
ACUA: API Change and Usage Auditor

Wei Wu, Bram Adams, Yann-Gaël Guéhéneuc, Giuliano Antoniol
DGIGL, École Polytechnique de Montréal

Montréal, Canada
Email: {wei.wu, foutse.khomh, bram.adams, yann-gael.gueheneuc, giuliano.antoniol}@polymtl.ca

Abstract—Frameworks are widely used in modern software
development. They are accessed through their Application Pro-
gramming Interfaces (APIs), which specify the contract with
client programs to accomplish specific tasks. When frameworks
evolve, API backward-compatibility cannot always be guaran-
teed, yet client programs need to upgrade to use the new releases.
One common reason behind client program’s upgrades is the
patching of security vulnerabilities. This important maintenance
activity (i.e., patching security vulnerabilities) is often delayed by
non-security-related API changes when the frameworks used by
client programs are not up to date. In this paper, we propose a tool
ACUA to generate reports containing detailed API change and
usage information by analyzing the source or binary code of both
frameworks and clients programs written in Java. ACUA detects
the API changes between two framework releases and classify
them according to the classification proposed by Des Rivières
from IBM and analyzes where and how the APIs are used in
client programs. Both API change and usage types influence
the upgrading cost in client programs. Developers can use the
API change and usage reports generated by ACUA to better
understand how the differences in the APIs between two releases
of a framework affect their client programs. Based on this
understanding, developers can estimate the work load of upgrades
and decide when to upgrade client programs.

I. INTRODUCTION

Object-oriented frameworks and libraries1 are widely used
in software systems today [1]. They reduce development time
and increase the user-perceived quality of programs through
the reuse of existing code, such as more reliable implementa-
tions. They are used through their Application Programming
Interfaces (APIs), which specify a set of functionality that
client programs can use to accomplish specific tasks. As any
other software artifacts, APIs are often evolved to cope with
new requirements or patch security vulnerabilities (e.g., the
fixing of the Heartbleed bug in OpenSSL2).

However, upgrading frameworks is not cost-free and may
interrupt the services in worst cases. For example, the online
tax filing service of Canada Revenue Agency was down for
five days to patch the Heartbleed bug3. Raemaekers et al.
[1] reports about the upgrade of the authentication framework
of a software system that ended up consuming a whole
week of work, even though developers were using automated
tests to verify the upgraded system. Five days of interrupted
services may cause serious losses for service providers, but
five days with services having known-security-leak may expose
service providers to even bigger losses. In the case of security

1Without loss of generality, we focus on frameworks which usually provide
the functions of libraries in practice.

2http://heartbleed.com/
3http://www.cra-arc.gc.ca/gncy/fq-hb-eng.html

vulnerabilities, one way to reduce the costs of framework
upgrades is to perform frequent updates. In fact, framework
providers usually do not patch all affected releases, but the
latest one. Therefore, if the version of the framework used in
client programs is too old, developers may spend a long time
adapting API changes that are unrelated to the vulnerability,
which in turn would slow down the upgrading process. Hence,
keeping frameworks updated can reduce the reaction time to
patch security leaks.

Because framework upgrades are often costly (at least
in the short term), it is important for development teams to
assess and forecast the cost of each framework upgrade before
initiating any action. Specifically, it is important to answer the
following questions: (i) what, where and how are framework
APIs used? (ii) which of the used APIs are changed in the
new release of the framework and how are they changed? (iii)
where and how are framework APIs used in client programs?
A changed API used in many locations in client programs may
cause Shotgun Surgery [2], a code smell causing lots of little
changes in lots of classes, which would result in high upgrade
costs. Different types of API changes affect upgrade costs
differently. For example, the addition of a formal parameter
to an API method is easier to adapt than the removal of an
API method. To adapt the latter change, developers must find a
replacement of the removed method or re-implement it, while
for the first case, they can simply provide a new parameter.

To assist development teams in assessing the cost of
framework upgrades, we propose ACUA (API Change and
Usage Auditor), a tool to collect API change and usage
information through the analysis of the source or binary code
of frameworks and client programs. For a given client release
and a pair of framework releases, ACUA first reports which
(and where) APIs are used in the client program. Second,
ACUA reports the IR (infiltration ratio), i.e, the percentage
of client program elements using framework APIs and the
IIR (ideal infiltration ratio), i.e, the lowest infiltration ratio
possible. Third, ACUA detects what (and how) APIs are
changed between the currently-used and the to-be-upgraded
releases of frameworks. Fourth, ACUA verifies which of the
changed APIs affect the client program.

To the best of our knowledge, no previous tool has an-
alyzed frameworks and their client programs and provided
API change and usage information in such details. Yet, such a
tool would help developers plan and act efficiently regarding
API change adapting. For the developers of client programs,
a good knowledge of how APIs are used and how they
are affected by different types of API changes would help
them better estimate upgrading work load and plan framework
upgrades. For framework developers, such tools would help

them document the API changes that are difficult to adapt in
high priority.

To assess the potential benefits of ACUA, we conduct a
case study to analyze API changes and usages in 11 framework
releases and their client programs, collected from a large
framework ecosystem, Eclipse. With ACUA, we observed that
(1) on average, more than 80% of such usage could be reduced
through refactorings, (2) API change types that occur the most
in frameworks and those that are used the most in the client
programs are not the same, and such difference should be
considered in documenting API changes and developing tools
to support framework upgrading.

The remainder of the paper is organized as follows. Sec-
tion II introduces background information about API change
and usage. Section III describe the functionalities of ACUA
and Section ?? presents the design of our case study. Sec-
tion IV reports the results of the study. Section V discusses
lesson learned and suggestions to developers. Section ??
discusses threats to validity while Section VI summarises the
related works. Finally, Section VII concludes the paper and
outlines some avenues for future works.

II. BACKGROUND

This section presents some background information about
APIs changes and usages.

A. API changes

Frameworks provide their services through APIs. These
APIs may change during the evolution of frameworks.
Des Rivières [3] has summarized API changes, based on
entities changed in APIs, e.g., packages, classes, modifiers
etc.. He also pointed out which API changes may cause
binary incompatibility, i.e., the class files of the new releases
of frameworks cannot be linked to client programs without
recompilation. Although an API change may only cause binary
or source incompatibility [4], most of the API changes listed
by Des Rivière also cause source incompatibility, i.e., there
are errors when the client program source code are compiled
with the new releases of frameworks. In this study, we do
not distinguish between these two types of incompatibilities
because, as stated by Buchholz, [5] “Every change is an
incompatible change” (a risk/benefit analysis is always re-
quired) and hence client developers should be informed of all
API changes causing source or binary incompatibility for their
code.

In the classification of API changes proposed by
Des Rivières, we selected those related to classes, inter-
faces and methods, because they are the fundamental entities
of object-oriented programming languages. We summarise
Des Rivières’ API changes into 23 categories, among which,
15 are at reference type level (shown in Table I) and 8 are at
method level (shown in Table II).

These types of API changes do not have the same effect
on client programs; some of them are more difficult to adapt
than the others. For example, the addition of a new int
parameter to an API method is easier to adapt than the removal
of an API method. To adapt the latter change, developers must
find a replacement of the removed method or re-implement it.
Knowing the types of API changes is important for accurate
estimations of programs upgrade workloads.

TABLE I. FRAMEWORK API CHANGE TYPES - REFERENCE TYPE
LEVEL

ACUA Des Rivières
Non-Existing Class (NEC)

Delete API type from API packageNon-ExistingInterface (NEI)
Moved Class (MC)

Moved Interface (MI)
Decrease Access (DA) Change public type in API package to make non-public

Change Type Kind (CTK) Change kind of API type
(class, interface, enum, or annotation type)

Expand Super Interface Set (ESIS) Expand superinterface set (direct or inherited)
Contract Super Interface Set (CSIS) Contract superinterface set (direct or inherited)
Add Method To Interface (AMTI) Add API method to Interface

Add Abstract Method (AAM) Add Abstract API method to class
Contract Super Class Set (CSCS) Contract superclass set (direct or inherited)

Change To Abstract (CTA) Change non-abstract to abstract
ChangeToFinal (CTF) Change non-final to final

Change Type Bound (CTB)

Add, delete, or change type bounds of type parameter
Add type parameter

Delete type parameter
Re-order type parameters

With Changed Method (WCM)

Add API method
Delete API method

Move API method up type hierarchy
Move API method down type hierarchy

All method level changes

TABLE II. FRAMEWORK API CHANGE TYPES - METHOD LEVEL

ACUA Des Rivieres

Non-Existing Method (NEM)

Change method name
Delete API Method

Move API method up type hierarchy
Move API method down type hierarchy

Change Formal Parameter (CFP) Add or delete formal parameter
Change type of a formal parameter

Change Return Type (CRT) Change result type (including void)

Decrease Method Access (DMA)
Decrease access:

from public access to protected, default, or private access
from protected access to default or private access;

Change Method To Abstract (CMTA) Change non-abstract to abstract
Change Method To Final (CMTF) Change non-final to final
Change Method To Static (CMTS) Change static to non-static

Change Method To Non Static (CMTNS) Change non-static to static

B. API Usages

To access framework APIs, client developers may extend a
class, implement an interface, use framework reference types
(or their subtypes as generic types, method return types or
formal parameter types), or call methods defined in frame-
works. These different forms of APIs usages have an impact
on the process of adapting client programs to new releases of
frameworks. Class extensions and interface implementations
are two inheritance-style usages that require a good knowledge
of the internal implementation of frameworks and API changes
impact more client programs [6]. On the one hand, it is not
possible to eliminate API inheritance-style usages completely.
Frameworks are designed for the purpose of inversion of
control (IOC) [7], i.e., client programs become a part of
frameworks by overriding methods in classes or interfaces
provided by the frameworks. On the other hand, framework
classes not designed for IOC can be replaced by composition-
style usage.

Composition-style usages encapsulate framework APIs and
use local APIs to hide them, while inheritance-style usages re-
tain framework APIs. An example of composition-style usage
is the use of framework reference types as private members in
client classes while only accessing them within method bodies.

In general, API changes in inheritance-style usage are more
difficult to adapt because they require a good knowledge of
the internal implementation of frameworks. Inheritance-style
usages are not avoidable in client programs for the purpose of
IOC, but those not for IOC can be converted to composition-
style usage.

Maven Repo

Eclipse SDKs

Data

Collection

JarFiles

Dependencies

Data

Processing

Framework Models

Client Models

API

Change

and

Usage

Analyses
Reports

Fig. 1. ACUA Modules

Program A

Release 1

Framework C

Release 1

Framework D

Release 2

Program B

Release 2

Framework C

Release 1

Program A

Release 1

Program B

Release 2

Framework D

Release 2

Dependencies Clients

Fig. 2. Reverse dependency

III. ACUA

This section describes the modules of ACUA (shown in
Figure 1) and the algorithms used to analyze frameworks API
changes and API usages in client programs. The instructions
to use ACUA in on our web page4.

A. Data Collection

ACUA takes two types of inputs: Maven POM (Project
Object Model) configuration files and Eclipse plugin jars.

Maven is a project management tool from the Apache
Software Foundation. It uses POM files to describe the depen-
dencies between client programs and frameworks5. ACUA uses
the information in POM files to downloaded the jar files of the
corresponding versions of client programs and the frameworks
used by them, from the Maven repository.

The dependency information of Eclipse plugins are man-
aged in two ways. From Eclipse 1.x to 3.0, the required
plug-ins are specified under the “requires” node in plugin.xml
contained in the plug-in folders. From Eclipse 3.1 to 4.x, the
plug-in dependencies are configured in the “Require-Bundle”
or “Import-Package” sections in the MANIFEST.MF files of
the jar files. ACUA analyze the dependency information of
Eclipse plugins, converts it into POM files and install the
generated POM files and corresponding plugin jars into the
Maven repository. So, original Maven projects and Eclipse
plugins can be processed uniformly in the next step.

B. Data Processing

With the version information in POM files and the cor-
responding jar files downloaded from the Maven repository,
ACUA build framework-clients maps based on the client-
frameworks maps in the POM files, as shown in Figure 2.

Then, we parse the jar files of each client programs and
framework release to build a meta-model. This meta-model
contains reference types, method definitions, call and inheri-
tance graphs of framework and client program releases. Our
meta-model building tool is based on the ASM Java bytecode
analysis framework6.

4http://www.ptidej.net/downloads/replications/scam2014
5http://maven.apache.org/
6asm.ow2.org

Same Type

Name

Same Pcakge

Name

Non-Existing

Classes or

Interface

Moved

Classes or

Interface

With Changed

Method

An Old Type &

All Types in

New Release

With Changed

Method

Detect Method

Level Change

End

N

Y

N N

Y

Y

Y

Other

Changes

Y

N

Other

Changes

Fig. 3. Part of type-level API change detection algorithm

C. API Change Analysis

To analyze reference type level (classes, interfaces etc.)
API changes, we first classify the reference types of each
pair of framework releases into four categories: Stable in
old release, Changed in old release, Stable in new release,
Changed in new release. Here, Stable stands for existing in
both releases and Changed means existing only in one release,
according to their package names and reference type names,
without considering type kind (class or interface), modifiers,
and generic type parameters. So, Stable reference types in both
releases may have differences in their methods and Changed
reference types may have counterparts with the same methods.

Then, we check if the changed types in old release have
counterparts in the new release with the same type names,
but different package names. Those having a counterpart are
classified as Moved types (classes, interfaces etc.) and the rest
are classified as Non-existing types.

Next, we check for stable types between the two releases
and detect the types of API changes other than Non-Existing
Classes and Interfaces. The flowchart of (part of) the reference
type level API change type detection algorithm is shown in
Figure 3. The full algorithm is available on our Web page4.

For the stable reference types between two releases, ACUA
detects method level API changes as follows: First, ACUA
checks if there is another method with the same name in the
old release of the framework. If there is not, ACUA classify
the method as a Non-Existing Method. If there is one, ACUA
check if the method level API changes other than Non-Existing
Method happened to the method. The flowchart of (part of) the
method level detection algorithm is shown in Figure 4 while
the full version of the algorithm is available on our Web page4.

A changed API can be tagged with more than one change
types. For example, added field to interface and added method
to interface can happen to the same interface.

D. API Usage Analysis

ACUA checks which (and how) APIs are used by analyzing
APIs call and inheritance graphs. It reports the following usage
types: extensions of framework classes, implementations of
framework interfaces, overrides of framework methods, and
invocations of framework methods. For each usage type, as
shown in Figure 5, ACUA collects which APIs are used, if

An old method &

Methods in

New type

Same Name

Non-Existing

Method

Change Forma

Parameter

Change

Method to

Static

Change to

Final

Change Formal

Parameter

Change Method to

Static

Change to Final

End

N

N

N

N

Y

Y

Y

Y

Other

Changes
Other Changes

N

Y

Fig. 4. Part of method-level API change detection algorithm

forIOC usageInstance

usingEntity affectingAPIChangeType

APIUsageType

APIUsage

API

1

*

1

1

1

1

1

*

1

1

1

*

Fig. 5. API usage information

they are used for inversion of control, where they are used
and the types of API changes by which they are influenced.

E. Result Outputs

After API change and usage analysis, ACUA outputs the
results in XML format to facilitate reporting and further
processing. The examples of API change reports and API usage
reports are shown in Figure 6 and Figure 7, respectively.

IV. CASE STUDY RESULTS

We conducted a case study to assess the potential benefits
of ACUA. Our data set contains 84 internal and 23 third-party

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Incompatibilities>

<programName>research.org.eclipse:jdt.ui</programName>
<oldVersion>2.1.0</oldVersion>
<newVersion>3.0.0</newVersion>
<incompatibilities>

<type>AddAbstractMethod</type>
<instances>

<level>type</level>
<oldAPI> class org.eclipse.jdt.internal.ui.
javaeditor.JavaEditor</oldAPI>

</instances>
...

</incompatibilities>
...
</Incompatibilities>

Fig. 6. API change outputs

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<exposureReport>

<clientName>research.org.eclipse:ant.ui</clientName>
<clientVersion>3.1.0</clientVersion>
<frameworkName>
research.org.eclipse:core.runtime
</frameworkName>
<oldVersion>3.1.0</oldVersion>
<newVersion>3.2.0.v20060603</newVersion>
<apiUsages>

<type>EXTENSION</type>
<apiUsages>

<oldAPI> class org.eclipse.core.runtime.
PlatformObject</oldAPI>
<invocatedInFramework>
false
</invocatedInFramework>
<instances>

<entities>
class org.eclipse.ant.internal.ui.launch
Configurations.AntProcess
</entities>

</instances>
...

</apiUsages>
...

</apiUsages>
...
</exposureReport>

Fig. 7. API usage outputs

client program releases for 11 Eclipse framework releases.
Here we present and discuss the information the developers
can obtain directly with ACUA.

A. Infiltration Ratio

We define Infiltration Ratio (IR) as a metric to reflect the
wideness of API usage in client programs. The lower IR is, the
easier for developers to adapt API changes. In the equation,
RefTypes stands for reference types including classes and
interfaces.

IR =
#RefTypes Using APIs

#Total RefTypes

We also define Ideal Infiltration Ratio (IIR) to represent
the lowest IR that a client program could reach. Here,
#RefTypes For IOC is computed by the number of ref-
erence types in client programs which override framework
methods called inside frameworks. The IOC reference types
must use framework API through inheritance. For the other
types of API usages, developers could encapsulate them with
small number of local classes. Therefore, the practical lowest
IR should be slightly larger than IIR, because we need to
consider the encapsulating classes.

IIR =
#RefTypes For IOC

#Total RefTypes

Figure 8 shows the IRs of internal and third-party client
programs of Eclipse frameworks. We can see that internal
client programs have higher IRs than third-party client pro-
grams in general, but both can reach 100% which means that
all the reference types of client programs could be affected
by API changes. On average, the IRs are 37% and 26% for
internal and third-party client programs, respectively. If we
compare IRs with IIRs shown in Figure 9, we can find that
the IRs can be reduced. On average, the differences between
IRs and IIRs are 33% and 25% in internal and third-party
client programs, respectively. In total, the average IR and IIR
of all the client programs in our study are 29% and 2%. From

0
20

40
60

80

1

●

Eclipse Internal

Distribution of Projects

IR
 (

%
)

(a) Eclipse Internal

0
20

40
60

80

1

●

Eclipse Third Party

Distribution of Projects

IR
 (

%
)

(b) Eclipse Third Party

Fig. 8. Infiltration Ratios

0
10

20
30

40
50

1

●

Eclipse Internal

Distribution of Projects

IIR
 (

%
)

(a) Eclipse Internal

0
2

4
6

8
10

1

●

Eclipse Third Party

Distribution of Projects

IIR
 (

%
)

(b) Eclipse Third Party

Fig. 9. Ideal Infiltration Ratios

the data, we can see more than 90% of API usages can be
reduced.

For a specific client program, besides IRs, ACUA can
also report the distributions of the number of APIs used
by each reference types in client programs. As shown in
Figure 10, the Kisses shape of the usages of APIs from
eclipse.ui.editor v3.2 in anyedit.AnyEditTools-1.8.2 is pre-
ferred over the vase shape of API usages form eclipse.jdt.core
v3.2 in cse.green.relationship.composition v2.5.0. The former
has less reference types using large number of APIs than the
latter.

B. API change distribution in frameworks and client programs

Figure 11 and 12 show the distributions of reference
type and method level API change types in Eclipses frame-
works. At reference type level, the top four API change
types (WithChangedMethod, NonExistingClass, ContractSu-
perClass, and ExpandSupterInferfaceSet) represent about 82%
of total changes . At method level, the top four API change
types (NonExistingMethod, ChangeFormalParameter, Chan-

0
1

2
3

4
5

6
7

1

●

cse.green.relationship.composition−2.5.0

Distribution of RefTypes

U

se
d

A
P

Is

(a)
cse.green.relationship.composition-
2.5.0

0
1

2
3

4

1

●

anyedit.AnyEditTools−1.8.2

Distribution of RefTypes

U

se
d

A
P

Is

(b) anyedit.AnyEditTools-1.8.2

Fig. 10. Project API Infiltration

0%

10%

20%

30%

40%

50%

60%

WCM NEC CSCS ESIS MC CSIS NEI CTF AMTI AAM MI DA CTA CTK CTB

Fig. 11. Reference type level API changes

0%

10%

20%

30%

40%

50%

60%

NEM CFP CRT DMA CMTF CMTS CMTNS CMTA

Fig. 12. Method level API changes

geReturnType, DecreaseMethodAccess) cover 98% of total
method level API changes.

We find that the API changes used more often in client pro-
grams are not the same as the API changes in frameworks. Fig-
ure 13 shows that the top-2 API change types are the same as
top-2 API change types in frameworks (WithChangedMethod
and NonExistingClass) with cases of switching 1st and 2nd
positions. ContractSuperClasses and ExpandSuperInterfaceSet
are the 3rd and 4th API change types with 12% and 6% of
PT values. In third party client programs, MovedInterface,
ContractSuperInterfaceSet take the 3rd and 4th positions with
11% and 9% PT U . ContractSuperClasses falls to 5th with 6%
PT U . In internal client programs, NonExistingInterface and
MovedClass are the 3rd and 4th used API changes with 17%
and 9% PT U . In frameworks, ContractSuperInterfaceSet and
MovedClass are 5% of total API changes at reference type
level, while NonExistingInterface is 3% and MovedInterface
is 1%. Same as Apache, ExpandSuperInterfaceSet does not
affect client programs either.

At method level, the top-3 API changes used in
client programs are the same as those in frameworks for
both ecosystems: NonExistingMethod, ChangeFormalParam-
eter, and ChangeReturnType, as shown in Figure 14.

In general, with ACUA, we can see that NonExistingClass
and NonExistingMethod are in the top-2 changes and they
require additional search effort to find the replacements during
the upgrading process. Some reference type level API change
types, such as NonExistingInterface, they are more often
used in client programs than their proportions in total API
changes. Framework developers should avoid such changes
during evolution or provide detailed documents when they
are necessary. Client program developers should reduce IRs
to alleviate the impact of API changes.

V. DISCUSSION

Compilers are basic tools that report API change impacts
in client programs and developers still need them while con-
ducting concrete upgrading tasks to verify changes and gen-
erate binary code. However, compilers cannot help developers

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

NEC WCM NEI MC MI CSIS CSCS AMTI ESIS DA CTK CTB CTF CTA AAM

(a) Eclipse Internal

0%

10%

20%

30%

40%

50%

60%

WCM NEC MI CSIS CSCS NEI MC ESIS DA CTK CTB CTF CTA AMTI AAM

(b) Eclipse Third Party

Fig. 13. Reference type level API changes of Eclipse frameworks used in
client programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

NEM CFP CRT DMA CMTS CMTNS CMTF CMTA

(a) Eclipse Internal

0%

10%

20%

30%

40%

50%

60%

70%

NEM CFP CRT CMTS DMA CMTNS CMTF CMTA

(b) Eclipse Third Party

Fig. 14. Method level API changes of Eclipse frameworks used in client
programs

much to plan and estimate upgrading workloads. Traditional
compilers do not provide the following information that ACUA
reports:

a) API change type:: compilers can detect API changes
by showing compiling errors, but they do not report which
types of API changes caused the errors. Because API changes
are not equally difficult to adapt, such information is useful
to plan program upgrade effectively. ACUA analyze client
programs and two releases of frameworks to generate API
usage report that summarize which APIs are used , where they
are used (in client programs) and the types of API changes
affecting them. With API usage reports, developers have a
clearer picture of API change impacts.

b) API infiltration:: compilers cannot report how
widely API are used in client programs. APIs keep evolving,
developers should know how seriously APIs infiltrate in their
client programs to prepare for future API changes. If large
numbers of the APIs of a framework widely used in client
programs, it will be difficult to adapt to major changes in
the frameworks or to switch to other frameworks with similar
functions. ACUA can compute IR and IIR to tell developers the
current API infiltration ratio and its possible lower boundary.
The API usage data collected by ACUA can also be used to
visualize API infiltration, as shown in Figure 8.

VI. RELATED WORK

Many existing tools help developers on framework API
change and usages from different perspectives. CatchUP! [8]
records the refactoring operations in one release and replay
them in another. AURA [9], Diff-CatchUp [10], HiMa [11],
and SemDiff [12] generate the API change rules between
two releases of frameworks. Twinning [13] adapts different
Java frameworks with similar functionalities. MAN [14] maps
APIs between Java and C#. Portfolio [15] searches and vi-
sualizes relevant functions and their usages from an internal
database. LibSync [16] helps developers learn complex API
usage change patterns from the clients that have been already
upgraded to new releases of frameworks. Change Distilling
[17] rebuilds change road-maps between two releases of
programs. LSdiff [18] summarizes the changes between two
releases of frameworks into systematic structural differences
and presents anomalies in them. Ref-Finder [19] detects the
63 types of refactoring. MADMatch [20] matches evolving
program elements with an approach that uses Error Tolerant
Graph Matching algorithm. Exapus [21] explores API usages
from different views. In this paper, we present ACUA to
report both API changes and usages in frameworks and client
programs in details.

VII. CONCLUSION

When frameworks evolve, APIs may change between re-
leases. Nowadays, patching security vulnerabilities of pro-
grams becomes an important reason to upgrade frameworks
and should be done as soon as possible. Usually, framework
providers only fix security leaks in the latest releases. If
the releases of frameworks used are much behind , applying
security patches may be delayed by adapting non-security-
related API changes. Therefore, keeping framework updated
should be considered as a regular task in software maintenance.
In this paper, we propose a tool ACUA to generate API
change and usage reports by analyzing the source or binary
code of both frameworks and clients programs in Java. These
reports help developers plan proactive framework upgrading.
To assess the benefits of ACUA, we conduct a case study with
11 framework releases and their client program releases from a
framework ecosystem, Eclipse. With the reports generated by
ACUA, developers can know how API are used in and which
API changes affect their client programs. Such information can
help them to estimate upgrading work load and plan upgrading
tasks. Empirical studies to quantitatively evaluate the benefits
of ACUA and tools using the reports generated by ACUA to
directly help framework upgrading are future works.

ACKNOWLEDGMENTS

We thank Daniel German for providing the Maven central
repository snapshots. This work has been partly funded by the
NSERC Research Chairs on Software Patterns and Patterns of
Software and on Software Change and Evolution.

REFERENCES

[1] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Proceedings
of the 2012 IEEE International Conference on Software Maintenance
(ICSM), ser. ICSM ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 378–387.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[3] D. Rivières, “Evolving java-based apis 2,” 2008. [Online]. Available:
http://wiki.eclipse.org/Evolving Java-based APIs 2

[4] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical
study into evolution problems in java programs caused by library
upgrades,” in CSMR-WCRE, 2014, pp. 64–73.

[5] M. Buchholz, “Kinds of compatibility: Source, binary, and behavioral,”
2008. [Online]. Available: https://blogs.oracle.com/darcy/entry/kinds
of compatibility

[6] J. Bloch, Effective Java (2nd Edition) (The Java Series), 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2008.

[7] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[8] J. Henkel and A. Diwan, “Catchup!: capturing and replaying refactor-
ings to support api evolution,” in ICSE ’05: Proceedings of the 27th
international conference on Software engineering. New York, NY,
USA: ACM, 2005, pp. 274–283.

[9] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 325–334.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806848

[10] Z. Xing and E. Stroulia, “API-evolution support with diff-CatchUp,”
IEEE Trans. Softw. Eng., vol. 33, no. 12, pp. 818 – 836, December
2007.

[11] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching
approach to identification of framework evolution,” in Proceedings of
34th International Conference on Software Engineering, ser. ICSE 2012,
2012, pp. 353–363.

[12] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” ACM Transactions on Software Engineering and
Methodology, vol. 20, no. 4, pp. 19:1–19:35, Sep. 2011.

[13] M. Nita and D. Notkin, “Using twinning to adapt programs to alternative
apis,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY,
USA: ACM, 2010, pp. 205–214.

[14] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
api mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 195–204.

[15] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceeding of
the 33rd international conference on Software engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 111–120.

[16] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to api usage adaptation,”
in Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, ser. OOPSLA ’10.
New York, NY, USA: ACM, 2010, pp. 302–321.

[17] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Trans. Softw. Eng., vol. 33, pp. 725–743, November 2007.

[18] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 309–319.

[19] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a
refactoring reconstruction tool based on logic query templates,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, ser. FSE ’10. New
York, NY, USA: ACM, 2010, pp. 371–372. [Online]. Available:
http://doi.acm.org/10.1145/1882291.1882353

[20] S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and Y.-G. Guéhéneuc,
“Madmatch: Many-to-many approximate diagram matching for design
comparison,” IEEE Transactions on Software Engineering, vol. 39,
no. 8, pp. 1090–1111, 2013.

[21] C. D. Roover, R. Lammel, and E. Pek, “Multi-dimensional exploration
of api usage,” in ICPC, 2013, pp. 152–161.

