
Optimizing Threads Schedule Alignments to Expose the
Interference Bug Pattern

Neelesh Bhattacharya1, Olfat El-Mahi1, Etienne Duclos1, Giovanni Beltrame1,
Giuliano Antoniol1, Sébastien Le Digabel2 and Yann-Gaël Guéhéneuc1

1 Department of Computer and Software Engineering
2 GERAD and Department of Mathematics and Industrial Engineering

École Polytechnique de Montréal, Québec, Canada
(neelesh.bhattacharya,olfat.ibrahim,etienne.duclos,giovani.
beltrame,giuliano.antoniol,yann-gael.gueheneuc)@polymtl.ca,

sebastien.le.digabel@gerad.ca

Abstract. Managing and controlling interference conditions in multi-threaded
programs has been an issue of worry for application developers for a long time.
Typically, when write events from two concurrent threads to the same shared
variable are not properly protected, an occurrence of the interference bug pattern
could be exposed. We propose a mathematical formulation and its resolution to
maximize the possibility of exposing occurrences of the interference bug pattern.
We formulate and solve the issue as an optimization problem that gives us (1)
the optimal position to inject a delay in the execution flow of a thread and (2)
the optimal duration for this delay to align at least two different write events in
a multi-threaded program. To run the injected threads and calculate the thread
execution times for validating the results, we use a virtual platform modelling a
perfectly parallel system. All the effects due to the operating system’s scheduler
or the latencies of hardware components are reduced to zero, exposing only the
interactions between threads. To the best of our knowledge, no previous work has
formalized the alignment of memory access events to expose occurrences of the
interference bug pattern. We use three different algorithms (random, stochastic
hill climbing, and simulated annealing) to solve the optimization problem and
compare their performance. We carry out experiments on four small synthetic
programs and three real-world applications with varying numbers of threads and
read/write executions. Our results show that the possibility of exposing inter-
ference bug pattern can be significantly enhanced, and that metaheuristics (hill
climbing and simulated annealing) provide much better results than a random
algorithm.

Keywords: Multi-Threaded Programs Testing, Optimization Techniques, Interference
Bug Pattern.

1 Introduction

The advent of multi-core systems has greatly increased the use of concurrent program-
ming. To control concurrent programs and their correct execution, the use of locks,

semaphores, and barriers has become a common practice. However, despite of the use
of locks and barriers, it is extremely difficult to detect and remove bugs, specifically
data-race conditions and deadlocks. Most bugs are detected by testing, i.e. by multiple
runs of a program under various environmental conditions. In fact, the same test case
might or might not detect a bug because of a system’s non-deterministic components
(interrupts, scheduler, cache, etc.), over which the testers have no direct control.

The interference bug pattern is one the most common bugs in concurrent programs.
For example, when two or more write events happen in very close proximity on unpro-
tected shared data, the chances of incurring in an interference bug are high. This bug is
also one of the hardest to eradicate [1, 2].

In this paper, we propose a theoretical formulation that helps maximizing the pos-
sibility of exposing interference bug pattern in multi-threaded programs, if it exists. An
interference bug might occur when (1) two or more concurrent threads access a shared
variable, (2) at least one access is a write, and (3) the threads use no explicit mechanism
to enforce strict access ordering. To expose this bug, we want to inject a delay in the exe-
cution flow of each thread with the purpose of aligning in time different shared memory
access events. Specifically, we want to align two write events occurring in two or more
threads that share the same variable to maximize the probability of exposing an interfer-
ence bug. We use unprotected variables (without locks or semaphores), so that bugs can
occur and we can maximize the possibilities of finding them. Our formulation allows
the identification of the optimal delays to be injected (positions and durations) using
search or optimization algorithms. In particular, we use: random exploration, stochastic
hill climbing, and simulated annealing.

We apply our approach to a set of multi-threaded data-sharing programs, called
Programs Under Test (PUTs) that comprises of four synthetic programs and three real-
world applications, CFFT (Continuous Fast Fourier Transform), CFFT6 (Continuous
Fast Fourier Transform 6) and FFMPEG. CFFT computes the Fast Fourier Transform
on an input signal, while CFFT6 performs a number of iterations of the Bailey’s 6-step
FFT to computes 1D FFT of an input signal. FFMPEG is a complete, cross-platform so-
lution to record, convert and stream audio and video. To avoid non-determinism we use
a simulation platform (ReSP [3]) which gives us full control over all the components of
the system for building a fully-parallel execution environment for multi-threaded pro-
grams. We model an environment in which all the common limitations of a physical
hardware platform (i.e., the number of processors, memory bandwidth, and so on) are
not present and all the the operating system’s latencies are set to zero. The PUTs are
executed in this environment, exposing only the threads’ inherent interactions. We col-
lect the exact times of each memory access event and then run, inject delays, and verify
whether any interference bugs are exposed.

The rest of this paper is organized as follows: Section 2 presents the relevant pre-
vious work; Section 3 recalls some useful notions on interference bug patterns, meta-
heuristics and optimization; Section 4 presents our formulation of the interference bug
pattern and the detection approach; Section 5 describes the context and research ques-
tions of the experimental study; Section 6 reports our results while Section 7 discusses
the trend observed in the results and specifies the threats to the validity of our results;

finally, Section 8 draws some concluding remarks and outlines the scope for future
work.

2 Related Work

Our work seeks to maximize the possibility of exposing data-race and interference con-
ditions. There exists significant works on the impact of data-race conditions in con-
current programs. Artho et al. [4] provided a higher abstraction level for data races to
detect inconsistent uses of shared variables and moved a step ahead with a new notion of
high-level data races that dealt with accesses to set of fields that are related, introducing
concepts like view and view consistency to provide a notation for the new properties.
However they focused on programs containing locks and other protections, while our
work concerns unprotected programs.

Moving on to research carried out on bug patterns, Hovemeyer et al. [5] used bug
pattern detectors to find correctness and perfomance-related bugs in several Java pro-
grams and found that there exists a significant class of easily detectable bugs. They were
able to identify large number of bugs in real applications. But they faced the problem of
knowing the actual population of real bugs in large programs. Farchi et al. [6] proposed
a taxonomy for creating timing heuristics for the ConTest tool [7], showing it could be
used to enhance the bug finding ability of the tool. They introduced the sleep, losing no-
tify, and dead thread bug patterns. Eytani et al. [8] proposed a benchmark of programs
containing multi-threaded bugs for developing testing tools. They asked undergraduates
to create some buggy Java programs, and found that a number of these bugs cannot be
uncovered by tools like ConTest [7] and raceFinder [9]. Bradbury et al. [10] proposed a
set of mutation operators for concurrency programs used to mutate the portions of code
responsible for concurrency to expose a large set of bugs, along with a list of fifteen
common bug patterns in multi-threaded programs. Long et al. [11] proposed a method
for verifying concurrent Java programs with static and dynamic tools and techniques
using Petri nets for Java concurrency. They found proper verification tools for each fail-
ure. However all these approaches mainly focused on Java programs, so are language
specific, while our approach is generic for every programming languages.

In the field of the behavior of concurrent programs, Carver et al. [12] proposed
repeatable deterministic testing, while the idea of systematic generation of all thread
schedules for concurrent program testing came with works on reachability testing [13,
14]. The VeriSoft model checker [15] applied state exploration directly to executable
programs, enumerating states rather than schedules. ConTest [7] is a lightweight test-
ing tool that uses various heuristics to create scheduling variance by inserting random
delays in a multi-threaded program. CalFuzzer [16] and CTrigger [17] use analysis
techniques to guide schedules toward potential concurrency errors, such as data races,
deadlocks, and atomicity violations.

One of the most influential tools developed for testing concurrent programs is
CHESS [18]. It overcomes most of the limitations of the tools developed before. What
set CHESS apart from its predecessors is its focus on detecting both safety and liveness
violations in large multi-threaded programs. It relies on effective safety and liveness
testing of such programs, which requires novel techniques for preemption bounding and

fair scheduling. It allows a greater control over thread scheduling than the other tools
and, thus, provides higher-coverage and guarantees better reproducibility. CHESS tries
all the possible schedules to find a bug, whereas we create the schedules that maximizes
the likelihood of exposing an interference bug, if it is present.

In this paper, we do not intend to compare our approach with CHESS or other
mentioned tools. We want to help developers by providing them with the locations
and durations of delays to inject in their multi-threaded programs so that they can,
subsequently, run their programs to enhance the likelihood of exposing interference
bugs, possibly using CHESS. It is to be noted that our work clearly differs from the
previous ones, in the sense that none of them played with inserted delays to align the
write events ; they explore the various possible schedules to expose a bug.

3 Background Notions

Concurrency is built around the notion of multi-threaded programs. A thread is defined
as an execution context or a lightweight process having a single sequential flow of
control within a program [19]. Inserting delays in the execution of a thread is an efficient
way of disrupting its normal behavior: the inserted delay shifts the execution of the
subsequent statements. By doing so, an event in one thread can be positioned in close
proximity with another event in another thread, increasing the probability of exposing
an interference bug.

Bradbury et al. [10] mentioned fifteen possible bug patterns that could affect the
normal behavior of threads and cause severe problems to concurrency. Out of them,
we considered the interference bug pattern because it is one of the most commonly
encountered and one of the hardest to eradicate [1, 2].

3.1 Interference Bug Sequence Diagrams

Fig. 1. Behavior of a PUT Fig. 2. PUT with injected delay

In Figures 1 and 2, a master thread creates child threads and shares some data with
them. The expected behavior (without the bug), illustrated in Figure 1, is that each child
thread accesses the shared data sequentially, so that every thread has the last version of
the data when it reads it. When we inject a delay just before a child writes its modifica-
tion to the shared data, as shown in Figure 2, another thread reads a wrong datum and
may produce incorrect results.

3.2 Search Algorithms

Given the number of possible thread events in any multi-threaded program, we apply
search algorithms to maximize the number of “alignments” between events, i.e., the
number of events in close proximity. To experiment with different optimization tech-
niques we chose the two most commoly used optimization algorithms: stochastic hill
climbing (SHC) [20] and simulated annealing (SA) [21], and we validated them against
random search (RND).

4 Formulation and Approach

Given a multi-threaded program, the interleaving of threads depends on the hardware
(e.g., number of processors, memory architecture, etc.) and the operating system. There
are as many schedules as there are environmental conditions, schedule strategies, and
policies of the operating system when handling threads. Among these schedules, there
could be a subset leading to the expression of one or more interferences. In general, the
exhaustive enumeration of all possible schedules is infeasible, and in an ideal situation,
all threads would run in parallel.

4.1 Parallel Execution Environment

To provide a deterministic parallel execution environment without external influences
we use a virtual platform, namely ReSP [3]. ReSP is a virtual environment for modeling
an ideal multi-processor system with as many processors as there are threads. ReSP is
also a platform based on an event-driven simulator that can model any multi-processor
architecture and that implements an emulation layer that allows the interception of any
OS call. ReSP allows access to all execution details, including time of operations in
milliseconds, accessed memory locations, thread identifiers, and so on.

To create our parallel execution environment, we model a system as a collection
of Processing Elements (PEs), ARM cores in our specific case but any other processor
architecture could be used, directly connected to a single shared memory, as shown in
Figure 3. Therefore, our environment makes as many PEs available as there are exe-
cution threads in a PUT, each thread being mapped to a single PE. PEs have no cache
memory, their interconnection is implemented by a 0-latency crossbar, and the memory
responds instantaneously, thus each thread can run unimpeded by the sharing of hard-
ware resources. This environment corresponds to an ideal situation in which the fastest
possible execution is obtained.

We use ReSP to run our unmodified test cases without (except when injecting de-
lays) and to calculate the threads’ execution time for validating our results. We use
ReSP’s ability to trap any function call being executed on the PEs to route all OS-related
activities outside the virtual environment. Thread-management calls and other OS func-
tions (sbrk, file access, and so on) are handled by the host environment, without af-
fecting the timing behaviour of the multi-threaded program. Thus, the PUT perceives
that all OS functions are executed instantaneously without access to shared resources.
Because all OS functions are trapped, there is no need for a real OS implementation to

run the PUT in the virtual environment. This is to say the PUTs are run without any ex-
ternal interference. The component performing the routing of OS functions, referred to
as the OS Emulator, takes care of processor initialization (registers, memory allocation,
and so on) and implements a FIFO scheduler that assigns each thread to a free PE as
soon as it is created.

The main difference between our virtual environment and a real computer system
are cache effects, the limited number of cores, other applications running concurrently
on the same hardware and other interactions that make scheduling non-deterministic
and introduce extra times between events. In our environment, the full parallelism of
the PUT is exposed and the only interactions left are inherent to the PUT itself.

4.2 Problem Formalization

Any real hardware/software environment will deviate from the parallel execution envi-
ronment described above. From the threads’ point of view, any deviation will result in
one or more delays inserted in their fully-parallel delay-free execution. Figure 4 sum-
marizes the execution of four threads, where each thread performs four read and–or
write accesses. For the sake of simplicity, let us assume that just one delay is inserted
in a given thread. This delay will shift the thread’s computation forward in time, and
possibly cause some memory write access(es) to happen in close proximity, leading to
the possibility of exposing an interference condition.

ISS-1 ISS-2 ISS-n

0-latency Interconnection

0-latency
Memory

OS
Emulator

OS
Emulator

Simulated Environment

Host Environment

IF-1
IF-2 IF-3

Fig. 3. The virtual platform on which the PUT is
mapped: each component except for the proces-
sors has zero latency, and OS calls are trapped
and executed externally Fig. 4. Concurrent Threads Example

Concretely, at 102 ms the first thread writes into a memory location a value and,
given the schedule, no interference happens. In other words, two threads do not attempt
a write at the same time in the same memory location. However, if, for any reason, the
thread schedule is different and, for example, thread 2 is delayed by 2 ms after the first
writing then a possible interference happens at 122 ms between threads 2 and 3.

The event schedule depends on the operating system, the computer workload, other
concurrent programs being run, and the scheduler policy. Therefore, enhancing the pos-
sibility of exposing an interference bug via testing for any foreseeable schedule is a
challenging problem that has been addressed in several ways, from search-based ap-
proaches [22, 23] to formal methods [24, 25]. The higher the number of available CPUs,
the higher the number of scheduled threads and events, and the more difficult it is to
manually verify that any two threads will not create an interference under any possible
schedule. The example in figure 4 shows a larger system, i.e., with a higher number
of threads and a longer execution time. Also in this case, the delays would be inserted
in a similar manner between events (taking into account the longer execution time). In
general, we believe that our approach would be able to increase the chances of exposing
the interference conditions for systems of any size.

Let the PUT be composed on N threads. Let us assume that the ith thread contains
Mi events; let ti,j be, for the thread i, the time at which an event (e.g., a memory access,
a function call, and so on) happens and let i∗ be the thread subject to perturbation, i.e.,
the thread in which a delay ∆ will be injected before an event p. Finally, let ai,j stands
for the action performed at time ti,j by the thread i. Because ReSP allows to precisely
track memory accesses as well as times, to simplify the formalization, let us further
assume that ai,j equals to 1 to show that it is a ”write” action to a given memory cell or
0 to show some other action. Then, our objective is to maximize the number of possible
interferences NInterference:

NInterference = max
∆,p,i∗

N∑

i=1,i6=i∗

Mi∑
j=1

Mi∗∑
k=p

δ(ai∗,k, ai,j)δ(ti,j , ti∗,k +∆)

 (1)

under the constraint ti,j ≥ ti∗,k +∆, and where δ(x, y) is the Kronecker operator3.

We want to maximize the numbers of alignments, i.e., two write events coinciding at
the same time occurring in the same memory location, using Equation 1. Unfortunately,
this equation leads to a staircase-like landscape as it result in a sum of 0 or 1. Any
search strategy will have poor guidance with this fitness function and chances are that
it will behave akin to a random search.

If we assume that a delay is inserted before each write event in all threads, then all
threads events will be shifted. More precisely, if ∆i,j is the delay inserted between the
events j − 1 and j of the thread i, all times after ti,j will be shifted. This shift leads to
new time τ for the event ai,j :

τi,j(ai,j) = ti,j +

j∑
k=1

∆i,k (2)

3 The Kronecker operator is a function of two variables, usually integers, which is 1 if they are
equal and 0 otherwise (δ(x, y) = 1, if x = y; or 0 otherwise).

Considering the difference between τiq,jq (aiq,jq) and τir,jr (air,jr), when both aiq,jq
and air,jr are write events to the same memory location, we rewrite Equation 1 as:

NInterference(write) = max
∆1,1,...,∆N,NN

N∑
ir

Mjr∑
jr

N∑
iq 6=ir

Mjq∑
jq

1

1 + |τiq,jq (aiq,jq)− τir,jr (air,jr)|

 (3)

under the constraints τiq,jq ≥ τir,jr and aiq,jq = air,jr = write to the same memory
location.

Equation 3 leads to a minimization problem:

NInterference(write) = min
∆1,1,...,∆N,NN

N∑
ir

Mjr∑
jr

N∑
iq 6=ir

Mjq∑
jq

(1− 1

1 + |τiq,jq (aiq,jq)− τir,jr (air,jr)|
)

 (4)

For both Equations 3 and 4, given a τiq,jq (aiq,jq), we may restrict the search to the
closest event in the other threads, typically: τir,jr (air,jr) ≥ τiq,jq (aiq,jq) & τiq,jq (aiq,jq) ≤
τiq,js(aiq,js). Under this restriction, Equation 4 is the fitness function used in the
search algorithms to inject appropriate delays in threads to maximize the proba-
bility of exposing interference bugs (if any). This equation also solves the staircase-
like landscape problem because the fitness function is sum of real numbers, providing
a smoother landscape.

4.3 Problem Modeling and Settings

As described above, the key concepts in our thread interference model are the times
and types of thread events. To assess the feasibility of modeling thread interferences by
mimicking an ideal execution environment, we are considering simple problem configu-
rations. More complex cases will be considered in future works; for example, modeling
different communication mechanisms, such as pipes, queues, or sockets. We do not ex-
plicitly model resource-locking mechanisms (e.g., semaphores, barriers, etc.) as they
are used to protect data and would simply enforce a particular event ordering. There-
fore, if data is properly protected, we would simply fail to align two particular events.
At this stage, we are also not interested in exposing deadlock or starvation bugs.

From Equations 2 and 4, we can model the problem using the times and types of
thread events. Once the occurrence write events has been timestamped using ReSP, we
can model different schedules by shifting events forward in time. In practice, for a given
initial schedule, all possible thread schedules are obtained by adding delays between
thread events (using Equation 2).

Our fitness function 4 (i.e.,what an expression of how fit is our schedule to help
expose interference bugs) can be computed iterating over all thread write events. The
fitness computation has therefore a quadratic cost over the total number of write events.
However, for a given write event, only events occurring in times greater or equal to
the current write are of interest, thus making the fitness evaluation faster (though still
quadratic in theory).

In general, it may be difficult or impossible to know the maximum delay that a
given thread will experience. Once a thread is suspended, other threads of the same
program (or other programs) will be executed. As our PUTs are executed in an ideal
environment (no time sharing, preemption, priority, and so on), there is no need to
model the scheduling policy and we can freely insert any delay at any location in the
system to increase the chances of exposing the interference bug.

5 Empirical Study

The goal of our empirical study is to obtain the conceptual proof of the feasibility and
the effectiveness of our search-based interference detection approach and validate our
fitness function (see Equation 4).

As a metric for the quality of our model, we take the number of times we succeed
in aligning two different write events to the same memory location. Such alignment
increases the chances of exposing an interference bug, and can be used by developers
to identify where data is not properly protected in the code.

To perform our conceptual proof, we have investigated the following two research
questions:
RQ1: Can our approach be effectively and efficiently used on simple as well as real-
world programs to maximize the probability of interferences between threads?
RQ2: How does the dimension of the search space impact the performance of three
search algorithms: RND, SHC and SA?

The first research question aims at verifying that our fitness function guides the
search appropriately, leading to convergence in an acceptable amount of time. The sec-
ond research question concerns the choice of the search algorithm to maximize the
probability of exposing interference bugs. The need for search algorithms is verified by
comparing SHC and SA with a simple random search (RND): better performance from
SHC and SA increases our confidence in the appropriateness of our fitness function.

One advantage of this approach is that it has no false positives, because it doesn’t
introduce any functional modification in the code: if a bug is exposed, the data are ef-
fectively unprotected. Nevertheless, we do not guarantee that a bug will be exposed
even if present, as the approach simply increases the likelihood of showing interfer-
ences. The chances of exposure are increased because the manifestation of interference
bug depends on the thread schedule and we, unlike other approaches, manufacture the
schedules that maximize interference.

It might be argued that a data race detector does not need the timings of write align-
ments to be so accurate. But as we are dealing with a fully parallelized environment,
we target specific instances and align the events with much more precision than what

required by a data race detector [4]. Basically, we are pin-pointing the event times with
accuracy.

Our approach can also be used in cases where it is enough to have two change the
order of two events to verify the correctness of some code. Once the events are aligned,
an arbitrarily small additional delay would change the order of two events, possibly ex-
posing data protection issues. The correct use of locks or other data protection measures
would prevent a change in the order of the events.

6 Experimental Results

Table 1. Application Details

PUTs LOCs Nbr. of Events
Threads

Matrix Multiplication 215 4 RWWR, WWWW,
(MM) RRWW, WWRR

Count Shared 160 4 WWW, RRW,
Data (CSD) RWRW, RW
Average of 136 3 W, RW, RW

Numbers (AvN)
Area of Circle 237 5 RW, RWW, RRW,

(AC) RWRW, RWWRW
CFFT 260 3 WR, WR,

WRWRWR
CFFT6 535 3 WRWRWRWRWRWR,

WR, WRWRWRWR
FFMPEG 2.9×105 4 WRWRRR, WR,

WR, WR

Table 2. Execution Times for Real-World
Applications, in milliseconds

CFFT CFFT6 FFMPEG
1×106 1×107 1×106 1×107 1×106 1×107

SA 3118 5224 27443 20416 1562 4672
HC 3578 4976 27328 21943 1378 5100
RND 113521 107586 342523 339951 59599 133345

To answer our two research questions, we implemented four small synthetic and
three real-world multi-threaded programs with different numbers of threads and read/write
events. Table 1 provides the details of these applications: their names, sizes in num-
bers of lines of code, number of threads, and sequences of read and write access into
memory. The “Events” column shows the various events with a comma separating each
thread. For example, the thread events in column 4 for row 3 (Average of Numbers)
should be read as follows: Thread 1 has just one write event, thread 2 has a read, fol-
lowed by a write event, and thread 3 has a read followed by a write event.

We believe that our results are independent of the execution system or architecture:
our approach aligns write events among threads on a virtual system, and exposes data
protection issues regardless of the final execution platform. Similarly, when applied
to applications of any size, the interference conditions are exposed irrespective of the
number of lines of code that the application may contain.

6.1 RQ1: Approach

RQ1 aims at verifying if our approach can effectively identify time events configura-
tions, and thus schedules, leading to possible thread interferences. We experimented

with RND, SHC, and SA. RND is used as a sanity check and to show that a search
algorithm is effectively needed.

For the three search algorithms (RND, SHC and SA), we perform no more than
106 fitness evaluations. For the three algorithms, we draw the added delays ∆i,k from
a uniform-random distribution, between zero and a maximum admissible delay fixed to
107 ms (104 seconds).

We configured RND in such a way that we generated at most 107 random delays
∆i,k, uniformly distributed in the search space, and applied Equation 2 to compute
the actual thread time events. We then evaluated each generated schedule, to check for
interferences, using Equation 4.

We set the SHC restart value at 150 trials and we implemented a simple neighbor
variable step visiting strategy. Our SHC uses RND to initialize its starting point, then
it first attempts to move with a large step, two/three orders of magnitude smaller than
the search space dimension, for 1000 times, finally it reduces the local search span by
reducing the distance from its current solution to the next visited one. The step is drawn
from a uniformly-distributed random variable. Thus, for a search space of 107, we first
attempt to move with a maximum step of 104 for 20 times. If we fail to find a better
solution, perhaps the optimum is close, and then we reduce the step to 103 for another
20 trials, and then to 500 and then to 50. Finally, if we do not improve in 150 move
attempts (for the large search space), the search is discarded, a next starting solution is
generated and the process restarted from the new initial solution. We selected the values
and the heuristic encoded in the SHC via a process of trial and error. Intuitively, if the
search space is large, we would like to sample distant regions but the step to reach a
distant region is a function of the search space size, so we arbitrarily set the maximum
step of two or three orders of magnitude smaller than the size of the search space.

We configured the SA algorithm similarly to the SHC algorithm, except for the
cooling factor and maximum temperature. In our experiments, we set r = 0.95 and
Tmax depending on the search space, i.e., 0.0001 for a search space of size 1107 and
0.01 for smaller search spaces.

Regarding the times to compute the solutions with different algorithms, it is a well
known fact that SHC and SA scale less than linearly with the design space. This fact
can be proven by having a look at the results provided in table 2. Table 2 shows the
execution times of various algorithms for computing the alignments 100 times only for
the real-world applications with large search space (106 and 107 ms). It can be seen that
despite the increasing size of the design space, SHC and SA converge to solutions in
reasonable amounts of times, as compared to RND.

Figure 5 reports the relative performance over 100 experiments of RND, SHC, and
SA for Matrix Multiplication, CFFT6 and FFMPEG for a search space of 107 ms. Each
time that our approach has exposed a possible interference, we recorded the number of
fitness evaluations and stopped the search. We obtained similar box-plots for the other
applications, but do not show them here because they do not bring additional/contrasting
insight in the behavior of our approach. The box-plots show that SHC outperforms RND
and that SA and SHC perform similarly. However, SA performs marginally better than
SHC The missing plots for CFFT6 in Figure 5 are due to the fact that RND did not find
any solution in 106 iterations, even after 100 runs.

Fig. 5. (RQ1) Algorithm comparison for a search
space up to 10 Million sec delay

Fig. 6. (RQ2) Algorithm comparison for a search
space up to 1 Million sec delay

Overall, we can positively answer our first research question: our approach can
effectively and efficiently be used on simple program models to maximize the pos-
sibility of interferences between threads.

6.2 RQ2: Search Strategies

RQ2 aims at investigating the performance of the different strategies for various search-
space dimensions. Our intuition is that, if the search space is not large, then even a
random algorithm could be used. We set the maximum expected delay to 1 sec (103 ms),
10 sec (104 ms) and 1000 sec (106 ms). As the search space is smaller than that in RQ1,
we also reduced the number of attempts to improve a solution before a restart for both
SHC and SA as a compromise between exploring a local area and moving to a different
search region. We set this number to 50.

Figures 6, Figure 7 and Figure 8 report the box-plots comparing the relative per-
formance of RND, SHC, and SA for the first three synthetic and two real-world appli-
cations. Figure 7 has been made more readable by removing a single outlier value of
28,697 for the number of fitness evaluations of Count Shared Data when using SHC.

As expected, when the search space is small, RND performs comparably to both
SHC and SA, as shown in Figure 7. However, when the search space size increases,
SHC and SA perform better than RND, as shown in Figure 8 and 6.

One might argue that in Figure 7 Average of Numbers shows instances where some
outliers for which SHC reaches almost the maximum number of iterations to align the
events, which does not seem to be the case with RND. The explanation is that in small
search spaces RND can perform as well as any other optimization algorithm, sometimes

Fig. 7. (RQ2) Algorithm comparison for a search
space up to 1 sec delay

Fig. 8. (RQ2) Algorithm comparison for a search
space up to 10 sec delay

even better. It is worth noting that even in a search space of 103 ms, there were instances
where RND could not find a solution even within the maximum number of iterations
(i.e., 106 random solutions). SHC and SA were successful in exposing a possible bug
each and every time (in some cases with higher number of iterations, which resulted in
the outliers).

We also observe differences between the box-plots for the Count Shared Data and
Average of Numbers. We explain this observation by the fact that Count Shared Data
contains more write actions (see Table 1) than Average of Numbers. In other words, it is
relatively easier to align two events in Count Shared Data than in Average of Numbers.
Indeed, there are only three possible ways to create an interference in Average of Num-
bers while Count Shared Data has 17 different possibilities, a six-fold increase which
is reflected into the results of Figure 7.

Once the search space size increases as in Figure 8, RND is outperformed by SHC
and SA. In general, SA tends to perform better across all PUTs.

Overall, we can answer our second research question as follows: the dimension
of the search space impacts the performance of the three search algorithms. SA
performs the best for the all PUTs and different delays.

7 Discussion and Threats

Our results support the conceptual proof of the feasibility and the effectiveness of our
search-based interference detection approach. They also show that our fitness function
(Equation 4) is appropriate, as well as the usefulness of a virtual environment to enhance
the probability of exposing interference bugs.

Exposed interferences are somehow artificial in nature as they are computed with
respect to an ideal parallel execution environment. In fact, the identified schedules may
not be feasible at all. This is not an issue, as we are trying to discover unprotected
data accesses, and even if a bug is found with an unrealistic schedule, nothing prevents
from being triggered by a different, feasible schedule. Making sure that shared data is
properly protected makes code safer and more robust.

Although encouraging, our results are limited in their validity as our sample size
includes only four small artificial and three real-world programs. This is a threat to con-
struct validity concerning the relationship between theory and observations. To over-
come this threat, we plan to apply our approach on more number of real-world programs
in future work.

A threat to internal validity concerns the fact that, among the four artificial programs
used, we developed three of them. However, they were developed long before we started
this work by one of the authors to test the ReSP environment. Thus, they cannot be
biased towards exposing interference bugs.

A threat to external validity involves the generalization of our results. The number
of evaluated programs is small (a total of seven programs). Some of them are artificial,
meant to be used for a proof of concept. Future work includes applying our approach to
other large, real-world programs.

8 Conclusion

Detecting thread interference in multi-threaded programs is a difficult task as interfer-
ence depends not only on the source code of the programs but also on the scheduler
strategy, the workload of the CPUs, and the presence of other programs.

In this work, we proposed a novel approach based on running the programs un-
der test on an ideal virtual platform, maximizing concurrency and inserting delays to
maximize the likelihood of exposing interference between threads.

We used our fitness function and the three search algorithms to find the optimal
delays on four small artificial and three real-world small/large multi-threaded programs.
Our results show that our approach is viable and requires appropriate search strategies,
as a simple random search won’t find a solution in a reasonable amount of time.

Future work will be devoted to extending and enriching our interference model with
more complex data structures such as pipes, shared memories or sockets.

References

1. Park, A.: Multithreaded programming (pthreads tutorial). http://randu.org/
tutorials/threads/ (1999)

2. Software Quality Research Group, Ontario Institute of Technology: Concurrency anti-pattern
catalog for java. http://faculty.uoit.ca/bradbury/concurr-catalog/
(2010)

3. Beltrame, G., Fossati, L., Sciuto, D.: ReSP: a nonintrusive transaction-level reflective MP-
SoC simulation platform for design space exploration. Computer-Aided Design of Integrated
Circuits and Systems (2009) 28–40

4. Artho, C., Havelund, K., Biere, A., Biere, A.: High-level data races. In: Journal on Software
Testing, Verification & Reliability (STVR). (2003)

5. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: ACM SIGPLAN Notices. (2004) 132–
136

6. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In: Proceedings of
the 17th International Symposium on Parallel and Distributed Processing. (2003) 286.2–

7. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for testing multi-
threaded java programs. Concurrency and Computation: Practice and Experience 15(3-5)
(2003) 485–499

8. Eytani, Y., Ur, S.: Compiling a benchmark of documented multi-threaded bugs. Parallel and
Distributed Processing Symposium, International 17 (2004) 266a

9. Ben-Asher, Y., Farchi, E., Eytani, Y.: Heuristics for finding concurrent bugs. In: Proceedings
of the 17th International Symposium on Parallel and Distributed Processing. (2003) 288.1–

10. Bradbury, J.S., Cordy, J.R., Dingel, J.: Mutation operators for concurrent java (j2se 5.0) 1
11. Long, B., Strooper, P., Wildman, L.: A method for verifying concurrent java components

based on an analysis of concurrency failures: Research articles. Concurr. Comput. : Pract.
Exper. 19 (2007) 281–294

12. Carver, R.H., Tai, K.C.: Replay and testing for concurrent programs. IEEE Softw. 8 (1991)
66–74

13. Hwang, G.H., chung Tai, K., lu Huang, T.: Reachability testing: An approach to testing con-
current software. International Journal of Software Engineering and Knowledge Engineering
5 (1995) 493–510

14. Lei, Y., Carver, R.H.: Reachability testing of concurrent programs. IEEE Trans. Softw. Eng.
32 (2006) 382–403

15. Godefroid, P.: Model checking for programming languages using verisoft. In: In Proceedings
of the 24th ACM Symposium on Principles of Programming Languages. (1997) 174–186

16. Joshi, P., Naik, M., seo Park, C., Sen, K.: Calfuzzer: An extensible active testing framework
for concurrent programs

17. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their hiding
places. SIGPLAN Not. 44 (2009) 25–36

18. Musuvathi, M., Qadeer, S., Ball, T.: Chess: A systematic testing tool for concurrent software
(2007)

19. Drake, D.G., JavaWorld.com: A quick tutorial on how to implement threads in java. http:
//www.javaworld.com/javaworld/jw-04-1996/jw-04-threads.html
(1996)

20. Wattenberg, M., Juels, A.: Stochastic hillclimbing as a baseline method for evaluating genetic
algorithms. In: Proceedings of the 1995 conference. Volume 8., Kaufmann (1996) 430

21. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state
calculations by fast computing machines. Journal of Chemical Physics 21 (1953) 1087–1092

22. Briand, L.C., Labiche, Y., Shousha, M.: Stress Testing Real-Time Systems with Genetic Al-
gorithms. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation
(GECCO ’05). (2005) 1021–1028

23. Briand, L.C., Labiche, Y., Shousha, M.: Using Genetic Algorithms for Early Schedulability
Analysis and Stress Testing in Real-Time Systems. Genetic Programming and Evolvable
Machines 7 (2006) 145–170

24. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multithreaded pro-
grams. Scientific Computer Program 71(2) (2008) 89–109

25. Tripakis, S., Stergiou, C., Lublinerman, R.: Checking non-interference in spmd programs.
In: 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar 2010). (June 2010) 1–6

