, we consider the four BCRs, i.e., use, associ-
ation, aggregation, and inheritance, to analyse how much
LIBCROOS can decrease the rank of classes to put culprit
classes closer to the top of the list and, hence, can decrease
a developer’s effort. Consequently, we apply LIBCROOS,
LSI, and VSM approaches on the four programs seeking to
reject the two null hypotheses:
H01: There is no statistical difference in terms of ranking

between LIBCROOS and VSM.
H02: There is no statistical difference in terms of ranking

between LIBCROOS and LSI.
For RQ2, we use LIBCROOS with only one BCR at

a time to observe which relationship helps more than the
other to put the culprit classes at the top. Consequently, we
apply LIBCROOS, LSI, and VSM approaches on the four
programs seeking to reject the two null hypotheses:
H03: All the BCRs equally improve accuracy, in terms of

ranking, over VSM.
H04: All the BCRs equally improve accuracy, in terms of

ranking, over LSI.
We use the approaches, either a LIBCROOS, LSI, or

VSM, as independent variables and the rankings of the
approaches as dependent variables to empirically attempt
rejecting the null hypotheses.

2http://jabref.sourceforge.net/
3http://lucene.apache.org/core/
4http://www.mucommander.com/
5http://www.mozilla.org/rhino

5

B. Objects

We select the four open-source programs, Jabref, Lucene,
muCommander, and Rhino because they satisfy several
criteria. First, we select open-source programs, so that other
researchers can replicate our experiments. Second, we avoid
small programs that do not represent programs handled by
most developers. Third, three of the programs have been
used in previous studies by other researchers [23], [24] for
possible comparisons. Finally, three programs come with
independent, manually-built oracles, which mitigates some
of the threats to the validity of our results. Only for Lucene,
we recovered links between bugs and source code.

JabRef is an open-source bibliography reference manager.
The native file format used by JabRef is BibTeX, the
standard LaTeX bibliography format. JabRef runs on the
Java VM (version 1.5 or newer), and should work equally
well on Windows, Linux and Mac OS X. Jabref version 2.6
has 579 classes, 287, 791 LOC, and 36 bug reports. There
are 108 manually built links between bug reports and classes.

Lucene is an open-source high-performance text-based
search-engine library written entirely in Java. It is a technol-
ogy suitable for nearly any application that requires full-text
search, especially cross-platform. Lucene version 3.1 has
434 classes, 111, 117 LOC, and 89 bug reports. We select
Lucene v3.1 because it contains more closed bugs than other
versions and these were linked to its SVN repository. There
are 235 manually built links between bug reports and classes.

muCommander is a lightweight, cross-platform file man-
ager with a dual-pane interface. It runs on any operat-
ing system with Java support. It supports 23 international
languages. muCommander supports virtual filesystem as
well as local volumes and the FTP, SFTP, SMB, NFS,
HTTP, Amazon S3, Hadoop HDFS, and Bonjour protocols.
muCommander version 0.8.5 has 1, 069 classes, 124, 944
LOC, and 81 bug reports. There are 231 manually built links
between bug reports and classes.

Rhino is an open-source JavaScript engine entirely devel-
oped in Java. Rhino converts JavaScript scripts into objects
before interpreting them. It works in compiled as well as in
interpreted modes. It is intended to be used in server-side
systems. Rhino can be used as a debugger by making use
of the Rhino shell. Rhino version 1.5R4.1 has 111 classes,
94, 078 LOC, and 41 bug reports. There are 92 manually
built links between bug reports and classes.

C. Preprocessing Documents

We now detail how we prepare the input data necessary
to answer our research questions.

Generating Corpora: We download the source code of
Jabref v2.6, Lucene v3.1, muCommander v0.8.5, and Rhino
v1.5R4.1 from their respective CVS/SVN repositories. We
generate corpora of all the programs for IR techniques to
link bug reports to classes. To generate corpora, we extract
source code identifiers using a dedicated Java parser [12]

to extract all source-code identifiers. The Java parser builds
an abstract syntax tree (AST) of the source code that can
be queried to extract required identifiers, e.g., class, method
names, and so on. Only for Lucene, we download bug reports
from the JIRA bug repository. For all the other programs,
we used the bug reports provided by the other researchers
[23], [24]. We only use long description of bug reports.

Oracles: We use previously built oracles to verify if
a class linked to a bug is true positive or false positive
link. Some researchers [23], [24] manually and–or semi-
automatically created links between bug reports and methods
to create oracles. In this paper, we link bug reports to classes,
thus we converted the oracles at class level. In the case of
Lucene, we download bug reports and SVN logs from JIRA
repository. Developers usually write bug IDs in SVN logs
[25] when they fix a bug. We automatically extract bug IDs
from SVN logs to link bug reports to the classes.

Preprocessing the Corpora: We remove non-
alphabetical characters from the terms gathered from the
source code and the bugs and then use the classic Camel
Case and under-score algorithms to split identifiers into
terms. Then, we perform the following steps to normalise
bug reports and source code: (1) convert all upper-case
letters into lower-case and remove punctuation; (2) remove
all stop words (such as articles, numbers, and so on); and,
(3) perform word stemming using the Porter Stemmer
bringing back inflected forms to their morphemes.

D. Linking Bugs Reports and Classes using VSM

We use VSM [4] to index the corpora generated in
the previous step. For each bug report, VSM generates a
ranked list of classes. For example, if there are 10 bugs
then there would be ten ranked lists. In VSM, bug reports
and classes are viewed as vectors of terms. Different term
weighting schemes can be used to construct these vectors.
The most popular scheme is TF/IDF . Term frequency
(TF) is described by a t× d matrix, where t is the number
of terms and d is the number of documents in the corpus.
TF is often called local weight. The most frequent term
will have more weight in TF but it does not mean that
it is an important term. The inverse document frequency
(IDF) of a term is calculated to measure the global weight
of a term: (TF/IDF)i,j =

ni,j∑
k nk,j

×log2
(
|D|

d:|ti∈d|

)
, where

ni,j is the occurrences of term ti in document dj ,
∑

k nk,j
is the sum of occurrences of all terms in document dj ,
|D| is the total number of documents in the collection,
and |d : ti ∈ d| is the number of documents in which
the term ti appears. Once all bug reports and source code
documents have been represented in the vectors, we compute
the similarities between bug reports and classes to link them.

E. Linking Bugs Reports and Classes using LSI

Latent Semantic Indexing (LSI) is an information retrieval
technique based on the VSM. For each bug report, LSI

6

LSI vs. LIBCROOS VSM vs. LIBCROOS
Mean Median SD Mean Median SD

Relationship LSI LIBC. LSI LIBC. LSI LIBC. VSM LIBC. VSM LIBC. VSM LIBC.
Jabref ALL 22.19 5.47 8 2.5 32.86 7.59 16.14 2.5 6.5 2 23.30 2.09

Aggregation 22.19 14.86 8 6 32.86 20.64 16.14 7.97 6.5 4 23.30 9.93
Association 22.19 19.92 8 8 32.86 28.47 16.14 13.5 6.5 6.5 23.30 18.77
Inheritance 22.19 10.72 8 4 32.86 15.33 16.14 5.75 6.5 3 23.30 7.59
Use 22.19 19.56 8 8 32.86 27.997 16.14 12.97 6.5 6.5 23.30 18.35

Lucene ALL 26.22 9.66 8 4 43.11 15.16 24.90 9.40 6 2 46.08 16.66
Aggregation 26.22 16.42 8 6 43.11 25.47 24.90 15.47 6 5 46.08 28.74
Association 26.22 24.90 8 7 43.11 40.50 24.90 23.88 6 6 46.08 43.57
Inheritance 26.22 15.85 8 5 43.11 25.45 24.90 14.87 6 3.5 46.08 25.80
Use 26.22 23.16 8 7 43.11 37.21 24.90 22.12 6 6 46.08 40.18

muCommander ALL 36.72 11.59 7.5 3.5 89.33 24.96 39.88 13.23 9.5 3.5 105.20 32.01
Aggregation 36.72 19.54 7.5 4.5 89.33 43.76 39.88 20.37 9.5 5.5 105.20 50.87
Association 36.72 31.35 7.5 6.5 89.33 73.59 39.88 34.05 9.5 7.5 105.20 87.69
Inheritance 36.72 20.08 7.5 5.5 89.33 46.26 39.88 22.21 9.5 5 105.20 55.64
Use 36.72 29.94 7.5 6.5 89.33 69.59 39.88 32.69 9.5 8 105.20 83.66

Rhino ALL 11.34 3.25 4.5 1 17.13 4.36 9.47 2.78 3 1 16.45 4.38
Aggregation 11.34 6.97 4.5 3 17.13 9.55 9.47 5.47 3 2 16.45 8.76
Association 11.34 9.41 4.5 3.5 17.13 14.66 9.47 7.72 3 2.5 16.45 13.87
Inheritance 11.34 6.31 4.5 2.5 17.13 9.61 9.47 4.5 3 2 16.45 8.02
Use 11.34 9.19 4.5 3.5 17.13 14.53 9.47 7.72 3 2.5 16.45 13.54

Table I
DESCRIPTIVE STATISTICS LIBCROOS, LSI, AND VSM. LIBC. AND SD REPRESENT LIBCROOS AND STANDARD DEVIATION RESPECTIVELY

generates a ranked list of classes. LSI assumes that there
is an underlying or latent structure in word usage for
every document set in corpus [5]. The processed corpus is
transformed into a term-by-document matrix. The matrix
is then decomposed using Singular Value Decomposition
(SVD) [5] to derive a particular latent-semantic structure
model from the term-by-document matrix. In SVD, each
term and artifact could be represented by a vector in the
k space. The choice of k value, i.e., the SVD reduction of
the latent structure, is critical and still an open issue in the
natural language processing literature. We want a value of
k that is large enough to fit all the real structures in the
data but small enough so we do not also fit the sampling
error or unimportant details. In this study, we tried various
values of k and k = 200 for Jabref, muCommander, and
Lucene, and k = 50 for Rhino provide better accuracy than
the other k values. Once all bug reports and source code
documents have been represented in the LSI sub-space, we
compute the similarities between bug reports and classes
using cosine similarity as explained in Section III-B.

F. Linking Bugs Reports and Classes using LIBCROOS

In LIBCROOS, we take the preprocessed corpora as input
to link the bug reports with classes. Any IR technique could
be used in LIBCROOS to link bugs to classes, as base line to
start the process. In this paper, we use the LSI and VSM IR
techniques. For each bug report, LSI and VSM generate a
ranked list of classes. Each ranked list contains potential
culprit classes in descending order. We use our relation
model to analyse the relationships between the classes of
each bug’s ranked list. We put the classes in four sets, i.e.,
Qi,1, Qi,2, Qi,3, and Qi,4 (see Section III-C), depending on
the BCR by which they are linked to other classes in the
ranked list. If a class does not have any BCR with other
classes, we do not keep that class in any of the sets. Thus,
each set is treated as a different ranked list. Indeed, we have

four ranked lists for each bug. We combine all ranked list
as described in III-D using Equation 1.

To select λ values, we simply assigned 0.1 weight to each
BCR for the corpora, i.e., Jabref, Lucene, muCommander,
and Rhino, and both IR techniques. We observed that using
λ = 0.1 for each BCR yield to a good accuracy of
LIBCROOS on the corpora. Furthermore, we analysed that
assigning between 0.07 to 0.15 λ value to each BCR statisti-
cally increases the accuracy. More experiments are required
with other corpora to generalise the weights for each BCR.
Choosing a weight is still an open research question [6].
However, we observe that using weights between 0.07 to
0.15 for all the copora decreases the ranking of culprit
classes.

G. Analysis Methods

We performed the following analysis on the LIBCROOS,
LSI, and VSM ranked lists to answer our research questions
by attempting to reject our null hypotheses.

We do not use precision and recall, because, on the one
hand, the IR techniques would link all the bug reports to
all the classes and recall would always be equals to 100%
and because, on the other hand, using a high threshold value
[6] based on textual similarity and linking only some bug
reports to classes would yield a high precision. Thus, to
compare LIBCROOS, LSI, and VSM, we use the rank of the
first related class to a bug report as a measure of accuracy
[6]. To answer RQ1, we compare LIBCROOS generated
ranked list with LSI and VSM generated ranked lists of
each bug. To answer RQ2, we use LIBCROOS with only
one BCR at a time to compare its ranked list with LSI
and VSM’s ranked lists. Each approach used the same bug
reports and classes. All null hypotheses have been tested
using a paired, nonparametric test Mann-Whitney test. We
use a significance level of 95% for all the statistical test. We
use the Mann-Whitney test to assess whether the differences

7

in accuracy, in terms of rankings, are statistically significant
between the LIBCROOS, LSI, and VSM. Mann-Whitney is
a nonparametric test and, therefore, it does not make any
assumption about the distribution of the data.

V. RESULTS AND DISCUSSION

This section presents the results of our experiments.
Figure 2 shows the box plots of the accuracy measure,

in terms of ranking, of LIBCROOS, LSI, and VSM applied
on the corpora. we use manually built oracles to analyse
the rank of actual culprit class in the ranked list gener-
ated by LIBCROOS, LSI, and VSM. For all the corpora,
LIBCROOS assigns a lower rank to the culprit classes in
terms of lower quartile, mean, median, standard deviation,
and upper quartile. The results illustrated in Figure 2 provide
a high-level view of the accuracy of LIBCROOS. The
smaller boxes represent the decreases in rankings, i.e., the
culprit classes at the top in the ranked lists.

Table I reports results for LIBCROOS using all the
BCRs and using only one BCR at a time. Results show
that LIBCROOS statistically decreases the ranks of culprit
classes up to 67%. For example, in the case of muCom-
mander (VSM), on average across bug reports, LIBCROOS
decreases the rank of culprit from 39.88 to 13.23. Standard
deviation values show that all the ranks tend to be very close
to the mean for LIBCROOS, whereas for LSI and VSM, they
are spread out over a large range of values.

We have statistically significant evidence to reject the H01

and H02 hypotheses. The p−values, for all the comparison of
LIBCROOS vs. LSI and LIBCROOS vs. VSM, are below the
standard significant value, i.e., 0.05. Results of RQ1 support
our conjecture that adding BCRs with IR techniques helps to
improve the accuracy, in terms of ranking, of IR techniques.
Thus, we conclude that using BCRs among different classes
that implement a same feature (or participate to a same bug)
with IR techniques yields better accuracy than “traditional”
IR techniques alone in bug location.

Thus, we answer RQ1 as follow: LIBCROOS helps to
decrease the rank of culprit classes and put culprit classes
higher in the ranked lists when compared to “traditional”
IR techniques alone.

To answer RQ2, we use LIBCROOS with only one BCR
at a time. We assign 0.1 weight to λ in Equation 1 (see
Section IV-D. Table I shows the detailed results of each BCR
separately. In the majority of the programs, we can see that
inheritance is the most important relation, then aggregation,
use, and association, for bug location. However, using other
weights for each BCR could yield different results. We
performed experiments using weights λ between 0.07 to
0.15 for each BCR and observed the same importance as
mentioned before. We performed statistical tests to compare
LIBCROOS using one BCR with LSI and VSM and test our
null hypotheses H03 and H04.

We have statistically-significant evidence to reject H03

and H04. The p−values, for all the comparison of
LIBCROOS using one BCR vs. LSI and vs. VSM, are below
the standard significant value. The results show that using
only one BCR also improves the accuracy, in terms of rank-
ing, of IR techniques for bug location. LIBCROOS using
only one BCR helps to decrease the ranks of culprit classes
and put culprit classes higher in the ranked lists, when
compared to “traditional” IR techniques alone. However, all
the BCRs have different importance for bug location.

Thus, we answer RQ2 as follow: inheritance is the most
important BCR to decrease the ranking, then aggregation,
use, and association.

A. Threats to Validity

Several threats potentially limit the validity of our em-
pirical study. We now discuss potential threats and how we
control or mitigate them.

Construct validity: Construct validity concerns the
relation between theory and observations. The degree of
imprecision of automatic bug reports to class traceability link
was quantified by means of a manual validation of the ranked
lists generated by the approaches, using manually-built ora-
cles. We did not build the oracles for three programs. Thus,
there is no bias in the links between bug reports and classes.
All three corpora have been used by various researchers and
manual oracles have been verified to avoid imprecision in
the measurement. Only for Lucene, we automatically built
the oracle by mining JIRA software repository. We used
Lucene to mitigate the threat of imprecision of manually
built oracles.

Internal Validity: The internal validity of a study is the
extent to which a treatment effects change in the dependent
variable. The internal validity of our empirical study could
only be threatened by our choice of the λ value: other values
could lead to different results. To mitigate this threat, we
use the same λ for all the corpora and approaches. We used
λ = 0.1 for every BCR in all the experiments. In addition,
we used λ values between 0.07 to 0.15 to analyse; we found
statistical improvement on these λ values too. However, it is
possible using other λ values combination provide different
results. Thus, more experiments are required.

External Validity: The external validity of a study
relates to the extent to which we can generalise its results.
Our empirical study is limited to four programs, Jabref,
Lucene, muCommander, and Rhino. Yet, our approach is
applicable to any other object-oriented programs. However,
we cannot claim that the same results would be achieved
with other programs. Different programs with different usage
patterns of BCRs, source code structure, and identifiers may
lead to different results. However, the four selected programs
have different source code size, different number of BCRs,
and identifiers. Our choice reduces the threat to the external

8

Jabref Lucene muCommander Rhino
L

SI
V

SM

Figure 2. LIBCROOS, LSI, and VSM Results Boxplot Graph

validity. The results suggest that inheritance helps better to
put the culprit classes at the top. We explain this observation
by the fact that inheritance is the most accurate BCR in
the model because inheritance is explicit in the source code
and actually expresses exactly what the developers want. For
other BCRs that are not explicit in source code and recovered
with the help of some algorithms, it may not always be the
developers’ intent to have these BCRs. Also, the analyses
may miss some relationships or add more relationships than
expressed in the design. Thus, more case studies are required
to generalise our results.

Conclusion validity: Conclusion validity threats deals
with the relation between the treatment and the outcome.
The appropriate non-parametric test, Mann-Whitney, was
performed to statistically reject the null-hypotheses, which
does not make any assumption on the data distribution.

VI. CONCLUSION AND FUTURE WORK

The literature [4], [5], [6] showed that information re-
trieval (IR) techniques are useful to link features, e.g., bug
reports, and source code, when a bug is defined as a feature
that deviates from the program specification [3]. However,
IR techniques lack accuracy in terms of ranking [26]. In this
paper, we conjectured that whenever developers implement
some features, they use some BCRs among the different
classes implementing the feature. Thus, combining BCRs
with IR techniques could increase their accuracy in terms of
ranking, to help developers with their bug location tasks.
To verify our conjecture, we proposed a new approach,

LIBCROOS, that uses BCRs and textual information ex-
tracted from source code to link classes and bug reports. To
the best of our knowledge, LIBCROOS is the first approach
to use BCRs as experts to vote on the links recovered by an
IR technique. In this paper, we considered four commonly-
used relationships, i.e., use, association, aggregation, and
inheritance, and two IR techniques, i.e., LSI and VSM, to
link classes and bug reports.

To evaluate the effectiveness of our proposed approach,
we performed an empirical study on four software programs,
i.e., Jabref, Lucene, muCommander, and Rhino. We com-
pared LIBCROOS-generated ranked lists of classes with the
ranked lists produced by LSI and VSM alone. The results
achieved in the reported empirical study showed that, in gen-
eral, LIBCROOS improves the accuracy of LSI and VSM. In
all experiments, LIBCROOS improved the accuracy of the
IR-based technique and could reduce developers’ efforts by
putting actual culprit classes at the top in the ranked lists.
We also used LIBCROOS with only one BCR at a time
to analyse which BCR helps more to improve the accuracy
of the IR techniques. In the majority of the programs, we
observed that inheritance is a more important relation than
aggregation, use, and association.

We also observed that, as the size of the source code
increases, IR techniques produce larger ranked lists, which
increase the difficulty of developers’ bug-location tasks,
because they must manually iterate through more potential
culprit classes. LIBCROOS automatically increases the rank

9

of non-culprit classes and brings actual culprit classes closer
to the beginning of the ranked lists. Our experiments showed
that the size of the source code does not impact the accuracy
of LIBCROOS. In the contrary, the more relationships
among classes, the greater the accuracy of LIBCROOS.
Our empirical study helps developers and practitioners to
understand how BCRs could be used for bug location. In
addition, it suggests that developers must use more relation-
ships among classes contributing to a same feature.

There are several ways in which we are planning to
continue this work. First, we will consider more BCRs
to analyse the impact of different relationships on bug
location. Second, we will apply our approach on different
software comprehension and maintenance activities, e.g., re-
quirements traceability. Third, we will analyse more datasets
to increase the generalisability of our findings. We will also
perform an in-depth analysis of the λ value effect on other
datasets. Lastly, we will use other IR techniques, e.g., Jensen
Shannon divergence, to quantify the improvement using our
proposed approach.

REFERENCES

[1] H. A. Muller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R.
Tilley, and K. Wong, “Reverse engineering: a roadmap,” in
ICSE ’00: Proceedings of the Conference on The Future of
Software Engineering. New York, NY, USA: ACM, 2000,
pp. 47–60.

[2] S. Lukins, N. Kraft, and L. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Reverse
Engineering, 2008. WCRE ’08. 15th Working Conference on,
oct. 2008, pp. 155 –164.

[3] E. Allen, Bug Patterns in Java. APress L. P., 2002.
[4] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and

E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 970–983, 2002.

[5] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in Proceedings of 25th International Conference on Software
Engineering. Portland Oregon USA: IEEE CS Press, 2003,
pp. 125–135.

[6] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,
and V. Rajlich, “Feature location using probabilistic ranking
of methods based on execution scenarios and information re-
trieval,” IEEE Transactions on Software Engineering, vol. 33,
no. 6, pp. 420–432, 2007.

[7] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta,
“Towards employing use-cases and dynamic analysis to com-
prehend mozilla,” in Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance. IEEE Computer
Society, 2005, pp. 639–642.

[8] M. P. Robillard, “Topology analysis of software dependen-
cies,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 4, pp.
18:1–18:36, 2008.

[9] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An infor-
mation retrieval approach to concept location in source code,”
in Reverse Engineering, 2004. Proceedings. 11th Working
Conference on, 2004, pp. 214 – 223.

[10] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Trust-based
requirements traceability,” in Proceedings of the 19th Inter-

national Conference on Program Comprehension, S. E. Sim
and F. Ricca, Eds. IEEE Computer Society Press, June 2011,
10 pages.

[11] N. Wilde and C. Casey, “Early field experience with software
reconnaissance technique for program comprehension,” in
Proceedings of IEEE Working Conference on Reverse Engi-
neering, 1996.

[12] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Requirements
traceability for object oriented systems by partitioning source
code,” in Reverse Engineering (WCRE), 2011 18th Working
Conference on, oct. 2011, pp. 45 –54.

[13] P. Shao and R. K. Smith, “Feature location by ir modules
and call graph,” in Proceedings of the 47th Annual Southeast
Regional Conference, New York, NY, USA, 2009, pp. 70:1–
70:4.

[14] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl:
Towards a static noninteractive approach to feature location,”
ACM Trans. Softw. Eng. Methodol., vol. 15, no. 2, pp. 195–
226, 2006.

[15] G. Booch, Object-Oriented Analysis and Design with Appli-
cations (3rd Edition). Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc., 2004.

[16] J. Rumbaugh, “Relations as semantic constructs in an object-
oriented language,” SIGPLAN Not., vol. 22, pp. 466–481,
1987.

[17] J. Purdum, Beginning C# 3.0: An Introduction to Object Ori-
ented Programming (Wrox Beginning Guides). Birmingham,
UK, UK: Wrox Press Ltd., 2008.

[18] Y.-G. Guéhéneuc and H. Albin-Amiot, “Recovering binary
class relationships: putting icing on the uml cake,” SIGPLAN
Not., vol. 39, pp. 301–314, 2004.

[19] D. J. Pearce and J. Noble, “Relationship aspects,” in Proceed-
ings of the 5th international conference on Aspect-oriented
software development, New York, NY, USA, 2006, pp. 75–
86.

[20] D. Jackson and A. Waingold, “Lightweight extraction of
object models from bytecode,” in Proceedings of the 21st
international conference on Software engineering, New York,
NY, USA, 1999, pp. 194–202.

[21] Y.-G. Guéhéneuc, “Ptidej: Promoting patterns with patterns,”
in Proceedings of the 1st ECOOP workshop on Building a
System using Patterns. Springer-Verlag, 2005.

[22] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability
technique for specifications,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference
on, 2008, pp. 103 –112.

[23] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C.
Murphy, N. Nagappan, and A. V. Aho, “Do crosscutting
concerns cause defects?” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 497–515, 2008.

[24] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can
better identifier splitting techniques help feature location?” in
Program Comprehension (ICPC), 2011 IEEE 19th Interna-
tional Conference on, 2011, pp. 11 –20.

[25] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bern-
stein, “The missing links: bugs and bug-fix commits,” in
Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, ser. FSE
’10. New York, NY, USA: ACM, 2010, pp. 97–106.

[26] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, Factors Impacting
the Inputs of Traceability Recovery Approaches, A. Zisman,
J. Cleland-Huang, and O. Gotel, Eds. New York: Springer-
Verlag, 2011.

10

