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Abstract Software crashes are dreaded by software organisations and end-
users. Many software organisations have embedded automatic crash reporting
tools in their software systems to help development teams track and fix crash-
related bugs. Previous techniques, which focus on the triaging of crash-types
and crash-related bugs, can help software practitioners increase their debug-
ging efficiency on crashes. But, these techniques can only be applied after
the software has been crashing for a certain period of time. To help software
organisations detect and fix crash-prone code early, we examine the charac-
teristics of commits that lead to crashes, called crash-inducing commits, in
Mozilla Firefox. We find that crash-inducing commits are often submitted by
developers with less experience. Developers perform more addition and dele-
tion of lines of code in crash-inducing commits, but they make less effort to fix
bugs caused by these commits. We also characterise commits that would lead
to frequent crashes, which impact a large population of users (dubbed highly-
impactful crash-inducing commits). Compare to other crash-related bugs, bugs
due to highly-impactful crash-inducing commits were less reopened, and tend
to be fixed by a single commit. We built predictive models to help software
practitioners detect and fix crash-prone bugs early on. Our predictive models
achieve a precision of 61.2% and a recall of 94.5% to predict crash-inducing
commits and can achieve a precision of 60.9% and a recall of 91.1% to pre-
dict highly-impactful crash-inducing commits. Software organisations can use
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our proposed predictive models to track and fix crash-prone commits early
on before they negatively impact users; increasing bug fixing efficiency and
user-perceived quality.

Keywords Crash analysis · Bug triaging · Prediction model · Mining
software repositories

1 Introduction

Software crashes refer to unexpected interruptions of software systems in users’
environments. Frequent crashes can significantly decrease the overall user-
perceived quality and even affect the reputation of a software organisation.
Therefore, nowadays, many software organisations (e.g., Mozilla, Microsoft,
and Google) are deploying crash reporting tools in their software systems.
When and if the system crashes, the automatic crash reporting tool collects
information on the crash event and sends a detailed crash report to the soft-
ware organisation. Crash reports are stored in a crash collecting system, where
crashes with the same crashing signature (i.e., the stack trace of the failing
thread) are grouped into a crash-type. The crash collecting system analyses
the impact of different crash-types and selects the top crash-types, which will
be filed as faults into bug tracking systems (e.g., Bugzilla or Jira) to enable
quality-assurance teams to focus their limited resources on fixing these impor-
tant faults.

Khomh et al. [? ] proposed an entropy-based crash triaging technique that
computes the distribution of crash occurrences among users and assigns a
higher priority to the bugs related to crashes that occur frequently and affect
a large number of users. However, this approach can only identify crashes with
high impact after the crash collecting system has gathered enough crashes. Un-
til enough crashes are received, the crashes may have affected a large number
of users. Moreover, while time passes, the faulty code becomes unfamiliar to
developers, making it harder to correct.

To reduce the triaging period of crash-related bugs, in our previous study [?
], we built statistical models to predict crash-related bugs that lead to frequent
crashes and which impact a large user base. Although these models can be
applied at an early stage of development to detect crash-related bugs with a
serious negative impact on users, software organisations still must wait for a
period of time during which crashes are collected, triaged, and filed into bug
reports, before they can be fixed.

We argue that, if software organisations could detect crash-prone code even
earlier, at the time of commits, i.e., before the software is built and released,
they could address the faults quicker and prevent the unpleasant experience of
crashes to their users. Such an approach is referred to as “Just-In-Time Quality
Assurance” [? ] and it enables fine-grained fault predictions and allows quality-
assurance teams to identify error-prone code at commit time. By identifying
error-prone commits sooner, quality-assurance teams are also likely to make
better decisions in choosing developers that can fix these bugs.
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In this paper, we investigate statistical models to predict commits that may
introduce crashes in Mozilla Firefox. We study Mozilla Firefox’ crash reports
between January 2012 and December 2012, as well as its commit logs from
the beginning of the project until December 2012, and answer the following
research questions:

RQ1: What is the proportion of crash-inducing commits in Firefox?

We analyse Firefox’ crash reports and link them to the corresponding
crash-related bugs. We then use the SZZ algorithm [? ] to map these
bugs to their related commits to identify the commits that introduced
the fault responsible for the crash. We found that crash-inducing com-
mits account for 25.5% of all commits in the studied version control
system and that 37.1% of the commits that change C/C++ code would
lead to crashes.

RQ2: What characteristics do crash-inducing commits possess?

By investigating the characteristics of crash-inducing commits and other
commits, we found that, in general, crash-inducing commits are submit-
ted by developers with less experience than the average. Also, they are
more often committed by developers from Mozilla than from outside.
Developers change more files and add and delete more lines in crash-
inducing commits. Compared to other commits, crash-inducing commits
fix more previous bugs but, often, they lead to other bugs. In terms of
changed types, crash-inducing commits contain more unique changed
types and the changed statements tend to be scattered in more changed
types. In addition, we observed that the bugs caused by crash-inducing
commits require less supplementary fixes than other bugs and they are
reopened less often. Also, 43.7% of crash-related bugs are without any
resolution; implying that developers do not specifically target these (se-
vere) bugs during bug fixing activities, which is a bit surprising.
We also investigated commits that lead to frequent crashes impacting a
large user base, referred to as highly-impactful crash-inducing commits
and, compared to other crash-related bugs, the fixes of highly-impactful
bugs require less reworking (i.e., supplementary fixes) than other bugs:
developers seem to be very careful when fixing these bugs.

RQ3: How well can we predict crash-inducing commits?

Previous studies, which used statistical models to predict faults from
bug reports, are effective to some extent. However, before a certain
type of crash is filed into the crash collecting system, a large number
of users might have already suffered it. Moreover, during this period,
developers may become less familiar with the code and thus may have to
spend more time identifying the faulty lines to fix the faults. Therefore,
statistical models that can predict fault-prone code just-in-time have
the potential to help developers detect crash-inducing commits as soon
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as they are introduced and effectively fix them early. We use GLM,
Naive Bayes, C5.0, and Random Forest algorithms to predict whether
or not a commit will induce future crashes. Our predictive models can
reach a precision of 61.2% and a recall of 94.5%.

RQ4: How well can we predict commits that lead to frequent crashes that im-
pact a large user base?

Crash-related bugs have different impact on end-users. Mozilla priori-
tises these bugs by their crash frequency. Though frequency is an impor-
tant metric, it does not capture the full picture of the severity of a crash-
related bug. Khomh et al. [? ] have proposed a combination of frequency
and entropy measurements to capture the severity of crash-related bugs.
We leverage their proposed entropy-based classification [? ] and apply
the best statistical algorithm from RQ3 (i.e., Random Forest) to predict
commits that can lead to bugs with high crashing frequency and im-
pacting a large user base, i.e., highly-impactful crash-inducing commits.
Despite the low percentage of highly-impactful crash-inducing commits
(23.7% in commits that change C/C++ code) in the studied data-set,
our model can still achieve a precision of 60.9% and a recall of 91.1%.
Software organisations could apply our model to improve their fault
triaging process and their users’ satisfaction.

RQ5: What are the characteristics of commits that are misclassified by our
prediction models?

Sometimes, our models misclassify some clean commits as crash-inducing
commits (false positives) and some crash-inducing commits as clean
commits (false negatives). We studied these misclassified faults and we
observed that our models tends to classify commits with less develop-
ers’ experience, higher numbers of changed files and lines of code as
“crash-inducing commits”. In addition, we observed that false positive
commits contain more complex code and more changed types. These
commits changed more lines of code and files, and were often submitted
by less experienced developers which is why they are misclassified by
our models.
Moreover, we observed that 9.2% of commits do not lead to crashes but
still caused a bug. Hence, developers still must carefully check the code
contained in these commits before integrating it into the version control
system.
Finally, we observed that developers performed a high proportion of
renaming operations on the code of these commits. Inappropriate or
incomplete renaming operations can lead to missing runtime variable
and–or mismatching errors, which can crash a software system. Our
model could not classify correctly these commits because none of our
metrics capture fine-grained source code changes between commits. In
the future, we plan to include some fine-grained metrics of source code
changes into our model to improve their recall. Hence, it seems that
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renaming operations are risky and that developers should be careful
when performing renaming operations in the code.

We are limited to Firefox because, at the time of writing, no other software
organisation provides access to its crash reporting system. Software organisa-
tions could apply our proposed approach internally to detect crash-prone code
early and address the faulty code as soon as possible, before such affects a
large number of users.

This paper is an extension of an earlier conference paper [? ]. Our original
work:

1. calculated the percentage of crash-inducing commits in Mozilla Firefox.
2. compared crash-inducing commits against other commits in various as-

pects.
3. predicted crash-inducing commits using statistical models, and identified

the most important predictors.

which we extend as follows:

1. We have readjusted the classification of changed types and rebuilt our
predictive models.

2. We have examined whether bugs caused by crash-inducing commits require
supplementary bug fixes more often than other bugs and whether they are
re-opened more frequently than other bugs.

3. We have proposed models to predict commits that lead to frequent crashes
that impact a large user base.

4. We have also examined the reason behind the false positives and false
negatives of our prediction models.

The remainder of the paper is organised as follows. Section 2 provides
background information on Mozilla crash collecting system. Section 3 explains
the identification technique of crash-inducing commits. Section 4 describes
data collection and processing for the empirical study. Section 5 presents and
discusses the results of our five research questions. Section 6 discusses threats
to the validity of our results. Section 7 summaries related work. Section 8
draws conclusions and suggests future work.

2 Mozilla Crash Collecting System

Mozilla delivers software with a built-in automatic crash reporting tool, i.e.,
the Mozilla Crash Reporter. When a Mozilla product, such as Firefox, termi-
nates unexpectedly, Mozilla Crash Reporter will generate and send a detailed
crash report to the Socorro crash report server [? ]. The crash report provides
a stack trace for the failing thread and information about the user’s environ-
ment. A stack trace is an ordered set of frames where each frame refers to a
method signature and provides a link to the corresponding source code. Dif-
ferent stakeholders, quality managers and developers, can use crash reports to
identify and fix faults in the system. They can also use information from crash
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Fig. 1: A sample crash report from Firefox

Fig. 2: A sample crash-type from Firefox

reports to allocate development resources. Figure 1 presents a sample crash
report from Mozilla Firefox.

Socorro collects crash reports from end-users and groups similar crash re-
ports together by the top method signatures in their stack traces. Such a group
of crash reports where all the stack traces possess the common top frames is
termed as a crash-type. However, the subsequent frames in the stack traces
might be different. Figure 2 shows a sample crash-type from Firefox.

Socorro server’s data are open and provide a rich Web interface for software
practitioners to analyse crash-types. In the Socorro server, crash-types are
automatically ranked based on the frequency of their occurrences. Developers
and quality assurance teams can file crash-types with high crashing frequency
into Bugzilla, i.e., Mozilla’s bug tracking system. Different crash-types can be
linked to the same bug, while different bugs can also be linked to the same
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crash-type [? ]. Socorro provides a list of bugs for each crash report whose
crash-type has been filed into Bugzilla. The Socorro server and Bugzilla are
integrated, i.e., developers can directly navigate to the corresponding bugs (in
Bugzilla) from a crash-type’s summary in Socorro’s Web interface. Developers
use the information contained in crash reports to debug and fix bugs. Mozilla
quality assurance teams triage bug reports and assign severity levels to the
bugs [? ]. Developers port patches to fix a bug. Once approved, the patches
will be integrated into the source code.

3 Identification of Crash-inducing Commits

In this section, we describe the identification procedure for crash-inducing
commits. All our data and analytic scripts are available at:
https://github.com/swatlab/crash-inducing.

Applying the SZZ algorithm [? ], we identify crash-inducing commits in
two steps: identification of crash-related bugs and identification of commits
that induce those bugs. The remainder of this section elaborates on each of
these steps.

3.1 Identification of Crash-related Bugs

We extract the bug list from each of the studied crash reports. For each of
the crash-related bug, we use regular expressions to identify the crashed stack
trace from the bug’s title and comments, then extract crash-related files or
methods from the stack trace. We record the identified files or methods as
fault locations of the crash-related bugs, which will be used to identify crash-
inducing commits in the next step. Each crash-related bug may be linked to
multiple crash occurrences. We sort these crashes by time and record the dates
of the first and the last crash occurrences before the bug was opened.

3.2 Identification of Crash-inducing Commits

Since Śliwerski et al. [? ] introduced the SZZ algorithm, a plethora of studies
(such as [? ? ? ]) have leveraged this approach to identify the commits that
induce subsequent commits, especially bug fixes, in version control systems.
In this paper, we use the SZZ algorithm to identify the commits that lead to
crash-related bugs as follows.

3.2.1 Extraction of Crash-related Changed Files

We use heuristics proposed by Fischer et al. [? ] to map the crash-related bug
IDs to their corresponding bug fixes. We use regular expressions to detect bug
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IDs from the message of each commit. Some commits that fixed a previous bug
fix (called supplementary bug fixes [? ]), often lack information about the fixed
bug in their message, i.e., only a commit ID (i.e., a SHA1 string) of a previous
fix is provided. In this case, we track the commit IDs back to their original
commits and check whether these original commits could be mapped to a bug
report. Hence, we ensure that every crash-related bug can be mapped to all
possible corresponding commits. As Mozilla’s revision history is managed by
Mercurial, for each of the identified bug fixes, we run a Mercurial command
to extract its modified and deleted files:

hg log --template {rev}, {file mods}, {file dels}

Here, we do not take added files into account, because only modified and
deleted files could be changed by preceding commits.

3.2.2 Identification of the Previous Commits of the Changed Files

The changed files identified in Section 3.2.1 (i.e., modified and deleted files)
are considered as files that address the crash-related bugs. For each of the
changed files in a certain commit C to the bug Bcrash, if its previous commit
C ′ is dated before the bug’s first crash occurrence date, C ′ would be considered
as a “crash-inducing commit”. Concretely, to seek out the previous commits of
each changed file contained in a specific commit, we use Mercurial’s annotate
command to track the previous commit ID of each line in this file. Among
the identified commit IDs, we first remove those related to white spaces and
comment lines. The remaining commit IDs are candidates of crash-inducing
commits. Then, for each of the IDs, we record its committed date as Dcandidate.
We also find out the first crash date Dfirst of the bug Bcrash and the last crash
date Dlast before the opening of the bug. We decide crash-inducing commits
using the following rules:

– Rule 1: If Dcandidate is earlier than Dfirst, this candidate commit is iden-
tified as a “crash-inducing commit”.

– Rule 2: If Dcandidate is later than Dfirst but earlier than the last crash date
Dlast, we consider this candidate commit as a “crash-inducing commit” if
it changed any of the files appearing in the crashed stack trace of Bcrash.

In the original SZZ algorithm [? ], Śliwerski et al. filtered bug-inducing
commits by bug opening date, which however cannot be directly applied to
filter crash-inducing commits. We use Rule 1 to select commit candidates
submitted prior to the first crash occurrence. But this rule may omit some
crash-inducing commits. Because a crash-related bug may derive from different
crash-types. A crash-type contains crashes that have the same top method
signatures (in their stack traces). However, their subsequent method signatures
could be different. So, crashes with different stack traces which were induced by
different commits can be filed into the same bug report. Figure 3 illustrates an
example: Commit1, which submission date is D1, induced Crash1; Commit2,
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signature 1
signature 2
signature 3
signature 4

…
signature x
signature y
signature z

signature 1
signature 2
signature 3
signature 4

…
signature α
signature β
signature γ

Crash1 Crash2

Bugcrash

grouped into 
the same bug

Commit1 Commit2 crash-inducing commits

Fig. 3: Different crashes can be classified into the same bug report

which submission date is D2, induced Crash2, where D2 is later than D1.
Crash1 and Crash2 have common top method signatures, but have different
method signatures in the rest of their crashing stack traces. If both crashes
were filed into the bug Bcrash and we apply only Rule 1 on this bug, Commit2
would be omitted. Therefore, we also apply Rule 2 to discover all commits that
introduced crashes related to Bcrash.

All of the above steps have been implemented in Python scripts. Future
researchers can use our scripts to validate our data analysis process or conduct
replication studies.

4 Case Study Design

This section describes the data collection and processing for our case study,
which aims to answer the following five research questions:

1. What is the proportion of crash-inducing commits in Firefox?
2. What characteristics do crash-inducing commits possess?
3. How well can we predict crash-inducing commits?
4. How well can we predict commits that lead to frequent crashes that impact

a large user base?
5. What are the characteristics of commits that are misclassified by our pre-

diction models?

4.1 Data Collection

We analyse crash reports of Mozilla Firefox from January 2012 until December
2012. Since a crash-inducing commit cannot be submitted later than any of
its related crashes, we select the revision history of Mozilla Firefox from the
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Fig. 4: Overview of our approach to identify crash-inducing commits and ex-
tract their characteristic metrics

beginning of the project until December 2012. In summary, there are in total
132,484,824 crash reports (grouped into 2,210,126 crash-types) and 127,212
commits selected in this research.

4.2 Data Processing

Figure 4 shows an overview of our data processing steps for the case study.
The corresponding data and Python scripts are available at:
https://github.com/swatlab/crash-inducing.

4.2.1 Mining Crash Reports

To identify crash-inducing commits and investigate the characteristics of these
commits, we extract the following metrics from each crash reports: bug list,
crash date, and release number. We use the bug IDs in the bug list to map a
crash report to its bug reports. We then use crash dates to find the earliest
and the latest crash occurrence dates before the opening of each bug (see
Section 3.1). We use the source code of all detected releases to compute code
complexity metrics and social network analysis metrics.

4.2.2 Computing Code Complexity Metrics

For each studied commit, we use the Mercurial log command to extract all
of its changed files. Then, as in our previous work [? ], we apply the source
code analysis tool Understand [? ] to compute the code-related metrics of
the analysed files and identify the relationship among these files. Developers
can either use Understand’s graphical interface or its command line tool1 to
generate an Understand database (UDB), from which we program against
the Understand Python API2 to extract five metrics on code complexity for

1 https://scitools.com/feature/automation-using-the-command-line
2 https://scitools.com/new-python-api/
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the files in each subject commit: lines of code (LOC), average cyclomatic
complexity, number of functions, maximum nesting, and ratio of comment
lines over all lines in a file. Because more than 90% of Firefox’ code is written
in C or C++ [? ], in this step, we only take C and C++ files into consideration.
Details of the selected code complexity metrics are discussed in Section 5.

4.2.3 Computing Social Network Analysis Metrics

From the Understand database generated in Section 4.2.2, we identify depen-
dencies among different files in Firefox to compute Social Network Analysis
(SNA) metrics for each file. Concretely, from the studied C and C++ files,
we combine each .c or .cpp file and its corresponding .h file into a class node.
We then build an adjacency matrix to represent the relationship among these
nodes. We use the network analysis tool igraph [? ] to convert the adjacency
matrix into a call graph, by which we compute the following social network
analysis metrics: PageRank, betweenness, closeness, indegree, and outdegree.
Details of the selected SNA metrics are discussed in Section 5.

In Section 4.2.2 and Section 4.2.3, we compute the code-related metrics for
each of the releases detected from Section 4.2.1. For a given commit C whose
commit date is Dc, we search the latest release R whose release date Dr is
satisfied: Dr < Dc. We map all the files in the commit C to the release R,
and record the code complexity and SNA metrics for each of the successfully
mapped files.

4.2.4 Identifying Changed Types

In a commit, different types of changes affect a software system to differ-
ent extents in terms of crashes. We assume that changes on comments and
refactorings may have little probability to trigger subsequent crashes. Yet, if
parameters or function calls are not appropriately modified (or added/deleted)
in a commit, crashes would probably happen when the commit is integrated
into the version control system. We use the source code analysis tool srcML [?
] to convert C or C++ code into XML files where each syntactic statement
will be converted into an XML node, in which an XML tag labels its type. For
a given changed file F in a certain commit C, we use the following Mercurial
command to check it out:

hg cat -r C F

Then, we also check out the file with the same name F ′ in the previous commit
C ′. After converting F and F ′ into XML format, we use a Python script to
recursively compare the difference on each of the corresponding srcML tags3.
As we detected more than 80 unique srcML tags from the studied changed

3 For all srcML tags, please refer to:
http://www.srcml.org/doc/srcMLGrammar.html
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Table 1: Changed types identified from Firefox’ source code

Changed type srcML tag(s)
Access modifier super, public, private, protected, extern
C++ template template, typename
Class class, class decl, member list, constructor, constructor decl,

destructor, destructor decl
Code block block, expr, expr stmt
Comment comment
Control flow while, do, if, else, break, goto, label, for, foreach, continue,

then, switch, case, return, condition, incr, default
Data structure enum, struct, struct decl, typedef, union, union decl
Declaration asm, decl, decl stmt, using, namespace, range, specifier
Function function, function decl
Initialisation init
Invocation call
Operator escape, index, sizeof
Parameter param, parameter list, argument, argument list
Preprocessor cpp:define, cpp:elif, cpp:else, cpp:endif, cpp:error,

cpp:file, cpp:if, cpp:ifdef, cpp:ifndef, cpp:include, cpp:line,
cpp:pragma, cpp:undef, cpp:value, cpp:derective, macro

Renaming renaming, name
Variable type type

files, we group the srcML tags with similar semantic functions into a changed
type, while ignoring trivial srcML tags, such as “@format”. Table 1 shows all
of changed types and their corresponding srcML tags.

Besides counting the number of changed types in a commit, we also inves-
tigate the distribution of the changed types in the commit. We compute the
value of the normalised Shannon entropy [? ], defined as:

Hn(C) = −
n∑

i=1

pi × logn(pi) (1)

where C is a commit; pi is the probability of C possessing a specific changed
type CTi (pi ≥ 0, and

∑n
i=1 pi = 1); n is the total number of unique changed

types listed in Table 1. So, for a commit, if all changed types have the same
occurrences, i.e., the changed types are equally distributed, the entropy is
maximal (i.e., 1). On the contrary, if a commit has only one changed type, the
entropy is minimal (i.e., 0).

4.2.5 Identifying Bugs requiring Supplementary Fixes and Reopened Bugs

In our previous research [? ], we studied two kind of bugs that need additional
effort to get fixed than other bugs:

– Bugs requiring Supplementary Fixes: bugs are fixed by not only one com-
mit, but by multiple commits.

– Reopened Bugs: bugs that have been reopened.
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We used the approach described in [? ] to identify these bugs. Concretely, we
apply regular expressions to parse Mozilla commit messages, if a bug ID is
mentioned in the messages of more than one commit, we consider it as a bug
that requires supplementary fixes. Next, we parse Mozilla bug reports, if we
find a “REOPENED” tag in a bug’s history, we consider it as a reopened bug.

5 Case Study Results

This section presents and discusses the results of our five research questions.
For each question, we discuss the motivation, the approach designed to answer
the question, and the findings.

RQ1: What is the proportion of crash-inducing commits in Firefox?

Motivation. This question is preliminary to the other questions. It provides
quantitative data on the prevalence of commits that induce subsequent crashes
in Mozilla Firefox. The results of this question will help software managers
realise the prevalence of the crash-inducing commits and adjust their bug
triaging strategy to focus their limited resources to resolve faults causing the
crashes as soon as possible.

Approach. We identify crash-inducing commits using the technique presented
in Section 3, then calculate their percentage over the total number of studied
commits.

Finding. Among the 127,212 analysed commits, 32,463 are identified as crash-
inducing commits. Figure 5 illustrates the proportion of crash-inducing com-
mits and other commits (referred to as crash-free commits in the rest of
this paper). If we consider commits that changed at least one C/C++ file,
crash-inducing commits account for 37.1% of all the commits (with changes
on C/C++ code).

One out of every four commits would cause subsequent crashes, which are
considered to be severe faults [? ], because crashes can unexpectedly stop users’
running processes, leading to negative user experience and even decrease the
reputation of a software organisation. Therefore, software practitioners should
capture crash-inducing commits quickly, i.e., when they are submitted into the
version control system in order to fix them as soon as possible. In the rest of
this section, we will investigate the characteristics of crash-inducing commits
and examine how to effectively predict them early on.�
�

�
�Crash-inducing commits account for more than 25% of the total number of

studied commits in Firefox.
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Fig. 5: Proportion of crash-inducing commits and crash-free commits in Firefox

RQ2: What characteristics do crash-inducing commits possess?

Motivation. Crash-inducing commits can lead to a dreadful user experience.
Moreover, if a crash-related bug is not fixed promptly and properly, and re-
appear later on, developers may have a hard time finding the source of the bug
since they would have to re-understand the context of some past code changes.
Understanding the characteristics of crash-inducing commits can help software
practitioners be aware of factors that lead to crashes of a software system, and
build predictive models to identify crash-prone code just-in-time.

In addition, different crashes can affect end-users to different extent. Mozilla
uses crashing frequency to prioritise their crash-related bugs. Khomh et al. [?
] proposed an entropy-based approach to classify crash-types along two di-
mensions: crashing frequency and entropy, where the latter represents the dis-
tribution of a crash-type in the user base. In our previous work, we applied
this idea to classify crash-related bugs into four categories, as shown in Fig-
ure 6. We refer to bugs that crash frequently and affect a large number of
users as highly-impactful bugs. In this research question, we will also compare
the characteristics of commits that lead to highly-impactful bugs (refer to as
highly-impactful crash-inducing commits) against other commits.

Approach. For each of the commits identified either as crash-inducing commit
or crash-free commit, we parse the commit log to extract the metrics presented
in Table 2. We test the following 8 null hypotheses to statistically compare
the characteristics between crash-inducing commits and crash-free commits.

Comparing the extents of changes in crash-inducing commits vs.
crash-free commits.

H1
01: the number of words is the same for crash-inducing commits and

crash-free commits.
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Fig. 6: Categories of bugs based on crashing frequency and entropy

Table 2: Metrics used to compare the characteristics between crash-inducing
commits and crash-free commits in hypothesis tests

Metric Description and rationale
Committer’s experience Number of prior submitted commits.
Message size Number of words in a commit message.
Changed files Number of changed files (including added, deleted, and

modified files) in a commit.
Added lines Number of added lines of code in a commit.
Deleted lines Number of deleted lines of code in a commit.
Entropy of changes Measurement of the dispersion of changed code among files

in a commit [? ].
Number of changed types Number of unique changed types in a commit.
Entropy of changed types Measurement of the dispersion of different changed types

in a commit (see Section 4.2.4).

H2
01: the number of changed files is the same for crash-inducing commits

and crash-free commits.

H3
01: the number of added lines is the same for crash-inducing commits and

crash-free commits.

H4
01: the number of deleted lines is the same for crash-inducing commits

and crash-free commits.

H5
01: the entropy of changes is the same for crash-inducing commits and

crash-free commits.

Comparing the changed types of crash-inducing commits vs. crash-
free commits.

H1
02: the number of unique changed types is the same for crash-inducing

commits and crash-free commits.

H2
02: the entropy value of changed types is the same for crash-inducing

commits and crash-free commits.

Comparing the people factor of crash-inducing commits vs. crash-
free commits.
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H1
03: committers’ experience is the same for crash-inducing commits and

for crash-free commits.
We use the Wilcoxon rank sum test [? ] to accept or reject the 8 null

hypotheses. This test is a non-parametric statistical test, which is used for
measuring whether two independent distributions have equally large values.
We use a 95% confidence level (i.e., p-value < 0.05) to decide whether to reject
a null hypothesis. Since we will conduct 8 null hypothesis tests, to counteract
the problem of multiple comparisons, we apply the Bonferroni correction [? ]
which consists in dividing the threshold p-value by the number of tests. Thus,
our threshold to decide whether a result is statistically significant is: p-value
< 0.05/8 = 0.006.

We will also compare crash-inducing commits and other commits in terms
of the following aspects:

1. Percentage of Mozilla committers
2. Percentage of bug fixing commits

In addition, different bugs require different effort to get fixed. We use the
approach described in Section 4.2.5 to investigate whether bugs caused by
crash-inducing commits and bugs caused by other commits required the same
effort from developers. More specifically, we will investigate the following as-
pects:

1. Percentage of bugs that require supplementary fixes (i.e., bugs that were
fixes by more than one commit) [? ].

2. Percentage of reopened bugs (i.e., bugs that have been reopened).

To identify highly-impactful crash-inducing commits, we applied the ap-
proach described in [? ], to compute the crashing entropy value (from 0 to 1)
of each crash-related bug. A high entropy value means a high distribution of
the crash-type in the user base (i.e., the bug impacts a large population of
users), and vice versa.

Based on our previous study [? ], we use the median value of frequency
and entropy to decide whether a crash-related bug has high crashing frequency
and entropy values, as illustrated in Figure 6. Then, we classify all crash-
related bugs into the following categories, which are sorted by their priority
in descending order:

– Highly-impactful Bugs: bugs with frequency and entropy values above
or equal to the median. These bugs impact a large number of users.

– Skewed Bugs: bugs with a high frequency value (i.e., above or equal to
the median) but a low entropy (i.e., below the median). These bugs only
seriously affect a small proportion of users and are more likely to be specific
to the users’ systems.

– Moderately-impactful Bugs: bugs that are widely distributed in the
user base (i.e., entropy value above or equal to the median) but do not
occur very often (i.e., frequency value below the median).

– Isolated Bugs: bugs with frequency and entropy values below the median.
These bugs rarely occur and affect a small number of users.
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Table 3: Median value of hypothesis testing metrics for crash-inducing commits
and crash-free commits, as well as the p-value of the Wilcoxon rank sum test

Metric Crash-inducing Crash-free p-value
Committer’s experience 190 246 < 2.2e-16
Message size 12 11 < 2.2e-16
Changed files 3 2 < 2.2e-16
Added lines 9 5 < 2.2e-16
Deleted lines 34 13 < 2.2e-16
Entropy of changes 0.58 0 < 2.2e-16
Number of changed types 4 3 < 2.2e-16
Entropy of changed types 0.43 0.35 < 2.2e-16

Table 4: Median value of hypothesis testing metrics for highly-impactful crash-
inducing commits (HICI) and other commits, as well as the p-value of the
Wilcoxon rank sum test

Metric HICI Other p-value
Committer’s experience 177 243 < 2.2e-16
Message size 12 11 < 2.2e-16
Changed files 3 2 < 2.2e-16
Added lines 11 5 < 2.2e-16
Deleted lines 39 14 < 2.2e-16
Entropy of changes 0.63 0.21 < 2.2e-16
Number of changed types 5 3 < 2.2e-16
Entropy of changed types 0.45 0.37 < 2.2e-16

Table 5: Median value of hypothesis testing metrics for highly-impactful crash-
inducing commits (HICI) and other crash-inducing commits (OCIC), as well
as the p-value of the Wilcoxon rank sum test

Metric HICI OCIC p-value
Committer’s experience 177 218 < 2.2e-16
Message size 12 12 0.06
Changed files 3 3 < 2.2e-16
Added lines 11 7 < 2.2e-16
Deleted lines 39 27 < 2.2e-16
Entropy of changes 0.63 0.45 < 2.2e-16
Number of changed types 5 4 < 2.2e-16
Entropy of changed types 0.45 0.39 < 2.2e-16

We will perform the same (hypothesis and proportional) analyses to com-
pare highly-impactful crash-inducing commits against other commits. More-
over, we will also compare highly-impactful crash-inducing commits against
other crash-inducing commits (i.e., crash-inducing commits with less impact).

Finding.
Hypothesis tests: Table 3 shows the median values of crash-inducing com-
mits and crash-free commits for the metrics listed in Table 2, as well as the p-
values of the Wilcoxon rank sum tests. According to the results, crash-inducing
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commits are submitted by developers with less experience, suggesting that
novice developers tend to write error-prone code. The message size of crash-
inducing commits is significantly longer than crash-free commits. It is possible
that crash-inducing commits are more complex and hence developers need
longer comments to describe these changes. In crash-inducing commits, de-
velopers change significantly more files, and add and delete more lines than
crash-free commits. This result is consistent with previous studies [? ? ] where
researchers found that relative code churn measures can indicate faults in mod-
ules. In addition, crash-inducing commits have higher entropy of changes val-
ues, i.e., their changed code tend to be equally distributed among the changed
files (mean and median values of 0.45, and 0.58 respectively); while in the case
of crash-free commits, mean and median values of the entropy of change metric
are respectively 0.36 and 0. In terms of changed types, crash-inducing com-
mits possess more unique changed types, and their changed types’ entropy
is higher than crash-free commits. In other words, the changed statements
are distributed across more changed types in crash-inducing commits than in
crash-free commits. This observation suggests that it is preferable to make
semantically coherent changes (i.e., changes of the same type) in commits.
When developers modify the code with a lot of changed types (with the mod-
ifications equally distributed across the changed types), these modifications
have a higher probability to induce subsequent crashes.

In light of results from Table 3, we reject null hypotheses H1
01 ∼ H5

01,
H1

02 ∼ H2
02, and H1

03. In other words, for all metrics listed in Table 2, there
exist statistically significant differences between crash-inducing commits and
crash-free commits.

Table 4 compares highly-impactful crash-inducing commits with other com-
mits. We observe the similar results as in Table 3, i.e., highly-impactful crash-
inducing commits were submitted by less experienced developers with longer
commit messages. These commits changed significantly more lines of code and
contain more changed types.

Table 5 shows the comparison between highly-impactful crash-inducing
commits and other crash-inducing commits. Developers who submitted highly-
impactful crash-inducing commits have significantly lower experience. More
lines of code were changed (and these changes tend to equally distributed in
multiple files) in highly-impactful crash-inducing commits, which possess more
changed types.

Proportional analysis: Table 6 summarizes the results of our proportion
analysis between crash-inducing commits and crash-free commits. Interest-
ingly, we observe that crash-inducing commits are mostly submitted by devel-
opers using Mozilla email accounts. This situation may be due to the fact that
commits from outside contributors receive more scrutiny (through code review
sessions) than those from Mozilla developers. It could also mean that Mozilla
developers handle the more complex changes on the code. In addition, most
of our studied commits (either crash-inducing or crash-free) are bug fixing at-
tempts. This finding confirms that bug fixing has become the major activity
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Fig. 7: Frequency of resolutions of crash-related bugs and other bugs

in software development [? ]. A higher proportion of crash-inducing commits
are aimed at fixing bugs; meaning that modifying code to fix an existing bug is
a risky task that can induce other bugs; confirming arguments from previous
studies, such as [? ], that legacy code becomes difficult to maintain.

We analyzed the fixes of bugs in Firefox and found that developers tend
to use a single commit to fix crash-related bugs. We also observed that crash-
related bugs are reopened less often, in comparison to bugs that do not crash
the system, which may be an indication that developers are more careful when
fixing crash-related bugs. Bugs that require supplementary fixes and–or bugs
that are reopened are costly for software organisations. To get a deeper insight
of the bug correction process of Firefox, we parsed all the bug reports that
were submitted in Mozilla Bugzilla between January 2012 and December 2012.
For each of these bugs, we checked the resolution status. Figure 7 shows the
resolution frequency of crash-related bugs and other bugs during the studied
period. We observe that 46.4% of crash-related bugs have no resolution, and
only 25.5% of crash-related bugs have been resolved. Regarding crash-free
bugs, 34% have no resolution, and 43.7% of these bugs have been resolved.
Moreover, 9.4% of crash-related bugs were resolved as “worksforme”, whereas
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Table 6: Median value of proportional metrics for crash-inducing commits and
other commits

Metric Crash-inducing Crash-free
Using Mozilla email 41.8% 36.7%
Is bug fix 91.4% 83.5%
Supplementary fixes 15.5% 38.3%
Bug reopening 3.8% 6.7%

Table 7: Median value of proportional metrics for highly-impactful crash-
inducing commits (HICI) and other commits

Metric HICI Other
Using Mozilla email 42.8% 37.2%
Is bug fix 89.7% 84.8%
Supplementary fixes 4.7% 38.3%
Bug reopening 1.1% 6.7%

only 4.1% of crash-free bugs have this resolution. In a previous study, Joorabchi
et al. [? ] found that 66% of “closed” non-reproducible reports (i.e., bugs
resolved with “worksforme”) can be eventually reproduced and fixed. In our
previous work, we also found that some bugs are prematurely closed with the
“worksforme” resolution. Therefore, the “worksforme” resolution may be a
mislabelling and could reflect developers’ negative attitude towards a difficult
problem. The above statistics suggest that developers do not resolve many
crash-related bugs even though they work on them carefully when they choose
to fix them. This outcome is surprising given the fact that crash-related bugs
can lead to users’ frustration and affect a software organisation’s reputation.
We explain this surprising result by the fact that Firefox being an open source
software system, developers can choose the bugs that they wish to fix. This
flexibility may result in a majority of developers choosing easy bugs, that are
not crashing the system.

Table 7 shows the comparison between highly-impactful crash-inducing
commits and other commits. We observe the similar results as in Table 6,
i.e., highly-impactful crash-inducing commits tend to be submitted by Mozilla
developers. A higher percentage of these commits aim to fix bugs than other
commits. The bugs caused by these commits are also re-opened less often and
fixed in fewer commits (in general a single commit) in comparison to other
bugs (including crash-inducing commits that crash less frequently and affect
less users). This result suggests that when developers fix a highly-impactful
bug, they are very careful to ensure that their fix is correct. Moreover, we
found that only 26.2% of highly-impactful bugs have been fixed. This result is
similar to the “fixed” proportion of other crash-related bugs.
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In general, crash-inducing commits are submitted by less experienced devel-
opers. They contain longer commit messages, change more files and more
lines of code than crash-free commits. Crash-inducing commits contain more
changed types, their changed statements tend to be scattered across different
changed types. Many crash-inducing commits are aimed at fixing a previ-
ous bug. Crash-inducing commits are often submitted by developers using
Mozilla email accounts (i.e., Mozilla developers). Developers are careful
when fixing crash-related bugs; fixes of crash-related bugs require less re-
working (i.e., supplementary fixes) in comparison to the fixes of other bugs.

RQ3: How well can we predict crash-inducing commits?

Motivation. Crash-inducing commits may negatively impact users’ expe-
rience, decrease the overall software quality and even the reputation of the
software organisation. If we can predict these faulty commits early on, we will
not only increase the satisfaction of users, but also shorten the period between
the introduction of these crash-related bugs in the system and their detection
and correction. In fact, if the detection of a bug is done long time after its in-
troduction in the system, developers are likely to have a hard time identifying
the root cause of the bug since their knowledge of the code tends to decrease
overtime. Hence, a delayed detection of bugs is likely to augment maintenance
overhead. In our previous work [? ], we extracted metrics from bug reports
to predict highly impactful crash-related bugs. Although this approach can
shorten bug triaging time to some extent, developers still have to wait for
a certain period, during which crashes are collected, triaged and filed into
bug reports, before they can carry out their bug fixing activities. During this
period, end users (possibly in large numbers) may have suffered unexpected
aborts of the software. A just-in-time detection of crash-inducing commits will
enable developers to act immediately on crash-prone commits before they can
negatively impact users.

Approach. We extract 25 metrics along 4 dimensions from respectively the
studied commit logs and the corresponding source code of Firefox. Table 8 to
Table 11 show our selected metrics (i.e., independent variables for the predic-
tion models) and their rationales. Since we compute code complexity, SNA,
and changed type metrics only for C/C++ code, we only consider commits
that change C/C++ code in the prediction.

To predict whether or not a commit will cause subsequent crashes, we
apply multiple regression and machine learning algorithms: General Linear
Model (GLM), Naive Bayes, decision tree, and Random Forest. GLM is an
extension of multiple linear regression for a single dependent variable. It is
extensively used in regression analyses. Naive Bayes are a set of logistic regres-
sion algorithms based on applying Bayes’ theorem with strong independence
assumptions between the features. Although independence is normally a poor
assumption, in practice, this algorithm often performs well [? ]. In a previous
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Table 8: Commit log metrics

Attribute Explanation and Rationale
Hour Hour (0-24). Code committed at certain hours may lead to crashes

(e.g., hours around quitting time).
Week day Day of week (from Mon to Sun). Code committed on certain week

days may be less carefully written (e.g., Friday) [? ? ], and would lead
to crashes.

Month day Day in month (1-31). Code committed on certain days may be less
carefully written (e.g., before and during public holidays); resulting
into subsequent crashes.

Month Month of year (1-12). Code committed in some seasons may be
less carefully written; resulting into crashes. (e.g., December, during
Christmas holidays).

Day of year* Day of year (1-366). Combined the rationales of day and month.
Message Size Number of words in a commit message. In RQ2, we found that crash-

inducing commits are correlated with longer commit messages.
Experience Number of prior submitted commits. In RQ2, we found that crash-

inducing commits tend to be submitted by less experienced develop-
ers.

From Mozilla Whether a committer uses a Mozilla email address. In RQ2, we found
that crash-inducing commits are often submitted by Mozilla’s devel-
opers.

Number of
changed files

Number of changed files in a commit. In RQ2, we found that commits
with more changed files tend to cause subsequent crashes.

Entropy of
changes

Measurement of the dispersion of changes among files in a commit.
In RQ2, we found that commits with higher entropy value tend to
induce crashes.

Is bug fix Whether a commit aimed to fix a bug. In RQ2, we found that crash-
inducing commits are correlated with bug fixing code.

Is supplemen-
tary fix

Whether a commit is to fix a prior (fixed) bug. Supplementary fixes
may enhance previous fixes and may be less likely to cause crashes.

Before crashed
files

Percentage of a commit’s files that caused crashes in prior commits.
Crashed code may be difficult to fix, and still lead to future crashes.

bug prediction study, Shihab et al. [? ] used the C4.5 decision tree algorithm to
predict re-opened bugs and obtained good prediction results. In this research,
we use C5.0 model, the improved version of C4.5, which can obtain a higher
accuracy. It runs faster and uses less memory than than C4.5 [? ]. Developed
by Leo Breiman and Adele Cutler, Random Forest [? ] uses a majority voting
of decision trees to generate classification (predicting often binary class labels)
or regression (predicting numerical values) results. This algorithm yields an
ensemble that can achieve both low bias and low variance [? ]. In this study,
we build 100 trees, each of which are with 5 randomly selected metrics.

To deal with collinearity in the data, before building the predictive models,
we apply the Variance Inflation Factor (VIF) analysis to eliminate correlated
metrics. As recommended in [? ], we set the threshold to 5, i.e., metrics with
VIF values over this threshold are considered as correlated and will be removed
from the predictive models. In Table 8 to Table 11, removed metrics are marked
with *.
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Table 9: Code complexity metrics

Attribute Explanation and Rationale
LOC Median lines of code in all classes in a commit. In RQ2, we found that

crash-inducing commits have higher code churn (i.e., added/deleted
lines).

Number of
functions

Median number of classes’ functions in a commit. A huge class may
be difficult to understand or modify, and lead to crashes.

Cyclomatic
complexity

Median cyclomatic complexity of the functions in all classes in a com-
mit. Complex code is hard to maintain and may cause crashes.

Max nesting* Median maximum level of nested functions in all classes in a commit.
A high level of nesting increases the conditional complexity and may
increase the crashing probability.

Comment ratio Median ratio of the lines of comments over the total lines of code in
all classes in a commit. Codes with lower ratio of comments may not
be easy to understand, and may result in crashes.

Table 10: Social network analysis metrics (other metrics in this dimension
share the same rationale with PageRank. We compute median value of each
metric for all classes in a commit.)

Attribute Explanation and Rationale
PageRank Time fraction spent to “visit” a class in a random walk in the call

graph. If an SNA metric of a class is high, this class may be triggered
through multiple paths. An inappropriate change to the class may
lead to malfunctions in the dependent classes; resulting into crashes.

Betweenness Number of classes passing through a class among all shortest paths.
Closeness Sum of lengths of the shortest call paths between a class and all other

classes.
Indegree Numbers of callers of a class.
Outdegree Numbers of callees of a class.

Table 11: Changed type metrics

Attribute Explanation and Rationale
Number of
changed types

Number of unique changed types in a commit. In RQ2, we found that
crash-inducing commits tend to contain more changed types.

Entropy of
changed types

Distribution of changed types in a commit (see Section 4.2.4). In RQ2,
we found that crash-inducing commits tend to have higher entropy of
changed types.

We use ten-fold cross validation [? ] to compute the accuracy, precision,
recall, and F-measure for crash-inducing commits and crash-free commits. In
the cross validation, we randomly split the subject commits into ten disjoint
sets. Nine sets are used as training data and the remaining set as testing data.
We repeat the process for ten times and report median results for accuracy,
precision, recall and F-measure. Because crash-inducing commits and crash-
free commits are imbalanced in our data-set, we under-sample the majority
class instances, i.e., we randomly deleted instances from the data-set of crash-
free commits to make the data-sets of crash-inducing commits and crash-free
commits to have the same number of instances. We do this under-sampling
only during the training phase. We rank the importance of the independent
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Table 12: Accuracy, precision, recall, and F-measure (in %) obtained from
GLM, Naive Bayes, C5.0, and Random Forest when predicting crash-inducing
commits and crash-free commits

Metric GLM Bayes C5.0 Random Forest
Accuracy 67.4 43.3 70.0 73.5
Crash-inducing precision 58.9 38.9 57.2 61.2
Crash-inducing recall 38.8 94.5 76.8 76.7
Crash-inducing F-measure 46.8 55.0 65.5 68.0
Crash-free precision 70.1 78.8 83.0 83.8
Crash-free recall 84.1 13.2 66.2 71.7
Crash-free F-measure 76.6 22.6 73.4 77.3

variables (prediction metrics) to identify the top predictors for the algorithm
with the best prediction results.

Finding. Table 12 shows the median accuracy, precision, recall, and F-
measure for the four algorithms used to predict whether a commit will cause
crashes in Firefox. According to the results, our models can predict crash-
inducing commits with a precision up to 61.2% and a recall up to 94.5%. Ran-
dom Forest is the best prediction algorithm, which obtains the best F-measure
when predicting either crash-inducing commits or crash-free commits. Among
the 22 selected metrics, the SNA metric closeness is ranked as the most impor-
tant predictor in all the 10 phases of the cross validation. This metric evaluates
the degree of centrality of a class in the whole project. Our obtained result
suggests that when many other classes depend on a class, a change to this
(central) class is likely to induce crashes. Moreover, message size, number of
changed files, outdegree, and percentage of before crashed files are ranked as
the second important predictors; meaning that the length of comments in a
commit, the number of changed files, the number of callees of classes modified
by a commit, and the crashing history of files modified in a commit are good
indicators of the risk of crashes related to the integration of a commit in the
code repository.�

�

�

�

Our predictive models can achieve a precision of 61.2%, and a recall of
94.5%. The Random Forest algorithm achieves the best prediction perfor-
mance. Closeness is ranked as the best predictor in this algorithm. Soft-
ware organisations can make use of the proposed predictive models to track
crash-prone commits as soon as they are submitted for integration in the
code repository, for example, during code review sessions.

RQ4: How well can we predict commits that lead to frequent crashes that
impact a large user base?

Motivation. In RQ2, we characterised commits that would lead to frequent
crashes, impacting a large user base. These commits can tarnish the brand
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Table 13: Accuracy, precision, recall, and F-measure (in ) obtained from GLM,
Naive Bayes, C5.0, and Random Forest when predicting highly-impactful
crash-inducing commits

Metric GLM Bayes C5.0 Random Forest
Accuracy 76.7 36.9 79.1 81.1
Crash-inducing precision 58.0 26.5 56.8 60.9
Crash-inducing recall 7.1 91.1 48.5 54.9
Crash-inducing F-measure 12.7 40.9 52.4 57.6
Crash-free precision 77.1 87.2 84.6 86.4
Crash-free recall 98.5 19.3 88.4 89.0
Crash-free F-measure 86.6 31.7 86.6 87.6

of a software organisation since they result in many users experiencing fre-
quent crashes. In this research question, we intend to build statistical models
that can enable an early detection of highly-impactful crash-inducing commits.

Approach. We use the same predictive algorithms as in RQ3 to build our
statistical models. As we found that only 23.7% of commits (that changed
C/C++ files) would lead to highly-impactful bugs, when under-sampling our
data-set of commits that are not highly-impactful, we adjust the probability
value from 0.5 to 0.3, in order to balance our training data-set.

Finding. Table 13 shows prediction results for highly-impactful bugs. In
general, our models can predict commits that induce highly-impactful bugs
with with a precision of 60.9% and a recall of 91.1%. As in RQ3, Random
Forest also outperforms the other algorithms and the closeness metric is still
the best predictor.�

�

�


Our models can achieve a precision of 60.9%, and a recall of 91.1% when
predicting highly-impactful crash-inducing commits. The Random Forest al-
gorithm achieves the best prediction performance. The closeness metric is
ranked as the best predictor by this algorithm (i.e., Random Forest).

RQ5: What are the characteristics of commits that are misclassified by our
prediction models?

Motivation. Although our statistical models achieve a good performance
in RQ3 and in RQ4, we intend to investigate the reasons why some clean
commits are misclassified as faulty (false positives), and some faulty commits
are misclassified as clean (false negatives). A good understanding of the char-
acteristics of false positives and false negatives can help improve our statistical
models.

Approach.
We extract false positive and false negative commits from the results of our
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Table 14: Median metric values of false positive commits and other commits.

Metric False positive Other p-value
Committer’s experience 197 238 < 2.2e-16
Message size 12 11 < 2.2e-16
Changed files 3 2 < 2.2e-16
Inserted lines 15 9 < 2.2e-16
Deleted lines 28 25 0.003
Entropy of changes 0.6 0.4 < 2.2e-16
Number of changed types 4 3 < 2.2e-16
Entropy of changed types 0.4 0.4 < 2.2e-16
Closeness 3.5 3.5 < 2.2e-16
LOC 822 694 8.0e-09

Table 15: Median metric values of false negative commits and other commits.

Metric False negative Other p-value
Committer’s experience 261 226 < 2.2e-16
Message size 11 11 < 2.2e-16
Changed files 2 3 < 2.2e-16
Inserted lines 6 10 < 2.2e-16
Deleted lines 21 26 0.003
Entropy of changes 0.1 0.4 3.795e-10
Number of changed types 3 4 < 2.2e-16
Entropy of changed types 0.3 0.4 < 2.2e-16
Closeness 3.4 3.5 < 2.2e-16
LOC 497 730 < 2.2e-16

Random Forest classifier (built in RQ3 and RQ4), and conduct the following
analyses:
False positive: We statistically compare false positive commits against other
studied commits in terms of the metrics described in Table 2 as well as close-
ness (our best predictor) and LOC (a popularly metric used to assess software
maintenance effort, e.g., [? ]). We also analyse bug reports created between
January 2012 and December 2013, to examine whether false positive commits
lead to other kinds of bugs (other than crash-related bugs). As in RQ2, we also
use a 95% confidence level and the Bonferroni correction to decide whether a
results is statistically significant, i.e., p-value < 0.05/10 = 0.005.
False negative: First of all, we apply the aforementioned statistical approach
to compare false negative commits against other studied commits. Then, we
examine the characteristics of crash-inducing commits that are misclassify by
our predictions models by comparing their changed types with those of other
commits. For each studied changed type listed in Table 1, we will report the
percentage of its occurrences in false negative commits and in other commits.

Finding.
False positive: Table 14 shows median metric values for false positive and
other commits when predicting crash-inducing commits. For all the studied
metrics, false positive commits are significantly different than other commits.
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Table 16: Percentage (%) of changed type occurrences in false negative com-
mits and other commits.

Changed type False negative Other
Renaming 46.2 39.3
code block 23.6 22.2
Parameter 8.5 10.4
Comment 6.1 7.3
Preprocessor 5.4 7.7
Declaration 2.8 3.7
Control flow 2.8 3.6
Function 1.8 2.3
Invocation 1.5 1.9
Type 0.6 0.6
Data type 0.3 0.4
Class 0.2 0.3
Initialisation 0.1 0.1
Access 0.1 0.1
Operator 0 0
C++ template 0 0

In general, false positive commits are often submitted by less experienced
developers, they have higher complexity in term of lines of code, and changed
more lines of code. Their changed code tends to equally distributed among
multiple files. This is the reason why these commits are misclassified. In fact,
we observed that the Random Forest model tends to classify commits with
less developers’ experience, higher number of changed files and lines of code
as “crash-inducing commits”.

In addition, 1,211 out of 13,093 false positive commits (9.2%) led to other
bugs (that did not crashed the system). Therefore, although our Random
Forest model wrongly classified them as crash-inducing commits, developers
should still pay attention to them because they are likely to introduce a fault
in the system, even though the fault does not crash the system. Developers
should double check these commits (e.g., during code review sessions) before
integrating them into the version control system.
False negative: Table 15 shows median metric values of false negative and
other commits. False negative commits are misclassified, because they were
submitted by more experienced developers, changed less files and less lines
of code. Their entropy of changes is also lower than other commits. Table 16
shows the percentage of changed type occurrences in false negative commits
and in other commits. These two kinds of commits have a very close percent-
age (less than 2%) of all changed types except renaming, where false negative
commits have higher percentage. Surprisingly, renaming is the most frequent
changed type that leads to crashes; implying that inappropriate or incom-
plete renaming can lead to runtime variable missing or mismatching errors
(e.g., “variable does not exist” From Foutse Iis this an example?J ), which crash
a software system. Especially, when developers use a tool to perform a re-
naming operation, the tool may not rename all variables in all related files.
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This finding suggests that developers should be careful when performing this
apparently “simple” operation. Nowadays, although some IDEs support auto-
matic renaming, they cannot guarantee that all related or dependent variables
(functions, or classes) are correctly renamed From Foutse Ido you have a reference

for this?J . In the future, we will empirically evaluate whether renaming or
refactoring-related metrics can help improve the recall of our models. We also
plan to study the relationship between code refactorings and fault-proneness.

In addition, we found similar results of the false positive and false negative
commits yielded by our Random Forest model in RQ4. Software researchers
and practitioners can refer to our detailed results at: https://github.com/
swatlab/crash-inducing.�

�

�

�

It is worthy to spend time examining false positive commits because although
they do not lead to crashes, some of them cause other types of bugs. False
negative commits have higher percentage of renaming operations than other
commits; suggesting that developers should be careful when performing re-
naming operations.

6 Threats to Validity

In this section, we discuss the threats to validity of our study following the
guidelines for case study research [? ].

Construct validity threats concern the relation between theory and obser-
vation. In this research, the construct validity threats are mainly due to mea-
surement errors. We used the source code of the previous release to a commit
to compute complexity and SNA metrics. More specifically, for a given file F
in a commit C, we found the previous release R of C, and computed the code
complexity and SNA metrics of F in the context of the release R. Although
the new commit C could slightly affect the values of these metrics, we ob-
served that in most cases there is no noticeable change. Also, the original SZZ
algorithm [? ] selects bug-inducing commit candidates that were submitted be-
fore a bug’s opening date. But we cannot directly apply this principle to filter
crash-inducing commit candidates, because a bug may derive from different
crashes, which have the common top signatures but differ from each other in
the remaining signatures. Thus, we take both the first crash occurrence date
and bug opening date into account, and match a candidate’s changed files with
the crash-related bug’s crash-signatures. In addition, computing the code com-
plexity and SNA metrics every time a new commit is submitted would delay
the detection of the crash-inducing commits (since the computation of the
metrics takes some time). In this paper, as a compromise, we use the files in
the previous release to estimate a current commit’s code complexity and SNA
metrics. In the future, we will design a parallel algorithm to compute these
metrics in real time.

Internal validity threats concern factors that may affect a dependent vari-
able and were not considered in the study. In Section 3.2.2, although we re-
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moved all candidates of crash-inducing commits that only changed comments
and–or white space lines, our “crash-inducing commits” may still contain some
false positives. Concretely, in a fix of a crash-related bug, not all of the changes
are aimed to address the bug. Some lines may be added because of a refactor-
ing or an addition of a new feature. These changes are hard to identify with
an automatic approach. In our future work, we plan to manually examine a
sample of the identified crash-inducing commits, and report its precision and
recall.

Conclusion validity threats concern the relation between the treatment
and the outcome. We paid attention not to violate the assumptions of the
constructed statistical models. In RQ2, we used non-parametric tests which
do not require making assumptions about the distribution of the data set. In
this extension, we readjust the classification for some srcML tags to group them
into the correct changed types. Moreover, in this paper, we also investigate the
reason behind false positives and false negatives from the prediction models.

External validity threats concern the possibility to generalise our results.
In this paper, we analysed only Mozilla Firefox. Although many software or-
ganisations are using crash collecting systems, to the best of our knowledge,
only the Mozilla corporation has opened its crash reports to the public [? ].
In our previous work [? ], we used another Mozilla project, Fennec for An-
droid, as a subject system to study crash-related bugs. However, the code
of Firefox and Fennec are both managed by a Mercurial central branch, in
which, the two sub-systems share some common components; making it hard
to separate the two systems at the level of commits. We look forward to gener-
alise our proposed approach to more software systems. We share our data and
scripts at https://github.com/swatlab/crash-inducing. Researchers and
software practitioners can use these data and scripts to validate our results
and replicate our technique on other systems.

7 Related Work

In this section, we introduce some related studies on crash analysis, traditional
fault prediction techniques, and Just-In-Time fault prediction techniques.

7.1 Crash Analysis

Crashes stop a software system unexpectedly, causing data loss and users’
frustration. Today, many software organisations have deployed automatic crash
collecting systems to gather and triage crash occurrences. Researchers intend
to study crash reports from these systems to facilitate the debugging and bug
fixing process for software practitioners. Podgurski et al. [? ] proposed an
automated failure clustering approach for the classification of crash reports to
facilitate their prioritisation and the diagnostic of their root causes. Khomh
et al. [? ] mined crash reports in Mozilla Firefox, and proposed an entropy-
based approach that can be used to identify crash-types with high impact,
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i.e., crash-types that occur frequently and impact a large number of users.
Based on the approach proposed by Khomh et al., Wang et al. [? ] studied
crash information in Firefox and Eclipse, and proposed an algorithm that can
locate and rank faulty files, as well as a method that can identify duplicate
and related bug reports. Kim et al. [? ] analysed crash reports and the related
source code in Firefox and Thunderbird to predict top crashes before a new
release of a software system.

7.2 Traditional Fault Prediction Techniques

Traditional fault prediction techniques used coarse-grained metrics, such as
bug report metrics, to identify fault-prone modules or specific types of bugs.
By using social factors, technical factors, coordination factors, and prior-
certifications factors, Hassan et al. [? ] created decision trees to predict ahead
of time the certification result of a build for a large software project at IBM
Toronto Lab. Shihab et al. [? ] extracted metrics from bug reports and built
models using C4.5, Zero-R, Naive Bayes and Logistic Regression algorithms,
to predict bug re-opening in three open-source projects. In their study, the
decision tree model, C4.5, yielded the best prediction results. As a comple-
mentary work, Zimmermann et al. [? ] used Logistic Regression models to
predict bug re-opening in Windows. In our previous work [? ], we used GLM,
C5.0 (the improved version of C4.5), ctree, randomForest, and cforest to pre-
dict crash-related bugs with high crashing frequency and which impact a large
population of users.

7.3 Just-In-Time Fault Prediction Techniques

Though traditional fault prediction techniques can help software organisations
prevent faults to some extent, developers can only identify the error-prone
modules responsible for these faults after the faults have been filed into bug
reports. During the period between the integration of the faulty code into the
version control system and the opening of the bug report, a faulty commit
could have negatively impacted a large user base. Just-In-Time fault predic-
tion techniques are designed to predict faults in commits, in order to allow
developers to track and fix faults as soon as they are submitted for integration
in version control systems. Kamei et al. [? ] used a wide range of source code
metrics to predict fault-prone commits in six open-source systems and five
commercial systems. Fukushima et al. [? ] applied Just-In-Time fault predic-
tion techniques to cross-project fault predictions and found them viable for
projects with little historical data. Using a number of code and process factors
extracted at change level, Misirli et al. [? ] built statistical models to predict
high impact fix-inducing changes. In this paper, we use change level metrics
to predict crash-inducing commits. Some crashes would frequently occur and
affect a large population of users, we also predict commits that lead to these
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highly-impactful crashes. Moreover, we perform statistical analyses to under-
stand the reason of false positive and false negatives errors in our prediction.
We found that though false positive commits do not lead to crash-related bugs,
some of them lead to other bugs and other possess latent peril. We are also
aware of the risk of renaming changes and suggest software practitioner to pay
attention to this “simple” operation.

8 Conclusion

Crashes, which are unexpected terminations of software systems, are one of the
major sources of frustration for users. The frequent crashes of software systems
can significantly decrease user-perceived quality and even affect the overall
reputation of a software organisation. To help software practitioners identify
crash-prone code early on, we conduct a study of crash-inducing commits in
Mozilla Firefox to answer five research questions pertaining the proportion of
crash-inducing commits in Firefox (RQ1), the characteristics do crash-inducing
commits (RQ2), the prediction of crash-inducing commits (RQ3), the predic-
tion of commits that lead to frequent crashes and that impact a large user
base (RQ4), and, finally, the characteristics of commits that are misclassified
by our prediction models (RQ5).

In summary, we found that crash-inducing commits account for more than
25% of all the commits that we studied in Firefox. We also found that, com-
pared to other commits, crash-inducing commits are often submitted by de-
velopers with less experience and that they contain longer comments, more
changed files and changed lines as well as more change types. In addition,
compared to other crash-related bugs, bugs that yield to frequent crashes and
that impact a large user base were less reopened and tended to be fixed by a
single commit.

To help software practitioners track and fix crash-inducing commits as soon
as possible, we built predictive models using various regression and machine
learning algorithms. These predictive models achieved a precision up to 61.2%
and a recall up to 94.5% to predict crash-inducing commits and achieved a
precision up to 60.9% and a recall up to 91.1% to predict commits that lead
to highly-impactful bugs, i.e., bugs that yield to frequent crashes impacting
a large user base. By analysing the prediction errors, we observed that re-
naming is the most frequent change type in Firefox and that crash-inducing
commits have a higher percentage of renaming changes. This observation sug-
gests that developers are not fully aware of the latent risks of their renaming
operations and should double-check their renaming operations for correctness
and completeness.

Software organisations can use our predictive models to identify crash-
prone code as soon as it is committed in the source code repository and, more
generally, our approach to build models adapted to their context. They could
then correct their code quickly to avoid that users experience crashes and,
thus, reduce users’ frustrations.
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In the future, we plan to generalise our approach to other software systems
when and if they open their crash collecting systems to researchers. We also
want to implement our models into tools for different programming languages
and integrate them into interactive development environments to warn devel-
opers as soon as they commit of the potential crash that could yield from
their commits. We also want to study in more details the code and developers’
characteristics related to crashes to propose mitigating measures even before
the code is committed by developers.

Acknowledgements This work is supported by NSERC (Natural Sciences and Engineer-
ing Research Council of Canada).

32


	Introduction
	Mozilla Crash Collecting System
	Identification of Crash-inducing Commits
	Case Study Design
	Case Study Results
	Threats to Validity
	Related Work
	Conclusion

