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Abstract—Genetic algorithms are attractive to solve many
search-based software engineering problems because they allow
the easy parallelization of computations, which improves scala-
bility and reduces computation time. In this paper, we present
our experience in applying different distributed architectures
to parallelize a genetic algorithm used to solve the concept
identification problem. We developed an approach to identify
concepts in execution traces by finding cohesive and decoupled
fragments of the traces. The approach relies on a genetic algo-
rithm, on a textual analysis of source code using latent semantic
indexing, and on trace compression techniques. The fitness
function in our approach has a polynomial evaluation cost and
is highly computationally intensive. A run of our approach
on a trace of thousand methods may require several hours
of computation on a standard PC. Consequently, we reduced
computation time by parallelizing the genetic algorithm at the
core of our approach over a standard TCP/IP network. We
developed four distributed architectures and compared their
performances: we observed a decrease of computation time up
to 140 times. Although presented in the context of concept
location, our findings could be applied to many other search-
based software engineering problems.

Keywords-Concept location; dynamic analysis; information
retrieval; distributed architectures.

I. INTRODUCTION

Genetic algorithms (GAs) are an effective technique to
solve complex optimization problems. GAs are effective
in finding approximate solutions when the search space
is large or complex, when mathematical analysis or tradi-
tional methods are not available, and—in general—when
the problem to be solved is NP-complete or NP-hard [1].
Informally, a GA may be defined as an iterative procedure
that searches for the best solution to a given problem
among a constant-size population, represented by a finite
string of symbols, the genome. The search starts from an
initial population of individuals, often randomly generated.
At each evolutionary step, individuals are evaluated using
a fitmess function. Highly fit individuals have the highest
probability to reproduce in the next generation. GAs have
been applied to many software engineering problems; from
library miniaturization [2], to project staffing [3], to test
input data generation [4], to software refactorings [S].

One of the attractive feature of GAs is that the evaluation
of the fitness function is often performed on each individual
in isolation: to assign its fitness value to an individual, the
GA only needs its genome representation because there are
no interactions with other individuals in the population. Such
an isolation in the evaluation of the fitness function leads
naturally to parallelize computations of the fitness function
to reduce computation time [6], [7], [8].

In this paper, we report our experience in distributing
the computation of a fitness function to parallelize a GA
to solve the concept location problem. To the best of our
knowledge, this is the first time that GA parallelization via
the distribution of the fitness function computation is applied
to solve the concept location problem.

Concept location approaches help developers perform
their maintenance and evolution tasks by identifying ab-
stractions (i.e., concepts or features) and the location of the
implementation of these abstractions in source code. They
aim at identifying code fragments, i.e., set of method calls
in traces and the related method declarations in the source
code, responsible for the implementation of domain concepts
and—or user-observable features [9], [10], [11], [12], [13].

In [14], we presented an approach to identify cohesive
and decoupled fragments in execution traces, which likely
participate in implementing concepts related to some fea-
tures. The approach builds upon previous concept location
approaches [15], [16], [13], [12], [17] and uses a GA to
automatically locate cohesive and decoupled fragments. Al-
though promising, our approach is computationally intensive
and suffers from scalability issues.

To resolve the scalability issues of our approach, we
developed, tested, and compared four different architectures
where a client (master) distributes the computation of the fit-
ness function among servers (slaves) over a TCP/IP network.
To our surprise, the most effective architecture to reduce
computation time defines servers that only use local data
and do not share data and—or results with other servers.

Consequently, the contribution of this paper is an applica-
tion of GA parallelization to a software engineering problem
and the comparison and discussion of our findings for four
different architectures. Although presented in the context



of concept location, our findings could be applied to other
search-based software engineering problems.

The remainder of the paper is organized as follows:
Section II presents related work followed by Section III
where the concept location problem is summarized. Section
IV describes the approach to speed up computation. Section
V reports the results and some discussions. Section VI
concludes the paper and outlines some future work.

II. RELATED WORK

This paper focuses on the parallelization of a GA using a
distributed architecture to reduce the computation time of an
approach to solve the concept location problem. Therefore,
we focus in the following on previous work related to the
concept location problem (i.e., feature identification), to the
distribution of optimizations in software engineering, and to
the parallelization of GAs in other domains.

A. Feature Identification

In their pioneering work, Wilde and Scully [16] presented
the first approach to identify features by analyzing execution
traces. They used two sets of test cases to build two exe-
cution traces, one where a feature is exercised and another
where the feature is not. They compared the execution traces
to identify the feature in the system. Similarly, Wong et
al. [18] analyzed execution slices of test cases to identify
features in source code. Wilde’s original idea was later
extended in several works [9], [12], [19], [20] to improve its
accuracy by introducing new criteria on selecting execution
scenarios and by analyzing the execution traces differently.
Search based techniques have been used by Gold et al
[21] for concept binding, the work extends a previous
contribution [22] and uses hill climbing and GA to locate
(possibly overlapping) concepts in the source code.

More recent works focused on a combination of static and
dynamic data [17], [12], in which, essentially, the problem
of features identification from multiple execution traces is
modelled as an information-retrieval (IR) problem, which
has the advantage to simplify the identification process and,
often, improves its accuracy [12]. Yet, Liu et al. [23] showed
that a single trace suffices to build an IR system and identify
useful features. Execution traces were also used to mine
aspects by Tonella and Ceccato [13].

We share with this previous work the use of dynamic data
and IR techniques to identify features. In our approach, we
determine, in an execution trace the cohesive and decoupled
fragments likely to be relevant to a feature using the values
of the conceptual cohesion and coupling [24], [25] metrics
of the methods participating in each fragment. The compu-
tational costs of conceptual cohesion and coupling together
with the size of the execution traces are at the root of the
scalability issues of our approach.

B. GA Parallelization in Software Engineering

A limited number of works in software engineering
addressed complex optimization problems by distributing
computations among several servers. Mitchal et al. [26]
proposed an approach to remodularize large systems by
grouping together related components by means of clustering
techniques. They used different search strategies based on
hill-climbing and GAs. To improve the performance of their
approach, they distributed the hill-climbing computations.

More recently, Mahdavi et al. [27] used a distributed
hill-climbing for software module clustering. The fitness
function clusters together modules that are cohesive and
decoupled from the other clusters. The algorithm was par-
allelized on 23 processing units running Linux.

C. GA PFarallelization in Other Domains

The literature on the parallel implementation of GAs
reports that parallelization does not influence the quality of
results but makes GA execution much faster.

Parallel GAs have been to solve problems in different
domains. For example, parallel GAs were used for shortest-
path routing [28], multi-objective optimization [29], finding
roots of complex functional equation [30], image restoration
[31], service restoration in electric power distribution [32],
and rule discovery in large databases [33].

The scalability of a parallel system refers to its ability to
use an increasing number of processors (and—or computers)
in an effective way. Rivera [7] discussed the scalability of
parallel GAs based on their iso-efficiency, which is defined
according to the problem size, number of processors, and the
execution time of the parallel algorithm. A parallel system
is scalable iff it uses an iso-efficient fitness function.

Stender et al. [6] classified parallel GAs into three cat-
egories, each one using a different parallelization strategy.
In the category of global parallelization, only the evaluation
of the individuals’ fitness is parallelized: a computer acting
as master applies the genetic operators on the individuals’
genomes and distributes the individuals among slave com-
puters, which compute the fitness values of the individuals.

In the category of coarse-grained parallelization (is-
land model), a computer divides a population into sub-
populations and assigns each sub-population to another
computer. A GA is executed on each sub-population. When
it is needed, the computers exchange data related to the sub-
populations using a migration process. This model inspired
Zorman et al. [34]: they used a Java service-oriented ar-
chitecture to implement the island model using a migration
process to solve the knapsack problem.

In the category of fine-grained parallelization, each in-
dividual is assigned to a computer and all the GA op-
erations are performed in parallel. Our approach to GA
parallelization of the concept location problem falls under
this category: it is essentially a global parallelization where
servers are in charge of computing fitness values. Moreover,



our work is the first to presents four distributed architectures
and their related trade-offs for the computation of the fitness
function to parallelize the concept location problem.

III. BACKGROUND

This section summarizes our approach [14] to locate
concepts by analyzing execution traces. We provide details
of our approach for the sake of completeness and because
they are necessary to understand the rationale behind the
four different architectures that we implemented.

Our concept location approach consists of five steps. First,
the system under analysis is instrumented. Second, it is
exercised to collect execution traces. Third, the collected
traces are compressed to reduce the search space that must
be explored to identify concepts. Fourth, each method of the
system is represented by means of the text that it contains.
Fifth, a GA-based technique is used to identify, within
execution traces, sequences of method invocations that are
related to a concept.

A. Steps 1 and 2 — System Instrumentation and Trace
Collection

First, the software system is instrumented using the instru-
mentor of MoDeC. MoDeC is a tool to extract and model
sequence diagrams from Java systems [35]. MoDeC instru-
mentor is a dedicated Java bytecode modification tool imple-
mented on top of the Apache BCEL bytecode transformation
library'. It inserts appropriate and dedicated method invoca-
tions in the system to trace method/constructor entries/exits,
taking care of exceptions and system exits. It also allows the
user to add tags containing meta-information to the traces,
e.g., tags delimiting and labelling sequences of method calls
related to some specific features being exercised. Resulting
traces are text files listing method invocations and including
the class of the object caller, the unique ID of the caller, the
class of the receiver, the unique ID of the callee, and the
complete signature of the method.

B. Step 3 — Pruning and Compressing Traces

Usually, execution traces contain methods invoked in
most scenarios, e.g., methods related to logging or start-
up and shut-down. In the execution trace of a system with a
graphical user interface, mouse tracking methods will largely
exceed all other method invocations. Yet, it is likely that such
methods are not related to any particular concept, i.e., they
are utility methods. We filter out these utility methods using
the distributions of the frequencies of their occurrences.

Moreover, traces often contain repetitions of one or more
method invocations, for example m1 (); ml(); ml();
orml(); m2(); ml(); m2();. A repetition does not
introduce a new concept and makes a trace longer that nec-
essary to locate concepts. Consequently, we compress traces
using the Run Length Encoding (RLE) algorithm to remove

Uhttp://jakarta.apache.org/bcel/

Table I
EXAMPLE OF GA INDIVIDUAL REPRESENTATION (SECOND COLUMN).

Method Invocations R
TextTool.deactivate()
TextTool.endEdit()
FloatingTextField.getText()
TextFigure.setText-String()
TextFigure.willChange()
TextFigure.invalidate()
TextFigure.markDirty()
TextFigure.changed()
TextFigure.invalidate()
TextFigure.updateLocation()
FloatingTextField.endOverlay()
CreationTool.activate()
JavaDrawApp.setSelectedToolButton()
ToolButton.reset()

ToolButton.select()
ToolButton.mouseClickedMouseEvent()
ToolButton.updateGraphics()
ToolButton.paintSelectedGraphics()
TextFigure.drawGraphics()
TextFigure.getAttributeString()
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repetitions and keep one occurrence of any repetition only.
The previous examples would become ml () and ml () ;
m2 (), respectively. We compression any sub-sequences of
method invocations having an arbitrary length.

C. Step 4 — Textual Analysis of Method Source Code

To determine the conceptual cohesion and coupling of
invoked methods, our approach uses the metrics defined
by Marcus et al. [24], [25]. We extract a set of terms
from each method by tokenizing the method source code
and comments, pruning out special characters, programming
language keywords, and terms belonging to a stop-word
list for the English language. (We assume that comments
appearing on top of the method declaration belong to the
following method.)

We then split compound terms based on the Camel Case
naming convention at each capitalized letter, e.g., get Book
is split into get and book. Then, we stem the obtained
simple terms using a Porter stemmer [36].

Once terms belonging to each method extracted, we index
these terms using the #f-idf indexing mechanisms [37]. We
thus obtain a term—document matrix, where documents are
all methods of all classes belonging to the system under
study and where terms are all the terms extracted (and
split) from the method source code. Finally, we apply Latent
Semantic Indexing (LSI) [38] to reduce the term—document
matrix into a concept—-document matrix.

We follow previous process and suggestion [24], [25]
when computing the conceptual cohesion and coupling of
methods in a class in the LSI subspace to deal with syn-
onymy, polysemy, and term dependency. We choose a size
of 50 for the LSI subspace.
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D. Step 5 — Search-based Concept Location

We now have all the data to segment execution traces into
conceptually-cohesive and -decoupled segments related to a
feature being exercised and, thus, to a specific concept.

1) Problem Definition: Suppose that the collected trace
contains /N methods; determining a (near) optimal solution
(splitting a trace into segments) means exploring a search
space of all possible binary strings, of length IV, that do not
contain two consecutive 1. In other words, the order of the
problem search space is 2N and, therefore, we use a GA to
perform the splitting.

At each step of the GA, individuals are evaluated using
a fitness function and selected using a selection mecha-
nism. Highly fit individuals have the highest reproduction
probability. The evolution (i.e., the generation of a new
population) is affected by the crossover operator and the
mutation operator.

2) Problem Representation: Our representation of an
individual is a bit-string of the length of the compressed
execution trace in which we want to identify some feature-
related concepts. Each method invocation is represented as a
“0”, except the last method invocation in a segment, which
is represented as a “1”. For example, the bit-string

00010010001
11

means that the trace, containing 11 method invocations, is
split into three segments (i.e., concepts) composed by the
first four method invocations, the next three, and the last
four. Table I shows an example of a real segment splitting?.

Other representations could be more compact, for ex-
ample, a book keeping of segments beginnings and ends.
The disadvantage of such representation is that mutation
and crossover would be more complex and costly in time.
Among different representations, we found that the bit-string
representation is suitable to large traces: even for a trace
of one million method calls and hundreds of individuals,
memory requirement is still manageable on a standard
PC. Moreover, the bit-string representation allows to easily
understand the size of the search space, which is roughly
related to the number of bit strings.

2The segment splitting shown in Table I has been obtained randomly and
does not correspond to actual concepts.

3) Mutation: The mutation operator prevents the con-
vergence to a local optimum: it randomly modifies an
individual’s genome (e.g., by flipping some of its symbols).
The mutation operator randomly chooses one bit in the
representation and flips it over. Flipping a “0” into a “1”
means splitting an existing segment into two segments, while
flipping a “1” into a “0” means merging two consecutive seg-
ments. Mutation operator is thus implemented with constant
time complexity.

4) Crosssover: The crossover operator takes two individ-
uals (the parents) of one generation and exchanges parts
of their genomes, producing one or more new individuals
(the offspring) in the new generation. The crossover operator
is the standard 2-point crossover. Given two individuals,
two random positions z,y with * < y are chosen in
one individual’s bit-string and the bits from x to y are
swapped between the two individuals to create two new off-
springs. Crossover operator is thus implemented with linear
time complexity in the length of the bit-string individual
representation.

5) Fitness Function: A fitness function drives the GA to
produce individuals that represent a splitting of the trace
into segments that are related to some concepts. We use the
software design principles of cohesion and coupling, already
adopted in the past to identify modules in systems [39].

However, instead of structural cohesion and coupling
measures, we use conceptual (i.e., textual) cohesion and
coupling measures [24], [25]. Segment cohesion is the
average (textual) similarity between any pair of methods in a
segment k and is computed using the formulas in Equation 1
where begin(k) is the position (in the individual’s bit-string)
of the first method invocation of the k" segment and end(k)
the position of the last method invocation in that segment.
The similarity between two methods is computed using the
cosine similarity measure over the LSI matrix extracted in
the previous step. Thus, it is the average of the similarity
[24], [25] to all pairs of methods in a given segment.

Segment coupling is the average similarity between a
segment and all other segments in the trace, computed using
Equation 2, where [ is the trace length. Segment coupling
represents, for a given segment, the average similarity be-
tween methods in that segment and those in different ones.

Cohesion and coupling have quadratic costs in the trace



length, plus each similarity computation between a pair of
methods involves a scalar product in the LSI subspace,
with a cost proportional to d, the number of retained LSI
dimensions. Thus, when compared with the bit operations
required to perform mutation (constant time) and crossover
(linear time), it is evident that the main source of complexity
and computation costs come from Equations 1 and 2 that
have polynomial time complexity in the bit-string individual
representation, i.e., number of methods in the trace. For a
trace split into n segments, the fitness function is shown in
Equation 3.

6) GA Parameters: We use a simple GA with no elitism,
i.e., it does not guarantee to retain best individuals across
subsequent generations; the selection operator is the roulette-
wheel selection. We set the population size to 200 individ-
uals and a number of generations of 2,000. Crossover and
mutation are respectively performed on each individual of
the population with probability pcross and pmut respectively,
where pmut < pcross. The crossover probability was set
to 70% and the mutation to 5%, which are values widely
used in many GA applications.

IV. GA AND DISTRIBUTED ARCHITECTURE

We started our experiments with a basic GA imple-
mentation running on a single computer. We found that
computations were overly time consuming, impairing the
possibility to actually obtain results in a reasonable amount
of time. As an example, running an experiment with a
compressed trace from JHotDraw v5.4b2, and the scenario
Start-DrawRectangle-Quit, that contains 240 method calls,
with a number of iterations equal to 2,000, took about 12
hours.

We could expect a substantial improvement by paralleliz-
ing computations on several computers. However, according
to Amdahl’s law [40], the performance increase is not linear
with the number of computers due to the sequential code,
e.g., mutation and crossover. In addition, network latency,
available bandwidth between computers and, in general,
available resources complicate performance prediction and
could lessen time reduction. A detailed study of performance
in function of network latency, number of computers, and
speed-up is out of scope of this paper and will be treated in
a future work. Yet, we report the user-experienced speed-up
obtained with different architectures.

Table 1T
EXAMPLE OF INDIVIDUAL CODING AND SEGMENT REDUNDANCY

1d1 0001 0001 0000001 0001 0001
1d2 0001 0001 001 0001 0001 0001
1d3 001 00001 0000000001 0001
1d4 00001 0001 0000001 000001
1d5 | 0001 0001 0000001 0001 001 01

To reduce computation time, we decided to resort on the
client-server architectural style [41], customized into more
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specific architectures detailed in the following. The rationale
behind the different architectures comes from the illustrative
population shown in Table II: several individuals share some
segments. For example, the first two segments of individuals
Id1, Id2, and Id5 are identical (i.e., beginning and end are
the same); Id1 and Id5 are almost identical but for their
last segments. Thus, once Id1’s fitness value is calculated, if
segment cohesion and coupling were stored, they could be
reused to compute the fitness values of 1d2 and IdS.

In the following, we minimally define that a client com-
puter (master in Stender’s work [6]), performing mutation,
crossover, and population evolution, distributes fitness com-
putation to multiple servers, which compute the received
individual’s fitness value and return it to the client.
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A. A Simple Client Server Architecture

The simplest distributed client—server architecture is
shown in Figure 1. The servers have no local memory, do not
communicate among themselves or store data locally or on
a global and shared device. The client sends the individuals’
encodings to the servers and waits for the fitness values to be
returned. Each server has only its own local LSI matrix and
computes fitness values based on the equations presented in
the previous section.

B. A Database Client Server Architecture

Figure 2 shows the architecture of a client—server in which
a database server stores global shared storage device. When
a segment cohesion or coupling value is required, a server

Chromosome
>

Fitness

Chromosome
E

Fitness

Client

Chromosome
-

Fitness

Calculating Server

Figure 5. Hash Table Client Server Configuration.

first queries the database before computing it if missing.

The database holds two tables: a cohesion table and a cou-
pling table, each with three columns. Each record in these
tables keeps a similarity/coupling value for one segment.
The first column, called beginning, keeps the index of the
first method invocation in a segment and the second column
keeps the index of the last method invocation in the same
segment. The third column contains the cohesion/coupling
value of that segment.

Whenever the fitness value for a new individual must be
computed, the responsible server checks first the database. If
it can find the needed values (already calculated in the last
iterations or by other servers for other individuals), it uses
these to compute the fitness value using a simple division.
Else, it computes cohesion and coupling for the new segment
and stores the values in the database. Thus, computation is
performed if and only if the values can not be retrieved from
the database: as much data as possible is shared between
servers to reduce computation times.

There is an extra cost due to database queries and network
communication. A central database implies that all servers
write in and read from the same database. Yet, we would
expected that using a database reduces the computation times
by caching already-calculated values. However, sending data
over the network, acquiring and releasing locks, and per-
forming queries are also time consuming operations.

C. A Hash-database Client Server Architecture

To limit the possible communication between servers and
the database, the architecture shown in Figure 3 was devised.



The goal of this architecture is to further reduce computation
time by decreasing the number of accesses to the central
database using a local cache on each server, implemented
with a hash table.

The architecture works as follows: whenever a server
wants to compute the fitness value of a segment, it searches
its hash table. If the required data does not exist in its local
hash table, then the server queries the central database. If
the server finds the required data in the database, it uses it
to compute the fitness value and and stores it in its hash
table, else it computes the required data and stores the
results in both its hash table for its future use and in the
central database for the other servers use. Figure 4 reports
the flowchart of the process of this architecture.

D. A Hash Client Server Architecture

This last architecture is a compromise between the two
previous ones: only local data is stored in the local hash
table of servers. No data is shared among servers. As shown
in Figure 5, servers only communicate with the client and
no global data is kept and available.

Each server has two hash tables: one for similarity cohe-
sion and the other for coupling values for each segment. The
key of the hash tables is a combination of the indexes of the
first and last method invocations of a segment. Each server
uses its own hash tables and thus cannot benefit from the
computation results of others. However, because all the data
is stored locally and there is no access policy using locking
algorithms, the access to the already-calculated data as well
as their storage is efficient.

V. RESULTS AND DISCUSSION

We now report the typical timing obtained with the differ-
ent architectures on two compressed traces from JHotDraw.

JHotDraw? is a Java framework for drawing 2D graphics.
JHotDraw started in October 2000 with the main purpose
of illustrating the use of design patterns in a real context.
Version v5.4b2 used in our previous work [14] has a size of
about 413 KLOCs.

The traces were collected by instrumenting JHotDraw and
executing the scenarios Start-DrawRectangle-Quit and Start-
Spawn-Window-Draw-Circle-Stop. These scenarios gener-
ated respectively traces of 6,668 and 16,366 method calls;
once utility methods were removed their sizes are reduced to
447 and 670 calls. Finally RLE compression brought down
the numbers of distinct calls to 240 and 432.

In our experiments, we distributed computations over a
sub-network of 14 workstations. Five high-end worksta-
tions, the most powerful ones, are connected in a Gigabit
Ethernet LAN; low-end workstations are connected to a
LAN segment at 100 MBit/s and talk among themselves
at 100 Mbit/s. Each experience was run on a subset of ten
computers: nine servers and one client.

3http://www.jhotdraw.org

Workstations run CentOS v5 64 bits; memory varies
between four to 16 Gbytes. Workstations are based on
Athlon X2 Dual Core Processor 4400; the five high-end
workstations are either single or dual Opteron. Workstations
run basic Unix services (e.g., network file system, SAMBA,
mySQL) and user processes. User processes are typically
editing and compilation of programs, e-mail clients, Web
browsers, and so on. No special care was taken to ensure a
specific network condition (e.g., priorities were not altered)
and thus times and ratios between times can be considered
typical of a industrial or research environment. However,
the sizes of the GA processes never exceeded the physical
memory of the workstations to avoid paging; workstations
were managed to ensure that each computationally-intensive
user processes had a dedicated CPU.

The client computer was also responsible to measure
execution times and to verify the liveness of connections;
connections to servers as well as connections to the database
were implemented on top of TCP/IP (AF_INET) sockets.
All components have been implemented in Java 1.5 64bits.
The database server, shown in Figures 2 and 3, was MySQL
server v5.0.77.

Table IIT
COMPUTATION TIMES FOR DESKTOP SOLUTION AND THE DIFFERENT
ARCHITECTURES OF FIGURES 1, 2, AND 5 WITH THE
Start-DrawRectangle-Quit SCENARIO — COMPRESSED TRACE LENGTH OF
240 METHODS

Time Measurement
Runs # | Measures
12:09 h
11:39 h
12:21 h
11:50 h
12:38 h
1:44 h
2:36 h
1:53 h
1:40 h
2:13 h
16:36 h
15:3 h
9:52 h
5:13 m
5:19 m
5:20 m
527 m
5:10 m

Architectures Average

Desktop 12:07 h

Client—server 2:01 h

Database 13:50 h

Hash Table 5:17 m

NE W =W =0 s W =AW

Table III reports computation times for the different
architectures. The times reported for the single-computer
architecture come from an optimized implementation of our
approach. In our first implementation, we reused the Java
GALib library, which is freely available from SourceForge
and implements a simple GA. GALib makes no assumptions
on crossover and mutation operators and assumes that the
fitness of an individual must be recomputed even if it was
passed unchanged from the old generation to the new one.
This recomputation resulted in about 30% of computation-
time increase because between 20% and 30% of individuals



Table IV
COMPUTATION TIMES FOR DESKTOP SOLUTION AND THE
ARCHITECTURE OF FIGURE 5 WITH THE
Start-Spawn-Window-Draw-Circle-Stop SCENARIO — COMPRESSED
TRACE LENGTH OF 432 METHODS

Time Measurement
Runs # Measures
1 45:38 h
41:28 h 44:07
45:07h
7:21 m
721 m
7:32 m

Architectures Average

Desktop

Hash Table 7:24 m

W =W

are not subject to mutation or crossover between generations.
Thus, to reduce computation time, we modified GALIib to
compute only the fitness values of individuals that have
changed between the last generation and the current one.

Distributing the computation, shown in Figure 1, clearly
results in an important reduction of computation time; as
shown in the second row of Table III. Computation time
went from 12 hours to about two hours; however, the gain in
terms of time reduction is considerably lower than expected
as we had nine computers available (excluding the client)
and, thus, expected computation times close to one hour.

We felt that there was still room for improvement and
Amdahl’s law [40] was only partially the reason for the
reduced gain. We observed that the nature of our problem
was such that crossover and mutation preserve a large
fraction of segments unchanged and that for those segments,
previous cohesion and coupling values could be reused.

Thus, we tested the two architectures in Figures 2 and 3.
Table III in its third row reports results for such database
client-server architecture: to our surprise, sharing data
among servers via a central database increased computation
times.

Finally, Table III, in its last row, reports the computation
times for the architecture in Figure 5, which is the fastest
architectures. The gain in computation times obtained is of
about 140 times. The implementation of this GA paralleliza-
tion is moreover relatively simple.

We obtained similar gains with other traces. For example,
the trace generated by the scenario Start-Spawn-Window-
Draw-Circle-Stop, with the desktop architecture, was split
in about 44 hours while, with the fastest architecture, the
client—server with the hash table, computation time is of
about 7 minutes. Table IV reports the results of splitting the
trace with two architectures.

A. Discussion

We conjecture that poor performance of the database ar-
chitecture, in Figure 2, is mainly due to the database accesses
(reading, writing, and locking) for the computation of each
coupling and cohesion values. These frequent accesses are
responsible for the increase in computation times. To limit

the number of database accesses, we introduced the hybrid
architecture in Figure 3. Results have not been reported in
Table III because they are not substantially different (better)
then those of the database. We are investigating the reason
of this unexpected behavior to locate the bottleneck cause.

Indeed, in our current implementation, accesses to the
local hash table and the database are managed serially.
Performance could improve by parallelizing writing in the
database and access to the hash table and by loading the
hash table only once at the beginning of each computation.
Unfortunately, given the size of the search space and the
huge number of possible segments, the probability that in
two consecutive runs a relevant number of the segments
will be exactly the same is very low. This fact makes the
architecture in Figure 3 interesting from a theoretical point
of view but not practical.

Despite the decrease in computation time, the very def-
inition of the concept location problem makes it hard to
obtain acceptable computation times for traces longer than
few thousands of methods even with the fastest architecture,
unless a higher number of servers is available. The definition
of this problem is tied to the size of the search space,
Equations 1 and 2, and the bit-string representation. Indeed,
the longer the trace, the higher the number of methods
contributing to the segment coupling. However, we believe
that if concepts are indeed implemented in cohesive and
decoupled segments, then computing coupling with Equation
2 is overly conservative and redefining the problem could
substantially reduce computation time. We are currently
working to restate the concept location problem in using
audio digital signal processing and time windowing.

We have reported data of two traces of one software
system, namely JHotDraw, therefore we cannot generalize
to other traces though the performance issue is likely to
be non-specific to JHotDraw or the used traces. Indeed, we
experienced similar results with traces of different lengths of
ArgoUML. Much in the same way, we cannot generalize to
other search-based software engineering problems. However,
we observed that the trade-off between the complexity of
the fitness function and the local and global knowledge
representations; similar trade-offs are known to be general
and common to many application of optimization techniques
to software engineering.

VI. CONCLUSION AND FUTURE WORK

GAs have been successfully applied to many complex
software engineering problems. To the best of our knowl-
edge, no previous work distributed fitness computation on
several servers to exploit the intrinsic parallel nature of GAs
to reduce computation times for concept location.

This paper presented and discussed four client—server
architectures conceived to improve performance and reduce
GA computation times to resolve the concept location prob-
lem. To our surprise, we discovered that on a standard



TCP/IP network, the overhead of database accesses, com-
munication, and latency may impair a dedicated solutions.
Indeed, in our experiments, the fastest solution was an archi-
tecture where each server kept track only of its computations
without exchanging data with other servers. This simple
architecture reduced GA computation by about 140 times
when compared to a simple implementation, in which all
GA operations are performed on a single machine.

Future work will follow different directions. First, we
are working on reformulating the concept location problem.
Also, we want to experiment different communication pro-
tocols (e.g., UDP) and synchronization strategies. We will
carry out other empirical studies to evaluate the approach
on more traces, obtained from different systems, to verify
the generality of our findings. Finally, we will reformulate
other search-based software engineering problems to exploit
parallel computation to verify further our findings.
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