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Abstract. The identification of cohesive segments in execution traces
is a important step in concept location which, in turns, is of paramount
importance for many program-comprehension activities. In this paper,
we reformulate the trace segmentation problem as a dynamic program-
ming problem. Differently to approaches based on genetic algorithms,
dynamic programming can compute an exact solution with better per-
formance than previous approaches, even on long traces. We describe the
new problem formulation and the algorithmic details of our approach. We
then compare the performances of dynamic programming with those of a
genetic algorithm, showing that dynamic programming reduces dramat-
ically the time required to segment traces, without sacrificing precision
and recall; even slightly improving them.

Keywords: Concept identification, dynamic analysis, information re-
trieval, dynamic programming.

1 Introduction

Program comprehension is an important preliminary activity that may require
half of the effort devoted to software maintenance and evolution. An important
task during program comprehension is concept location, which aims at identify-
ing concepts (e.g., domain concepts, user-observable features) and locating them
within code regions or, more generally, into software artifact chunks [14, 8]. The
literature reports concept location approaches built upon static [1] and dynamic
[24, 23] analyses; information retrieval (IR) [19]; and hybrid (static and dynamic)
[3, 12, 5] techniques. Dynamic and hybrid approaches rely on execution traces.

A typical scenario in which concept location takes part is the following. Let
us suppose that (1) a failure has been observed in a software system under cer-
tain execution conditions, (2) unfortunately, such execution conditions are hard
to reproduce, but (3) one execution trace was saved during such a failure. Main-
tainers then face the difficult and demanding task of analyzing the one execution
trace of the system to identify in the trace the set(s) of methods pertaining to



2 A Fast Algorithm to Locate Concepts in Execution Traces

the failure, i.e., some unexpected sequence(s) of method invocations, and then
to relate the invoked methods to some features producing the failure.

Inspired by the above scenario, a step of the (hybrid) concept location process
has been recently defined as the trace segmentation problem, where the textual
content of the methods contained in execution traces is used to split the traces
into segments that likely participate in the implementation of some concepts
related to some features [5, 4]. The underlying assumption of this step is that, if
a specific feature is being executed within a complex scenario (e.g., “Open a Web
page from a browser” or “Save an image in a paint application”), then the set
of methods being invoked is likely to be conceptually cohesive, decoupled from
those of other features, and invoked in sequence. Unfortunately, despite the use
of meta-heuristic techniques, e.g., genetic algorithms [5] and their parallelization
[4], this step yields to computationally intensive approaches that do not scale on
traces of thousands of methods.

In this paper, we reformulate the trace segmentation problem as a dynamic
programming (DP) problem. Differently to approaches based on meta-heuristic
techniques, in particular genetic algorithms (GA), the DP approach can compute
an exact solution to the trace segmentation problem with better performance
that previous approaches, which would possibly make this approach more scal-
able. The DP approach relies on the same representation and fitness function
as proposed for a previous approach based on a GA [4, 5], however, the trace
segmentation problem is reformulated as an optimization problem taking advan-
tage of (1) the order of the methods in the trace, (2) the additive property of
the fitness function, and (3) the Bellman’s Principle of Optimality [7].

Thus, the contributions of this paper are:

1. A novel reformulation of the trace segmentation problem as a DP problem.
We describe the new problem formulation and its algorithmic details.

2. An empirical study comparing the DP approach with a previous GA ap-
proach [4, 5]. We show that the DP approach can segment traces in a few
seconds, at most, while the GA approach takes several minutes/hours. De-
spite such a drastic improvement of performances, precision and recall do
not decrease; they even slightly increase.

The remainder of the paper is organized as follows. Section 2 summarizes a
previous trace-segmentation approach for the sake of completeness [4, 5]. Section
3 explains trace segmentation using GA and DP approaches. Section 4 describes
the empirical study and reports and discusses the obtained results. Section 5
recalls related work. Section 6 concludes the paper with future work.

2 The Trace Segmentation Problem

This section summarizes essential details of a previous trace segmentation ap-
proach [4, 5], which problem we reformulate as a dynamic programming problem.
Therefore, the five steps of the two approaches are identical, with the only differ-
ence that the trace segmentation was previously performed using a GA algorithm
and that we describe the use of DP in Section 3.
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2.1 Steps 1 and 2 – System Instrumentation and Trace Collection

First, a software system under study is instrumented using the instrumentor of
MoDeC to collect traces of its execution under some scenarios. MoDeC is a tool
to extract and model sequence diagrams from Java systems [22], implemented
using the Apache BCEL bytecode transformation library3. The tool also allows
to manually label parts of the traces during executions of the instrumented
systems, which we did to produce our oracle.

2.2 Step 3 – Pruning and Compressing Traces

Usually, execution traces contain methods invoked in most scenarios, e.g., meth-
ods related to logging or GUI events. Yet, it is unlikely that such invocations are
related to any particular concept, i.e., they are utility methods. We prune out
methods having an invocation frequency greater than Q3 + 2× IQR, where Q3
is the third quartile (75% percentile) of the distribution and IQR is the inter-
quartile range because these methods do not provide useful information when
segmenting traces and locating concepts.

Finally, we compress the traces using a Run Length Encoding (RLE) algo-
rithm to remove repetitions of method invocations. We introduced this compres-
sion to address scalability issues of the GA approach [4, 5]. We still apply the
RLE compression to compare segments obtained with the DP approach with
those obtained using the GA approach when segmenting the same traces.

2.3 Step 4 – Textual Analysis of Method Source Code

Trace segmentation aims at grouping together subsequent method invocations
that form conceptually cohesive groups. The conceptual cohesion among method
is computed using the Conceptual Cohesion metric defined by Marcus et al. [15].

We first extract terms from source code, split compound identifiers separated
by camel case (e.g., getBook is split into get and book), remove programming
language keywords and English stop words, and perform stemming [18]. We then
index the obtained terms using the tf-idf indexing mechanisms [6]. We obtain a
term–document matrix, and finally, we apply Latent Semantic Indexing (LSI)
[11] to reduce the term–document matrix into a concept–document4 matrix,
choosing, as in previous work, a LSI subspace size equal to 50.

2.4 Step 5 – Trace Splitting through Optimization Techniques

The final step consists of applying some optimization techniques to segment the
obtained trace. Applying an optimization technique requires a representation of
the trace and of a trace segmentation and a means to evaluate the quality of a

3 http://jakarta.apache.org/bcel/
4 In LSI “concept” refers to orthonormal dimensions of the LSI space, while in the
rest of the paper “concept” means some abstraction relevant to developers.
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trace segmentation, i.e., a fitness function. In the following paragraphs, we reuse
where possible previous notations and definitions [5] for the sake of simplicity.

We represent a problem solution, i.e., a trace segmentation, as a bit-string as
long as the execution trace in number of method invocations. Each method invo-
cation is represented as a “0”, except the last method invocation in a segment,
which is represented as a “1”. For example, the bit-string 00010010001︸ ︷︷ ︸

11

repre-

sents a trace containing 11 method invocations and split into three segments:
the first four method invocations, the next three, and the last four.

The fitness function drives the optimization technique to produce a (near)
optimal segmentation of a trace into segments likely to relate to some concepts. It
relies on the software design principles of cohesion and coupling, already adopted
in the past to identify modules in software systems [17], although we use concep-
tual (i.e., textual) cohesion and coupling measures [15, 20], rather than structural
cohesion and coupling measures.

Segment cohesion (COH) is the average (textual) similarity between the
source code any pair of methods invoked in a given segment l. It is computed us-
ing the formulas in Equation 1 where begin(l) is the position of the first method
invocation of the lth segment and end(l) the position of the last method invoca-
tion in that segment. The similarity σ between methods mi and mj is computed
using the cosine similarity measure over the LSI matrix from the previous step.
COH is the average of the similarity [15, 20] of all pairs of methods in a segment.

Segment coupling (COU) is the average similarity between a segment l and
all other segments in the trace, computed using Equation 2, where N is the
trace length. It represents, for a given segment, the average similarity between
methods in that segment and those in different ones.

Thus, we compute the quality of the segmentation of a trace split into K
segments using the fitness function (fit) defined in Equation 3, which balances
segment cohesion and their coupling with other segments in the split trace.

COHl =

∑end(l)−1
i=begin(l)

∑end(l)
j=i+1 σ(mi,mj)

(end(l)− begin(l) + 1) · (end(l)− begin(l))/2
(1)

COUl =

∑end(l)
i=begin(l)

∑l
j=1,j<begin(l) or j>end(l)σ(mi,mj)

(N − (end(l)− begin(l) + 1)) · (end(l)− begin(l) + 1)
(2)

fit(segmentation) =
1

K
·

K∑
i=1

COHi

COUi + 1
(3)

3 Segmenting Traces using a Genetic Algorithm and
Dynamic Programming

We now use previous notations and definitions to describe the use of a GA
algorithm to segment traces and the reformulation of the trace segmentation
problem as a dynamic programming problem.
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3.1 Trace Segmentation using a Genetic Algorithm

Section 3 described the representations of a trace and its segmentation and a
fitness function. We now define the mutation, crossover, and selection operators,
used by a GA to segment traces [4, 5].

The mutation operator randomly chooses one bit in the trace representation
and flips it over. Flipping a “0” into a “1” means splitting an existing segment
into two segments, while flipping a “1” into a “0” means merging two consecutive
segments. The crossover operator is the standard 2-points crossover. Given two
individuals, two random positions x, y, with x < y, are chosen in one individual’s
bit-string and the bits from x to y are swapped between the two individuals to
create a new offspring. The selection operator is the roulette-wheel selection.
We use a simple GA with no elitism, i.e., it does not guarantee to retain best
individuals across subsequent generations.

3.2 Trace Segmentation using Dynamic Programming

Dynamic Programming (DP) is a technique to solve search and optimization
problems with overlapping sub-problems and an optimal substructure. It is
based on the divide-and-conquer strategy where a problem is divided into sub-
problems, recursively solved, and where the solution of the original problem is
obtained by combining the solutions of the sub-problems [7, 10].

Sub-problems are overlapping if the solving of a (sub-)problem depends on
the solutions of two or more other sub-problems, e.g., the computation of the
Fibonachi numbers. The original problem must have a particular structure. First,
it must be possible to recursively break it down into sub-problems up to some
elementary problem easily solved; second, it must be possible to express the
solution of the original problem in term of the solutions of the sub-problems;
and, third, the Bellman’s principle of optimality must be applicable. For our trace
segmentation problem, we interpret this principle as follows. When computing
a trace segmentation, at a given intermediate method invocation in the trace
and for a given number of segments ending with that invocation, only the best
among those possible partial splits, will be, possibly, part of the final optimal
solution. Thus, we must record only the best fitness for any segmentation and
we must expand only the corresponding best segment to include more method
invocation, possibly including the entire trace.

Using the previous notations and definitions, we thus reformulate the trace
segmentation problem as a problem of dividing a string of characters, which can
be solved efficiently using DP and formalized as follows. Let A = {1, 2, . . . , n} be
an alphabet of n symbols, i.e., method invocations, and T [1 . . . N ] be an array
of method invocations of A, i.e., an execution trace. Given an interval T [p . . . q]
(1 ≤ p ≤ q ≤ N) of T [1 . . . N ], as explained Section 2, we compute COH as the
average similarity between the elements of T [p . . . q] and the interval coupling,
COU , as the average similarity between any element of T [p . . . q] (methods be-
tween p and q) and any element of T [1 . . . N ]− T [p . . . q]. We compute the score
of an interval as COH/COU .
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A segmentation S of T [1 . . . L](L ≤ N) is a partition S of T [1 . . . L] in kS
intervals: S = {T [1 . . . a1], T [a1 + 1 . . . a2] . . . T [ak−1 + 1 . . . ak = N ]}. We de-
note such a segmentation by (a0 = 0, a1, . . . , akS

= L). We then define the
segmentation score (e.g., fitness) of an array as the average score of its inter-
vals. Therefore, the trace segmentation problem consists to find a segmentation
of T [1 . . . N ] maximizing the score fit, as defined in 2.

We introduce the definitions D1–D4 to explain our DP approach:

(D1) A(p, q) = Σq−1
i=p Σ

q
j=i+1σ(i, j)

(D2) B(p, q) = Σq
i=pΣj=1...N(j /∈[p,q])σ(i, j)

(D3) f(p, q) = 2×(N−(q−p+1))
(q−p) × A(p,q)

B(p,q)

(D4) fit(k, L) = max{(ai)i=0..k:a0=0,ai<ai+1,ak=L}Σi=1..kf(ai−1 + 1, ai)

We notice that the COH and COU of an interval T [p . . . q] correspond to
2×A(p,q)

(q−p)×(q−p+1) and
B(p,q)

(N−(q−p+1))×(q−p+1) , respectively. Thus f(p, q) represents the

score of the interval T [p . . . q]. It also represents the contribution of the inter-
val to a solution and fit(k, L) corresponds to the maximum score of a (k, L)-
segmentation, i.e., a segmentation of T [1 . . . L] in k intervals. Therefore, the

optimum segmentation score is max
N/2
k=1

fit(k,N)
k .

If we consider a solution ending at p (sub-trace T [1 . . . p]) and made up by
k segments, then its score is fit(k, p) and we have multiple optimum segmen-
tations: one for each possible k in 1 < k < p/2. When we extend the sub-trace
to q, T [1 . . . p . . . q] and given a solution made up of k segments ending in p,
we seek the solution fit(k + 1, q) into maxp=k...q(fit(k, p) + f(p+ 1, q)), where
1 ≤ k < q ≤ N . If we pre-compute and store fit(k, p) in a table, we do not need
to recompute the expensive COH and COU every time to evaluate fit(k+1, q).
However, we still must compute f(p+ 1, q) for every sub-problems and we per-
form this computation efficiently using the following definitions:

(D5) ∆(p, q) = Σq−1
i=p σ(T [i], T [q])

(D6) Θ(p) = Σi=1..N(i ̸=p)σ(T [i], T [p])

It can be proved that ∆(p, q) = ∆(p+1, q)+σ(T [p], T [q]) and, thus, A(p, q) =
A(p, q−1)+∆(p, q) and B(p, q+1) = B(p, q)+Θ(q+1)−2×∆(p, q+1) and thus
we can recursively update A(p, q) and B(p, q + 1). We choose q = p + 1, which
means that we extend the current solution one method at the time from left-to-
right and that A(p, q) becomes A(p, p+ 1) and B(p, q + 1) becomes B(p, p+ 2),
which we can pre-compute (from previous values) and stored into two arrays.

To conclude, we can compute fit(k+1, p+1) using fit(k, i) and the sum of
the values of f(i+1, p+1), which we can compute by dividing A(i+1, p+1) by
B(i+1, p+1), both already pre-computed. The DP approach is thus fast because
it goes left-to-right and reuses as much as possible of previous computation.

We show below the pseudo-code of (a basic version of) the algorithm at the
core of the DP approach.
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Algorithm DP split
Input:
integers n and N , matrix of similarities Sim[1..n][1..n], array T [1..N ]
Output: matrix of fitnesses fit[1..N ][1..N ]
1. For L=1..N do
2. Theta := comp theta(L)
3. Delta := 0
4. A[L] := 0
5. B[L] := Theta
6. For p=L-1..1 do
7. Delta := Delta + Sim[T[p]][T[L]]
8. A[p] := A[p-1] + Delta
9. B[p] := B[p-1] + Theta − 2 × Delta
10. For L=1..N do
11. fit[1][L] := comp f(1,L)
12. For k=2..L do
13. F max := 0
14. For p=k..L-1 do
15. F max:=max(F max, fit[k-1][p] + comp f(p+1))
16. fit[k][L] := F max
17. Return fit

where the input matrices Sim[1..n][1..n] and T [1..N ] contain the similarities
between methods and the trace encoding, respectively. The function comp f()
computes the value of f based on definition D3 and comp theta recursively
evaluates Θ(p). The most expensive part of the algorithm are the nested loops
at lines 10, 12, and 14. The algorithm, in this basic formulation, has a complexity
of O(N3), which is also the (worst case) complexity of the evaluation of the GA
fitness function as both COH and COU have worst case complexity of O(N2)
and in the worst case must be evaluated for N/2 segments. Thus, a single step
of the GA approach equates the entire calculation of the DP approach.

4 Empirical Study

This section reports an empirical study comparing the GA approach proposed
by Asadi et al. [5] with our novel DP approach. The goal of this study is to
analyze the performances of the trace segmentation approaches based on GA
and DP with the purpose of evaluating their capability to identify meaningful
concepts in traces. The quality focus is the accuracy and completeness of the
identified concepts. The perspective is that of researchers who want to evaluate
which of the two techniques (GA or DP) better solves the trace segmentation
problem. The context consists of two trace segmentation approaches, one based
on GA and one on DP, and of the same execution traces used in previous work
[5] and extracted from two open-source systems, ArgoUML and JHotDraw.
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Table 1. Data of the empirical study.

(a) Statistics of the two systems.

Systems N
O
C

K
L
O
C

R
e
le
a
s
e

D
a
t
e
s

ArgoUML v0.18.1 1,267 203 30/04/05
JHotDraw v5.4b2 413 45 1/02/04

(b) Statistics of the collected traces.

Systems Scenarios O
r
ig

in
a
l
S
iz
e

C
le
a
n
e
d

S
iz
e
s

C
o
m

p
r
e
s
s
e
d

S
iz
e
s

ArgoUML
Start, Create note, Stop 34,746 821 588
Start, Create class, Create
note, Stop

64,947 1,066 764

JHotDraw

Start, Draw rectangle, Stop 6,668 447 240
Start, Add text, Draw rect-
angle, Stop

13,841 753 361

Start, Draw rectangle, Cut
rectangle, Stop

11,215 1,206 414

Start, Spawn window,
Draw circle, Stop

16,366 670 433

ArgoUML5 is an open-source UML modelling tool with advanced features,
such as reverse engineering and code generation. The ArgoUML project started
in September 2000 and is still active. We analyzed release 0.19.8. JHotDraw6

is a Java framework for drawing 2D graphics. JHotDraw started in October
2000 with the main purpose of illustrating the use of design patterns in a real
context. We analyzed release 5.1. Table 1(a) summarizes the systems statistics.
We generated traces by exercising various scenarios in the two systems. Table
1(b) summarizes the scenarios and shows that the generated traces include from
6,000 to almost 65,000 method invocations. The compressed traces include from
240 up to more than 750 method invocations.

This study aims at answering the three following research questions:

– RQ1. How do the performances of the GA and DP approaches compare in
terms of fitness values, convergence times, and numbers of segments?

– RQ2. How do the GA and DP approaches perform in terms of overlaps be-
tween the automatic segmentation and the manually-built oracle, i.e., recall?

– RQ3. How do the precision values of the GA and DP approaches compare
when splitting execution traces?

4.1 Study Settings and Analysis Method

The GA approach was implemented using the Java GA Lib7 library. We use a
simple GA with no elitism, i.e., it does not guarantee to retain best individuals
across subsequent generations. We set the population size to 200 individuals

5 http://argouml.tigris.org
6 http://www.jhotdraw.org
7 http://sourceforge.net/projects/javagalib/
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and a number of generations of 2,000 for shorter traces (those of JHotDraw) and
3,000 for longer ones (those of ArgoUML). The crossover probability was set to
70% and the mutation to 5%, which are values used in many GA applications.

The DP approach scans the trace from left-to-right building the exact solu-
tion and in its current formulation does not have any configuration parameter.

In previous work, the results of the GA approach were reported for for mul-
tiple runs of the algorithm to account for the nondeterministic nature of the
technique. We only report the results of the DP approach for one of its run per
traces because it is by nature deterministic and multiple runs would produce
exactly the same results.

To address RQ1, we compare the value of the fitness function reached by
the GA approach with the value of the segmentation score obtained by the DP
approach. The values of the fitness function and segmentation score per se do
not say anything about the quality of the obtained solutions. Yet, we compare
these values to assess, given a representation and a fitness function/segmentation
score, which of the GA or DP approach obtain the best value. We also compare
the execution times of the GA and DP approaches. We finally report the number
of segments that the two approaches create for each execution trace.

For RQ2, we compare the overlap between a manually-built oracle and seg-
ments identified by the GA and DP approaches. We build an oracle by man-
ually assigning a concept to trace segments—using the tagging feature of the
instrumentor tool—while executing the instrumented systems. Given the seg-
ments determined by the tags in the oracle and given the segments obtained
by an execution of either of the approaches, we compute the overlap between
each manually-tagged segment in the oracle and the closest, most similar seg-
ment obtained automatically. Let us consider a (compressed) trace composed of
N method invocations T ≡ m1, . . .mN and partitioned in k segments s1 . . . sk.
For each segment sx, we compute the maximum overlap between sx and the
manually-tagged segments soy as follows:

max(Jaccard(sx, soy)), y ∈ {1 . . . k}

where:

Jaccard(sx, soy) =
|sx ∩ soy|
|sx ∪ sy|

and where union and intersection are computed considering method invocations
occurring at a given position in the trace.

For RQ3, we evaluate (and compare) the precision of both the GA and DP
approaches in terms of precision, which is defined as follows:

Precision(sx, soy) =
|sx ∩ soy|

|sy|

where sx is a segment obtained by an automatic approach (GA or DP) and soy
is a segment in the corresponding trace of the oracle.

For RQ1, RQ2, and RQ3, we statistically compare results obtained with
the GA and DP approaches using the non-parametric, paired Wilcoxon test. We
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also compute the magnitude of the differences using the non-parametric effect-
size Cliff’s δ measure [13], which, for dependent samples, as in our study, is
defined as the probability that a randomly-selected member of one sample DP
has a higher response than a randomly-selected member of the second sample
GA, minus the reverse probability:

δ =

∣∣DPi > GAj
∣∣− ∣∣GAj > DPi

∣∣
|DP| |GA|

The effect size δ is considered small for 0.148 ≤ δ < 0.33, medium for 0.33 ≤
δ < 0.474 and large for δ ≥ 0.474 [13].

4.2 Results

This section reports the results of the empirical study. Data sets are available
for replication on-line8.

Table 2. Numbers of segments, values of fitness function/segmentation score, and
times required by the GA and DP approaches.

System Scenario
# of Segments Fitness Time (s)
GA DP GA DP GA DP

ArgoUML
(1) 24 13 0.54 0.58 7,080 2.13
(2) 73 19 0.52 0.60 10,800 4.33

JHotDraw

(1) 17 21 0.39 0.67 2,040 0.13
(2) 21 21 0.38 0.69 1,260 0.64
(3) 56 20 0.46 0.72 1,200 0.86
(4) 63 26 0.34 0.69 240 1.00

Regarding RQ1, Table 2 summarizes the obtained results using both the
GA and DP approaches, in terms of (1) numbers of segments in which the traces
were split, (2) achieved values of fitness function/segmentation score, and (3)
times needed to complete the segmentations (in seconds). The DP approach
tends to segment the trace in less segments than the GA one, with the exception
of Scenario (1) of JHotDraw, composed of one feature only and for which the
number of segments is 21 for both approaches, and of Scenario 3 of JHotDraw,
for which the DP approach creates 21 segments whereas GA creates only 17 seg-
ments. The difference of the numbers of segments is not statistically significant
(p-value=0.10), although Cliff’s δ effect size is high (1.16) and in favor of the
GA approach. Looking at the values of the fitness function/segmentation score,
the DP approach always produces better values than the GA one. The Wilxocon
test indicates that the difference is statistically significant (p-value=0.03) and
the Cliff’s δ effect size is high (0.76): the DP approach performs significantly

8 http://web.soccerlab.polymtl.ca/ser-repos/public/dp sp.tar.gz
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better than the GA approach, given the representations described in Section
2. Finally, the convergence times of the GA approach are by far higher than
that of the DP one: from several minutes or hours (for ArgoUML) to seconds.
The difference between the GA and DP approaches is statistically significant
(p-value=0.03) and the effect size high (1.05). We thus answer RQ1 by stating
that in terms of fitness values, convergence time, and numbers of segments, the
DP approach out-performs the GA approach.

Table 3. Jaccard overlaps and precision values between segments identified by the GA
and DP approaches.

System Scenario Feature
Jaccard Precision
GA DP GA DP

ArgoUML
(1) Create Note 0.33 0.87 1.00 0.99
(2) Create Class 0.26 0.53 1.00 1.00
(2) Create Note 0.34 0.56 1.00 1.00

JHotDraw

(1) Draw Rectangle 0.90 0.75 0.90 1.00
(2) Add Text 0.31 0.33 0.36 0.39
(2) Draw Rectangle 0.62 0.52 0.62 1.00
(3) Draw Rectangle 0.74 0.24 0.79 0.24
(3) Cut Rectangle 0.22 0.31 1.00 1.00
(4) Draw Circle 0.82 0.82 0.82 1.00
(4) Spawn window 0.42 0.44 1.00 1.00

To address RQ2, we evaluate the Jaccard overlap between the manually-
identified segments corresponding to each feature of the execution scenarios and
the segments obtained using the GA and DP approaches. Columns 4 and 5 of
Table 3 report the results. Jaccard scores are always higher for the GA approach
than for the DP one, with the only exception of the Draw Rectangle feature
in JHotDraw, for which the Wilcoxon paired test indicates that there is no
significant difference between Jaccard scores (p-value=0.56). The obtained Cliff’s
δ (0.11) is small, although slightly in favor of the DP approach. We thus answer
RQ2 by stating that in terms of overlap, segments obtained with the GA and
DP approaches do not significantly differ and the DP approach has thus a recall
similar to that of the GA one.

Regarding RQ3, Columns 6 and 7 of Table 3 compare the precision values
obtained using the GA and DP approaches. Consistently with results reported
in previous work [5], precision is almost always higher than 80%, with some
exceptions, in particular the Add Text and Draw Rectangle features of JHotDraw.
There is only one case for which the DP approach exhibits a lower precision than
the GA one: for the Draw Rectangle feature of JHotDraw (Scenario 3) where
the DP approach has a precision of 0.24 whereas the GA one has a precision of
0.79. Yet, in general, the Wilcoxon paired test indicates no significant differences
between the GA and DP approaches (p-value=0.52) and the Cliff’s δ (0.04)
indicates a negligible difference between the two approaches. In conclusion, we
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answer RQ3 by stating that the precision obtained using the DP approach does
not significantly differ from the one obtained using the GA approach.

4.3 Threats to Validity

We now discuss the threats to the validity of our empirical study.
Threats to construct validity concern the relation between theory and obser-

vation. In this study, they are mainly due to measurement errors. To compare
the GA and DP approaches, other than considering the achieved fitness function
values and the computation times, we used precision and Jaccard overlap, al-
ready used in a previous work [5] as well as in the past [21]. While in this paper,
due to the lack of space, we cannot report a qualitative analysis of the obtained
segments, previous work [5] already showed that a segmentation with high over-
lap and precision produces meaningful segments. Finally, we cannot compare
the times required by the GA and DP approaches to achieve the a same fitness
value/segmentation score because the DP approach always reaches, by construc-
tion, the global optimum while the GA approach does not. Moreover, even if the
achieved fitness values and segmentation scores are different, we showed that the
DP approach is able to reach a better score in a shorter time.

Threats to internal validity concern confounding factors that could affect
our results. These could be due to the presence, in the execution traces, of
extra method invocations related to GUI events or other system events. The
frequency-based pruning explained in Step 3 of Section 2 mitigates this threat.

Threats to conclusion validity concern the relationship between treatment
and outcome. We statistically compared the performances of the GA and DP
approaches using the non-parametric Wilcoxon paired test and used the non-
parametric Cliff’s δ effect size measure.

Threats to external validity concern the possibility to generalize our results.
Although we compared the GA and DP approaches on traces from two different
systems, further studies on larger traces and more complex systems are needed,
especially to better demonstrate the scalability of the DP approach. Indeed, we
showed that the DP approach out-performs the GA one in terms of computation
times to segment traces but did not show that, differently from the GA approach,
its computation time does not exponentially increase with trace size.

5 Related Work

As sketched in the introduction, concept location approaches can be divided into
static, dynamic, and hybrids approaches.

Static approaches relies on information statically collected from the program
under analysis. Anquetil and Lethbridge [1] proposed techniques to extract con-
cepts from a very simple source of information, i.e., file names. Chen and Ra-
jilich [9] developed an approach to locate concepts using only Abstract System-
Dependency Graph (ASDG). The ASDG is constructed using a subset of the
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information of a system-dependency graph (SDG). Finally, Marcus et al. [16]
performed concept location using an approach based on information retrieval.
As Marcus et al., our approach strongly relies on the textual content of the
program source code.

Dynamic approaches use one or more execution traces to locate concepts in the
source code. In their seminal work, Wilde and Scully [24] used test cases to
produce execution traces; concepts location was performed by comparing differ-
ent traces: one in which the concept is executed and another without concept.
Similarly, Poshyvanyk et al. [19] used multiple traces from multiple scenarios.

Hybrid approaches have been introduced to overcome the limitations of dynamic
and static approaches. Static approaches often fail to properly capture a system
behavior, while dynamic approaches are sensitive to the chosen execution traces.
Antoniol and Guéhéneuc [2] presented a hybrid approach to concept location and
reported results for real-life large object-oriented multi-threaded systems. They
used knowledge filtering and probabilistic ranking to overcome the difficulties of
collecting uninteresting events. This work was improved [3] by using the notion
of epidemiology of diseases in locating the concepts.

We share with previous works the general idea of concept location and with
hybrid approaches the idea of using both static and dynamic data. This work
extends our previous work [5, 4] by reformulating the trace segmentation problem
as a DP problem and comparing the previous results with the new ones.

6 Conclusions and future work

Execution trace segmentation is a step in the conception location process. It
consists in splitting an execution trace into segments most likely to correspond
to some concepts. Previous work showed that it is possible to split execution
traces into cohesive segments using a genetic algorithm (GA) [4, 5].

In this paper, we reformulate the trace segmentation problem as a dynamic
programming (DP) problem and, specifically, as a particular case of the string
splitting problem. We showed that we can benefit from the overlapping sub-
problems and an optimal substructure of the string splitting problem to reuse
computed scores of intervals and segmentation scores and, thus, to obtain dra-
matic gains in performances without loss in precision and recall. Indeed, differ-
ently from the GA approach, the DP approach reuses pre-computed cohesion
and coupling values among subsequent segments of an execution trace, which
is not possible using genetic algorithms, due to their very nature. We believe
that other problems, such as segmenting composed identifiers into component
terms, could be modelled in a similar way and, thus, that we, as a community,
should be careful when analyzing a problem: a different, possibly non-orthodox,
problem formulation may lead to surprisingly good performances.

We empirically compared the DP and GA approaches, using the same data
set from previous work [4, 5]. Our empirical study consisted in the execution
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traces from ArgoUML and JHotDraw, which were previously used to validate
the GA approach. Results indicated that the DP approach can achieve results
similar to the GA approach in terms of precision and recall when its segmen-
tation is compared with a manually-built oracle. They also show that the DP
approach has significantly better results in terms of the optimum segmentation
score vs. fitness function. More importantly, results showed that the DP approach
significantly out-performed the GA approach in terms of the times required to
produce the segmentations: where the GA approach would take several minutes,
even hours; the DP approach just takes a few seconds.

Work in progress aims at further validating the scalability of the DP trace
segmentation approach as well as at complementing the approach with seg-
ment labelling to make the produced segments better suitable for program-
comprehension activities. Finally, we would like to explore sub-optimal solution
of the DP problem with much lower bound complexities and evaluate the impact
on the solution accuracy.
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