
Factors Impacting the Inputs of Traceability
Recovery Approaches

Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Abstract In requirement engineering, researchers have proposed various tractabil-
ity recovery approaches. To the best of our knowledge, all traceability recovery ap-
proaches have low precision and recall. Our main claim in this chapter is that there
exist factors that impact the traceability approaches’ inputs, in particular source doc-
ument, target document, and experts’ opinion, that cause low precision and recall. In
this chapter, we pursue four objectives: first, to identify and document factors that
impact traceability recovery approaches’ inputs; second, to identify metrics/tools to
measure/improve the quality of the inputs with respect to the identified factors, third,
to provide precautions to control these factors, and, fourth, to empirically prove and
quantify the effect of one of these factors—expert’s programming knowledge—on
the traceability recovery approaches’ inputs. To achieve the first two objectives, we
perform an incremental literature review of traceability recovery approaches and
identify and document three key inputs and the seven factors impacting these in-
puts, out of 12 identified factors. We analyse the reported results in literature for the
identified factors to address our third objective. We conduct an empirical study to
assess the impact of expert’s programming knowledge, to address our fourth objec-
tive. We use the effort, number of correct answers, and time to measure the effect
of expert’s programming knowledge on traceability recovery. We conclude that, in
the literature, seven factors impacting the inputs of traceability recovery approaches
have been identified, documented, and reported along with related metrics/tools and
precautions. We suggest that practitioners should be wary of these seven factors
and researchers should focus on the five others to improve traceability recovery ap-
proaches.

Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol
DGIGL, École Polytechnique de Montréal, Canada,
e-mail: {nasir.ali,yann-gael.gueheneuc}@polymtl.ca,˜antoniol@ieee.
org

1

2 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Table 1 Average precision and recall range of TRAs, bold values represent the example presented
in 1

VSM LSI JS Rule-based
Data Sets Precision Recall Precision Recall Precision Recall Precision Recall
SCA [Abadi et al(2008)Abadi, Nisenson, and Simionovici] 20 – 43 51 – 76 14 – 26 41 – 78 23 – 41 57 – 78 – –
CORBA [Abadi et al(2008)Abadi, Nisenson, and Simionovici] 50 – 80 68 – 89 11 – 50 14 – 61 43 – 65 55 – 81 – –
MODIS [Sundaram et al(2005)Sundaram, Hayes, and Dekhtyar] 7.9 75.6 4.2 – 6.3 63.4 – 92.6 – – – –
CM-1 [Sundaram et al(2005)Sundaram, Hayes, and Dekhtyar] 1.5 97.7 0.9 98.6 – 98.8 – – – –
Easy Clinic [Oliveto et al(2010)Oliveto, Gethers, Poshyvanyk, and De Lucia] 17 – 80 4 – 90 17 – 60 3 – 90 17 – 80 4 – 91 – –
eTour [Oliveto et al(2010)Oliveto, Gethers, Poshyvanyk, and De Lucia] 17 – 68 5 – 47 17 – 64 4 – 46 17 – 76 5 – 47 – –
Mobile Phone [Jirapanthong and Zisman(2007)] – – – – – – 81 – 95.9 65.4 – 97.2
UCMS, TV Software [Spanoudakis et al(2004)Spanoudakis, Zisman, Pérez-Minana, and Krause] – – – – – – 60 – 81 68 – 85

1 Introduction

Researchers have proposed many approaches based on several techniques: informa-
tion retrieval [Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo],
events [Cleland-Huang et al(2003)Cleland-Huang, Chang, and Christensen], hyper-
text [Maletic et al(2003)Maletic, Munson, Marcus, and Nguyen, Sherba(2005)], sce-
narios [Egyed and Grünbacher(2002)], and rules [Spanoudakis et al(2004)Spanoudakis, Zisman, Pérez-Minana, and Krause],
to recover traces among software artifacts. These proposed approaches use mainly
three inputs for traceability recovery (TR): source documents, target documents,
and experts’ opinion. To the best of our knowledge, all the proposed traceability
recovery approaches (TRA) have low recall and precision.

Our main claim in this chapter is that improving traceability recovery approaches
only in themselves cannot help in improving precision and recall; we must also
control the factors that impact the inputs of these approaches. To support this claim,
we report in Table 1 the precision and recall values of some TRA described in the
literature based on the following techniques: Vector Space Model (VSM), Latent
Semantic Indexing (LSI), Rule-based, and Jensen-Shannon similarity (JS). It shows
that, depending on the data sets, precision values vary from 0.9% to 95.9% and
recall values vary from 3% to 99.8%.

Thus, Table 1 sustains our main claim by showing that different approaches using
the same techniques report precision/recall values that vary a lot across data sets. For
example, Sundaram et al. [Sundaram et al(2005)Sundaram, Hayes, and Dekhtyar]
achieved 1.5% to 7.9% precision with VSM whereas Abadi et al. [Abadi et al(2008)Abadi, Nisenson, and Simionovici]
achieved 50% to 80% precision with the same techniques. Both groups of re-
searchers used simple VSM to obtain their results and, therefore, factors other than
the technique, VSM, are causing the variations in precision and recall.

Abadi et al. [Abadi et al(2008)Abadi, Nisenson, and Simionovici] and Sundaram
et al. [Sundaram et al(2005)Sundaram, Hayes, and Dekhtyar] used three different
inputs: (1) source documents, (2) target documents, and (3) experts’ opinion, who
manually created oracles to calculate precision and recall and vetted the automatically-
created links. Our main claim is that it is the variation in the three different inputs
that mainly caused the observed variations in precision and recall.

Factors Impacting the Inputs of Traceability Recovery Approaches 3

Some researchers, e.g., [Antoniol(2003), Hayes and Dekhtyar(2005), Ali(2011)],
have mentioned factors that impact TRA inputs. However, these factors and their
impact on TRA have not received enough attention so far. Even given a TRA uses a
technique that can return links with high precision and recall, if its inputs have poor
quality, then this approach will produce poor links. Thus, it is important to survey
the factors impacting TRA inputs and report metric/tools to measure these factors
and precautions to control them.

Typical Problematic Scenario. To understand how some factors impact TRA in-
puts further, let us consider a scenario where a project manager receives a verifi-
cation and validation task. To complete her task, she needs up-to-date traceability
links between requirements and source code. She uses a TRA that produces results
with high precision and recall. She collects TRA inputs, such as experts’ opinion,
requirement specification document (RSD), and source code and asks the help of
the best available resources, i.e., a senior developer of the company with 10 years
of Java and C++ programming experience. The senior developer can understand
source code written in different programming languages; the updated requirements
and latest source code provide traces that represent the actual system.

Let us now further assume that source code is in Perl, source code identifiers’
quality is poor, a non-professional person wrote/updated the RSD. Then, it is likely
that the expert would miss some links and retains erroneous links, because Perl
has a different syntax and structure than Java and C++. The non-professional per-
son would have probably written vague and ambiguous requirements in RSD that
creates confusion while verifying links. The developers have used meaningless ab-
breviations for identifiers, thus complexifying the program comprehension activity.
Therefore, the automatically-generated traceability links would be numerous and the
expert would get frustrated and tired while verifying each and every one of them.

This scenario highlights the importance of TRA inputs in the TR process and of
their analysis to help researchers and practitioners understand the outputs of TRAs.

Objectives and Overall Methodology. Given the importance of TRA inputs,
project managers need guidelines to analyse TRA inputs and their impacting factors
as well as metrics/tools to measure/improve the TRA inputs quality and preventive
measures that must be taken to control the inputs quality. Thus, we define four ob-
jectives for this chapter. Objective 1 is to define and document the factors impacting
TRA inputs. Objective 2 is to report metrics/tools to measure/improve the quality of
the inputs by acting on the factors. Objective 3 is to provide preventive measures to
control the factors. Objective 4 is to illustrate our main claim empirically using one
of the identified factors: experts’ programming knowledge.

To achieve our objectives, we follow the methodology depicted in Figure 1. In
Step 1, we use our own traceability expertise [Antoniol et al(2008)Antoniol, Hayes, Guéhéneuc, and di Penta,
Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo, Hayes et al(2008)Hayes, Antoniol, and Guéhéneuc]
to define preliminary factors that, to the best of our knowledge, could impact TRA
inputs. In Step 2, we perform an incremental literature review (ILR), using these

4 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Fig. 1 Main objectives of the chapter and methodology to achieve these objectives

Table 2 Compulsory and Complementary inputs of TRAs
Approach Compulsory Inputs Complementary Inputs
Scenario-based Requirements, source code Hypothesized traces

Execution traces (scenarios)
Rule-based RSD, UCD Requirement-to-object-model traceability

rule
Analysis object model
Inter-requirement traceability rule

Event-based Requirements, UML artifacts, and test cases
Hypertext-based Requirements, source code Conformance analysis,
IR-based Requirements, UML artifacts, and test cases Thesaurus, temporal information (SVN, Bug

reports, mailing lists)
System dynamic information
Experts’ feedback

first factors as seeds, to identify and define all the factors impacting TRA inputs
and find evidence of their impact. We analyse experimental results reported in the
literature that provide metrics/tools to measure/improve the quality of TRA inputs.
In addition, we also identify and report precautions for the identified factors found
in the literature. In Step 3, we document and report all the gathered data using a con-
sistent template. The output of this step is reported in Section 3, which thus achieves
our Objectives 1, 2 and 3. In Step 4, we perform an experiment on one factor that
impact experts’ opinion: experts’ programming knowledge. Our empirical findings
support our claim that factors impacting TRA inputs cause low precision and recall
in state-of-the-art TRAs. This last step helps us achieving our Objective 4.

Assumption, Limitations, and Organisation. Table 3 shows the compulsory and
complementary inputs for various TRAs gathered from the literature. These ap-
proaches considered, as compulsory inputs, requirements, use-cases, and UML arti-
facts as source documents and source code and test-cases as target documents. They
also used complementary inputs as well that may vary for every TRA and have
impact on the TRAs results. In the following, we only concentrate on compulsory
inputs, because they are the same for all TRAs.

Thus, in this chapter and without loss of generality, we consider requirements
as source documents and source code as target documents, to make it easier to de-
scribe the factors’ impact on TRA inputs. This choice does not change the fact that

Factors Impacting the Inputs of Traceability Recovery Approaches 5

Table 3 Template to document TRA inputs, factors, and preventive measures

Attributes Descriptions
TRA Input Brief introduction to the TRA input
Factor Name Name of the factor impacting the TRA input
Definition Definition of the factor
Scenario A scenario illustrating the impact of the factor
Literature Review Literature evidence of the impact of the factor
Preventive Measures Metrics, tools, and precautions to measure and control the factor

these factors will impact any TRA inputs, if experts are recovering tractability links
among requirements, between test cases and requirements, between scenarios and
source code, and so on. For example, if experts are recovering traceability links
among requirements then requirements would be both source and target documents,
in this kind of situations same factors will impact source and target documents that
impact requirements.

We do not report a systematic literature review but choose to rather perform an
incremental literature review for reason of form and content. A systematic literature
review would have required more space than available to report on all the papers re-
lated to the identified factors. Moreover, a systematic literature would have also re-
quired a set of predefined factors impacting TRA inputs and of formal criteria to as-
sess these factors, both agreed-upon by the community [Kitchenham et al(2009)Kitchenham, Brereton, Budgen, Turner, Bailey, and Linkman].
Such factors and criteria, to the best of our knowledge, are not yet available in the
literature and, thus, our incremental literature review of more than 60 papers is a
first step towards identifying such factors and criteria.

The rest of the chapter is organised as follows: Section 2 describes our incremen-
tal literature review and summarises the retained factors that impact TRA inputs.
Section 3 documents the factors, metrics/tools, and precautions for the retained fac-
tors. Section 4 describes our empirical study of the impact of experts’ programming
language knowledge on TRAs, its results, and threats to its validity. Section 5 dis-
cusses the findings in this chapter. Finally, Section 6 concludes with future work.

2 Identification of Factors and Preventive Measures

In the following, we first define an incremental literature review (ILR). Second,
we perform a first ILR to identify and retain important factors according to our
criteria. Third, we used these factors as input to a second ILR to identify preventive
measures. Fourth, we document in Section 3 all the identified factors and preventive
measures to measure/improve the quality of TRA inputs using a consistent template,
described in Table 3.

6 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Fig. 2 Incremental literature review process

2.1 Incremental Literature Review

We define an incremental literature review (ILR) to find factors impacting TRA
inputs and evidence supporting their impact as well as preventive measures (metrics,
tools, and precautions). Figure 2 shows the process that we followed in our ILR.

An ILR is a recursive process. It starts from a pool of eleven possible factors: Am-
biguous Requirement, Vague Requirement, Conflicting Requirement, Granularity
Level, Identifiers’ Quality, Domain Knowledge, Programming knowledge, Docu-
ment Type, Document Language, Work Environment, Project Size, and Dead Code.
We provide the definitions of seven of these factors in Section 4. We seed one factor
to find evidence in the literature of its relevance and identify related research pa-
pers through queries in six software engineering sub-domains: information retrieval,
program comprehension, requirements engineering, reverse engineering, software
artifact traceability, and software maintenance. We use the same list of search en-
gines for research papers for both ILRs, i.e., IEEExplore1, ACM Digital Library2,
Springer3, and Google Scholar4. We verify if the identified paper provides evidence
for the current factor or not. If the paper discusses more than one factor, we verify
if the other factors also impact TRA inputs and, if they do, we add them to the pool
for the next iteration.

We use two sets of criteria to retain or put aside a factor. In the first iteration of
our ILR, we put aside a factor from our study when we cannot find any evidence in
the literature for that specific factor and–or when we can find only one paper that

1 http://ieeexplore.ieee.org/Xplore/guesthome.jsp
2 http://portal.acm.org
3 http://www.springer.com
4 http://scholar.google.ca

Factors Impacting the Inputs of Traceability Recovery Approaches 7

is not cited more than one time. In the second iteration of our ILR, we keep all the
factors, even though we may not find papers describing related metrics/tools and–or
precautions to highlight future research directions in Section 5.

We review and apply a set of criteria on the identified papers to answer two
questions: (1) does any paper support the seeded factor? and (2) do the identified
papers mention factors not already in the pool? From decision (1), we document or
put aside the seeded factor for future experiments on their impact. From decision
(2), we add to the pool of factors any missing factor. The process then iterates until
there are no more factors to process. In the following two sub-sections, we perform
and report the results of the two ILRs.

2.2 Identification of Factors

We listed (recall Section 2.1) of eleven factors that, to the best of our knowledge,
could impact TRA inputs. We identified these factors based on our own traceability
recovery expertise [Antoniol et al(2008)Antoniol, Hayes, Guéhéneuc, and di Penta,
Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo, Hayes et al(2008)Hayes, Antoniol, and Guéhéneuc]
and past professional experiences performing traceability recovery with private
companies.

We performed an ILR for all the eleven factors to find out evidence that these
factors impact TRA inputs. We seeded each factor in our ILR process to discover
evidence in the literature supporting that the factor impact some TRA inputs. We
defined search queries and looked for the papers in the chosen sub-domains using
the chosen search engines. For example, we used the query “identifiers quality”
in Google Scholar to identify the paper “What’s in a Name? A Study of Identi-
fiers” [Lawrie et al(2006)Lawrie, Morrell, Feild, and Binkley] supporting the factor
“Identifiers’ Quality”.

After performing this first ILR, we could not find any research papers that clearly
state that Document Type, Document language, Work Environment, Project size, and
Dead Code and impact TRA inputs. Therefore, following our criteria, we remove
these five factors from our study. Interestingly, we found one more factor during our
ILR, i.e., Granularity Level, which impacts TRA inputs as well as the overall eco-
nomical aspect of traceability. We included this newly-found factor in our identified
factors list. Figure 3 presents the final seven (11−5+1 = 7) factors.

Figure 3 shows the three TRA inputs and the seven factors impacting these inputs.
Rectangles represent TRA inputs and arrows represent the factors that impact these
inputs. The last rounded rectangle represents the consequences of the factors on the
TR process: incorrect/missed traceability links. We document each factor in Section
3.

8 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Fig. 3 Inputs of traceability approach and impacting factors

Fig. 4 Inputs of TRAs; factors, their types, properties, and preventive measures

2.3 Identification of Preventive Measures

Each factor can impact the TRA input negatively, yielding low precision and–or re-
call. We wanted to identify metrics/tools that can measure/improve the quality of
TRA inputs. We associated some positive properties with each factor. For example,
for Identifiers’ Quality, identifiers must be understandable, complete, and unam-
biguous. Then, we searched for metrics/tools that are useful to measure/improve the
quality of TRA inputs and factor with respect to their properties.

We seeded each retained factor in the ILR process. We followed the same steps as
in the previous ILR. We analysed the metrics/tools reported in the literature for the
measurement/improvement of the identified factors. We combined literature review
and our own expertise to describe precautions for the factors. We discuss all the
identified factors detail with their preventive metrics/tools in Section 3.

Figure 4 summarises the output of this ILR. It shows, for each factor, its five main
characteristics: input name; factor name, type, property; and, preventive measures
(metrics, tools, and precautions). For example, Source code is a TRA input and Iden-
tifiers’ Quality impact source code. Good quality identifiers must be understand-

Factors Impacting the Inputs of Traceability Recovery Approaches 9

able, complete, and unambiguous. To obtain these properties, expert may use split-
ting/expansion [Madani et al(2010)Madani, Guerrouj, Di Penta, Guéhéneuc, and Antoniol]
approach to split identifiers such as cmdpntr into cmd pntr and then expand the
resulting words into command pointer. The results of the splitting/expansion
approach have all the above-mentioned properties of good identifiers. Now, let us
assume that an expert is using an IR-based approach to recover traceability links
between requirements and source code, the split and expanded identifiers would
link to command pointer-related requirements more likely than the cmdpntr
identifier would.

3 Factors Impacting the Inputs of TRAs

Researchers have proposed various TRA, e.g., [Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo,
Cleland-Huang et al(2003)Cleland-Huang, Chang, and Christensen, Egyed and Grünbacher(2002),
Sherba(2005), Spanoudakis et al(2004)Spanoudakis, Zisman, Pérez-Minana, and Krause].
To the best of our knowledge, all of these approaches have low recall and precision.
Recall is defined as the number of relevant documents retrieved divided by the total
number of relevant documents:

Recall =
|{relevant documents}∩{retrieved documents}|

|{relevant documents}|
while precision is defined as the number of relevant documents retrieved divided by
the total number of retrieved documents:

Precision =
|{relevant documents}∩{retrieved documents}|

|{retrieved documents}|
The low precision and recall of the retrieved links impact the usefulness of the

TRAs. Low precision requires experts to deal with numerous spurious traceability
links while low recall casts doubt in the experts’ minds about missing links and
requires them to analyse by hand artifacts to possibly identify these missing links.

Researchers proposed various methods [Gervasi and Zowghi(2010), Ghazarian(2009),
Lawrie et al(2007a)Lawrie, Feild, and Binkley] to improve the precision and re-
call of TRAs. However, to the best of our knowledge, there has been little work
[Antoniol(2003), Hayes and Dekhtyar(2005), Ali(2011)] on the factors that impact
TRA inputs. We now document three types of TRA inputs (requirements, source
code, and experts’ opinions), factors impacting these inputs, metrics/tools to mea-
sure/improve the input quality, and precautions to control the factors, using the tem-
plate shown in Table 3.

10 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

3.1 Requirements

The precise capture, understanding, and representation of requirements is a crucial
step in the development of effective and usable information systems [Gibson and Conheeney(1995)].
Requirements are often error-prone due to misinterpretation of natural languages
[Fabbrini et al(2001)Fabbrini, Fusani, Gnesi, and Lami]. Requirements are often char-
acterised as complete and correct. For example, if a requirement is incomplete, such
as change time, it may trace to session time, patient wait-time, or system time; it
would be difficult for an expert to verify its corresponding traceability links. In gen-
eral, completeness and correctness depend on several factors. Hayes [Hayes(2003a)]
reports 13 factors, including ambiguous and non-verifiable requirements. In the fol-
lowing, we only report three factors for which, using our ILR, we could find defini-
tions, experimental results, and precautions.

3.1.1 Ambiguous Requirements

Definition: Ambiguous requirement are requirements of which two different ex-
perts may have different interpretation [Chantree et al(2006)Chantree, Nuseibeh, de Roeck, and Willis].

Scenario: Ambiguous requirements may result into different interpretation and im-
plementation. They lead to perplexity and waste of effort during their under-
standing. They also impact the TRAs by leading to the creation of ambiguous
links that are complicated to verify. For example, in the requirement “each new
user shall be part of a group”, the concept of group could be ambiguous and an
expert could interpret this group to manage access privileges, whereas another
expert may interpret it as a group of common, shared interests.

Literature Review: Ambiguity has long been pictured as one of the worst en-
emy of experts writing requirements, especially with reference to ambigu-
ity in natural language requirements [Gervasi and Zowghi(2010)]. Zisman et
al. [Zisman et al(2002)Zisman, Spanoudakis, Pérez-Miñana, and Krause] men-
tioned that the main shortcoming of TRAs is their inability to automatically
identify and maintain traceability relations involving natural-language artefacts
with ambiguous meanings.
Hayes et al. [Hayes et al(2003)Hayes, Dekhtyar, and Osborne] showed in their
paper that senior analysts at Science Applications International Corporation
missed 17 links during a manual traceability link recovery activity. The au-
thors’ observations on the missing links was: (1) it was difficult to do some of
the tracing because the documents/requirements were incomplete, ambiguous
and (2) unknown acronyms hindered the trace recovery process.
Haiduc and Marcus [Haiduc and Marcus(2008)] studied several open-source
systems and found that about 40% of the domain terms are being used in the
source code by developers. If the domain terms are ambiguous, it will also im-
pact source code as well.
Hayes [Hayes(2003a)] presented a methodology for requirement-based fault
analysis and its application to NASA software projects. She examined require-

Factors Impacting the Inputs of Traceability Recovery Approaches 11

ments faults for the International Space Station (ISS) software systems. She
showed that 6.1% of the faults were caused by ambiguity in the requirements of
the ISS.

Preventive Measures: Some approaches [Chantree et al(2006)Chantree, Nuseibeh, de Roeck, and Willis,
Gleich et al(2010)Gleich, Creighton, and Kof, Kamsties et al(2001)Kamsties, Berry, and Paech]
have been proposed by researchers to identify ambiguity in and remove them
from requirements. Gleich et al. [Gleich et al(2010)Gleich, Creighton, and Kof]
presented a tool to detect ambiguities and to explain the sources of these am-
biguities. They claimed that their ambiguity-detection tool yields a significant
improvement in time and cost and in quality in industrial contexts. Kamsties
et al. [Kamsties et al(2001)Kamsties, Berry, and Paech] presented an inspec-
tion technique for detecting ambiguities in informal requirements. Their results
showed that inspection techniques yield better results than formal methods in
term of the number of identified ambiguous requirements.

3.1.2 Vague Requirements

Definition: Vague requirements are imprecise natural language statements. If the
statements of the requirements fail to draw an image or bring an understanding
of what is desired, then they are vague because difficult to interpret correctly
[Joseph(2000)].

Scenario: For example, the requirement “maintaining patients’ records shall be
good” is vague. The word “good” is not defined. An expert cannot trace the
implementation of “good” patient records into any source code.

Literature Review: Erik et al. [Kamsties et al(1998)Kamsties, H”ormann, and Schlich]
conducted case studies with ten different small and medium enterprises (SMEs).
They mentioned that SMEs do not document requirements properly, which
cause problems such as (1) requirements are too vague or prosaic to be testable,
(2) requirements are not traceable, and (3) the domain knowledge implicitly
contained in requirements makes the requirements difficult to understand by
developers.
Kasser [Kasser(2004)] stated that that vague requirements cause expensive cost
and delay in project schedule. They mentioned that vague requirements are un-
verifiable and contain multiple requirements in a single paragraph, which com-
plicate the traceability of tests to requirements.
Ghazarian [Ghazarian(2009)] showed that 57.5% of bug reports are due to in-
correct implementations of requirements in the source code. Vague require-
ments cause this kind of reports.
Hall et al. [Hall et al(2002)Hall, Beecham, and Rainer] studied the problems
experienced by 12 software companies in their requirement process and showed
that 48% of their problems stem from requirements and that vague requirements
cause 25% of these problems.

Preventive Measures: Kasser [Kasser(2004)] presented a tool, FRED, to detect
vague requirements and allow an expert to remove the vagueness from the re-

12 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

quirements. FRED also helps to make requirements traceable by splitting two
combined requirements.
Lee et al. [Lee and Kuo(2002)] proposed the Requirements Trade-off Analy-
sis technique to formalise vague requirements. They analysed trade-off among
vague requirements by identifying the relationship between requirements, which
could be either conflicting, irrelevant, cooperative, counterbalance, or indepen-
dent. Fabbrini et al. [Fabbrini et al(2001)Fabbrini, Fusani, Gnesi, and Lami] pro-
posed a tool, QuARS (Quality Analyzer of Requirement Specification), based
on their natural-language quality model to detect vague requirements.

3.1.3 Conflicting Requirements

Definition: Conflicting requirements are requirements that are incompatible in a
same or different artifacts [Hayes(2003a)].

Scenario: During the requirement elicitation process, each stake-holder gives her
wish list without considering conflicts with other stake-holders’ requirements
[Joseph(2000)]. For example, one stake-holder could ask that the system shall
allow giving bonuses after six months while another stake-holder could ask that
the system gives bonuses every three months. Such conflict could result into two
separate implementations of the requirements that may then conflict and must
be maintained separately. It will also create problems for the experts verifying
whether the system allows bonuses.

Literature Review: It is risky to ignore or stifle conflicting requirements because
they may have serious negative consequences on the software development
process [Grunbacher and Briggs(2001)]. Many researchers have highlighted
the significance of identifying and analysing conflicting requirements for the
success of system development [Grunbacher and Briggs(2001), Hayes(2003b),
Hausmann et al(2005)Hausmann, Heckel, and Taentzer, Joseph(2000)].
Egyed et al. [Egyed and Grunbacher(2004), Egyed and Grünbacher(2002)] con-
ducted requirements traceability studies on a video-on-demand system. They
found that some requirements have dependencies with other requirements and
that these dependencies cause conflicts. For example, in order to start playing
a movie, one needs to load the textual information about the movie, which is
allowed to take up to three seconds while 1 second is the required maximum
duration before starting playing a movie. Egyed et al. recommended that con-
flicts and dependencies be removed before performing traceability tasks.
Hayes [Hayes(2003a)] divided conflicting requirements into internal and ex-
ternal conflicts [Hayes(2003a)]. She showed that 4.7% of the faults in the ISS
software systems are due to conflicting requirements.

Preventive Measures: Stake-holders must discuss and resolve conflicting require-
ments [Grunbacher and Briggs(2001), Joseph(2000), Hayes(2003b)]. They can
negotiate the conflicting requirements. Egyed [Egyed and Grünbacher(2002),
Egyed(2001)] proposed a tool-supported approach, Trace Analyser, to analyse
dependency among requirements and detect conflicts. Trace Analyser cannot

Factors Impacting the Inputs of Traceability Recovery Approaches 13

automatically derive conflicts but, by finding all possible requirement depen-
dencies, it makes it easier to identify potential inconsistencies and conflicts.
Hausmann et al. [Hausmann et al(2005)Hausmann, Heckel, and Taentzer] pre-
sented a formal interpretation of use-case models, which is based on concepts
from the theory of graph transformation. Use-case models allow to define pre-
cisely the notions of conflict and dependency between functional requirements.
Then, use-case models can be statically analysed to identify conflicts and de-
pendencies, which can then be communicated to the stake-holders by annotating
the model. They also provided an implementation of the static analysis within a
graph transformation tool.

3.2 Source Code

Source code is a common input for of traceability approaches [Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo,
Marcus and Maletic(2003)]. The quality of the results of a TRA highly depends on
the quality of the source code [Antoniol(2003)]. For example, if a developer uses
meaningless abbreviations for identifiers, thus use causes low similarity between re-
quirements and source code [Lawrie et al(2006)Lawrie, Morrell, Feild, and Binkley,
Lawrie et al(2007b)Lawrie, Morrell, Feild, and Binkley] and creates ambiguity for
an expert when verifying recovered links. Moreover, some techniques, such as
information-retrieval techniques [Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo,
Hayes et al(2003)Hayes, Dekhtyar, and Osborne, Lucia et al(2005)Lucia, Fasano, Oliveto, and Tortora,
Lucia et al(2006)Lucia, Penta, Oliveto, and Zurolo], require high-textual similarity
to recover traceability links.

Developers normally use identifiers [Butler et al(2009)Butler, Wermelinger, Yu, and Sharp]
that are easy to remember. However, these identifiers possibly do not represent con-
cepts in the source code and–or system domain. For example, developers usually
use i, m, n, and k as variable names for integer values, but these do not represent any
concept. Such identifiers can result into low textual similarity and poor links. Appro-
priate use of identifiers does not only help to improve TR, it also helps in improving
the overall software quality [Lawrie et al(2007a)Lawrie, Feild, and Binkley].

Developers also often mix different concepts in the same classes and implement
as much functionality as possible in a single class under time pressure to imple-
ment as quickly as possible new functionalities [Marcus and Poshyvanyk(2005),
Moha et al(2010)Moha, Guéhéneuc, Duchien, and Le Meur]. This “design choice”
or, rater, lack thereof, creates overlapped links [Egyed and Grunbacher(2004)] that
are difficult for experts to sort and verify manually.

14 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

3.2.1 Granularity Level

Definition: Level of detail considered in the TR. Granularity is generally divided
into three levels: coarse, middle, and fine-grained. As the level of granularity
increases, a TRA would provide more detailed and numerous links.

Scenario: Let us assume that a developer implements different concepts in the
functions of one object-oriented class. Typically, a developer creates one Patient
class and implements all patient-related concepts in that class in the form of
methods, such as adding walk-in patient, adding emergency patient, and so on.
Let us now assume that an expert is recovering links between the requirements
and classes of this system. Then, several requirements may link to that one
Patient class, which would impede the experts’ verification of the links if
the requirements are at the class level.

Literature Review: Egyed et al. [Egyed et al(2010)Egyed, Graf, and Grunbacher]
showed that tracing requirements to method level requires 3−6 times more ef-
fort than tracing requirements to classes. They showed that links at the method-
level have no advantage over links at the class-level in terms of quality.
Bianchi [Bianchi et al(2000)Bianchi, Fasolino, and Visaggio] et al. conducted
an exploratory case study to evaluate the relationship between the granularity
of a traceability model and the effectiveness of the maintenance process. Their
case-study results showed that fine-grained traceability requires greater effort
to satisfy maintenance requests but also provides better accuracy. Therefore,
experts must trade effort for accuracy.
It is equally important to consider the return on investment (ROI) [Egyed et al(2010)Egyed, Graf, and Grunbacher]
of traceability [Egyed et al(2005)Egyed, Biffl, Heindl, and Grünbacher] while
choosing a granularity level. Egyed et al. [Egyed et al(2005)Egyed, Biffl, Heindl, and Grünbacher]
evaluated the ROI of tracing at lower levels of granularity. They measured the
ROI by the effort needed to recover the links against the value returned through
tracing at different levels of precision. Their case study showed that a tenfold
increase in cost/effort only produces twofold improvement in precision.

Preventive Measures: It is important to choose the “right” granularity level [Bianchi et al(2000)Bianchi, Fasolino, and Visaggio,
Cleland-Huang et al(2007)Cleland-Huang, Berenbach, Clark, Settimi, and Romanova]
before starting a TR process. If developers used switches to handle different re-
quirements then it is important to choose a finer-grain granularity. If the ROI
is not high then the experts may perform refactoring tasks to separate different
implementations of requirements at class level to reduce the number of trace-
ability links. Developers should implement different requirements in different
classes, if they are working with an object-oriented programming languages,
or in different functions and modules, if they are working with a procedural
programming language.

Factors Impacting the Inputs of Traceability Recovery Approaches 15

3.2.2 Identifiers’ Quality

Definition: An identifier is the name of a token in the source code. Software quality
depends on identifiers’ quality [Butler et al(2009)Butler, Wermelinger, Yu, and Sharp]
because the majority of the source code of a software system consists of identi-
fiers [Deissenboeck and Pizka(2006)].

Scenario: If a developer used meaningless abbreviations to name identifiers, it will
create problem for any automated or manual TR process. For example, if the
developer has named a method “cd” in a file management system, then an expert
verifying a traceability link for the create directory requirement, would not be
able to easily distinguish between change directory and create directory. The
expert must consequently have to read the whole source code to keep or reject
the traceability links.

Literature Review: Several studies showed that poor identifiers’ quality impacts
TR [Lucia et al(2010)Lucia, Penta, and Oliveto, Lucia et al(2007)Lucia, Fasano, Oliveto, and Tortora,
De Lucia et al(2009)De Lucia, Oliveto, and Tortora]. De Lucia et al. [Lucia et al(2010)Lucia, Penta, and Oliveto]
used traceability to identify poor quality identifiers. They used a IR-based trace-
ability approach to build links between source code and high-level documents.
Their approach highlights the identifiers whose understandability is decreasing
due to continuous software maintenance and evolution. Their studies showed
that using meaningless identifiers could result into poor quality traces.
Butler et al. [Butler et al(2009)Butler, Wermelinger, Yu, and Sharp] analysed
the impact of naming conventions on maintenance effort, i.e., on code qual-
ity. They evaluated the quality of identifiers in eight open-source Java libraries
using twelve naming conventions. They showed that a statistically-significant
relation exists between identifiers and software quality.
Takang et al. [Takang et al(1996)Takang, Grubb, and Macredie] compared ab-
breviated identifiers with full-word identifiers and uncommented code with
commented code and empirically analysed the role played by identifiers and
comments on source code understandability. They showed that (1) commented
systems are more understandable than non-commented systems and, similarly,
that (2) systems containing full-word identifiers are more understandable than
those with abbreviated identifiers.
De Lucia etal [Lucia et al(2007)Lucia, Fasano, Oliveto, and Tortora] stored poor
links during traceability recovery experiments to analyse them. They found that
poor links helped to identify quality problems in the textual descriptions of the
traced artifacts; mainly a poor description of the artifacts. The expert used these
poor links to improve the textual description of the artifacts. As a result of these
changes, over 60% of the poor links highlighted by the tool improved with a
similarity value above the quality threshold at the end of the project.

Preventive Measures: Improving identifiers’ quality yields an increase in precision
and recall of TRAs. For example, if two concepts are merged in one identifier,
it is important to split this identifier to avoid ambiguity among identifiers. Re-
searchers have proposed different approaches [Binkley et al(2007)Binkley, Feild, Lawrie, and Pighin,
Binkley et al(2009)Binkley, Feild, Lawrie, and Pighin, Madani et al(2010)Madani, Guerrouj, Di Penta, Guéhéneuc, and Antoniol]

16 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

to improve the identifiers’ quality. Madani et al. [Madani et al(2010)Madani, Guerrouj, Di Penta, Guéhéneuc, and Antoniol]
proposed a speech recognition-based approach to split identifiers and expand
them; their approach out-performs the Camel Case splitter.
QALP [Binkley et al(2009)Binkley, Feild, Lawrie, and Pighin] metrics calcu-
late scores between source code identifiers’ and comments. High scores high-
light a strong relationship between source code and comments. QALP helps
to identify any ambiguity among different identifiers and comments. Lawrie
et al. [Binkley et al(2007)Binkley, Feild, Lawrie, and Pighin] proposed an ap-
proach based on the percentage of identifiers that violate syntactic conciseness
and consistency rules. Their approach helps to avoid confusing identifiers.

3.3 Experts’ Opinion

The field of human factors research is large and diverse. As of today, no large-scale
study involving human experts has been conducted in TR [D. Cuddeback(2010)].
Different studies show the importance of experts’ opinion in TR [D. Cuddeback(2010),
Dekhtyar et al(2007)Dekhtyar, Hayes, and Larsen, Eder et al(1999)Eder, Panagos, and Rabinovich,
Soloway and Ehrlich(1989)]. Ghazarian et al. [Ghazarian(2009)] showed that devel-
opers cause 82% of the problems of missed implementation in some software sys-
tems. Hayes et al. [Hayes et al(2005)Hayes, Dekhtyar, and Sundaram] conducted a
case study on experts’ feedback. They asked three experts to perform some trace-
ability tasks on three different data sets. They give the experts traceability links
with low precision, with high recall, and with high precision and low recall. They
showed that experts were not able to provide better results than the tool. They men-
tioned that there may be other factors, such as domain knowledge, impacting the
experts’ results.

Expert may analyse false positive links generated by tools but would need lots
of efforts to create missing links by analysing the software artifacts manually. In
addition, if an expert generates incorrect links, there are usually no second verifi-
cation; therefore, it is important to analyse the human factors impacting TR. Below
are some of the main factors that impact an expert’s opinion.

3.3.1 Domain Knowledge

Definition: Domain knowledge characterises an expert’s understanding of the field
in which the analysed software system is being developed.

Scenario: Experts use their domain knowledge to query the software artifacts for
specific concepts. For example, an expert, who does not have Web develop-
ment experience and wants to search for a function that return all the variable
values from a URL, may use keywords such as “URL”, “value”, “get values
from URL”, “URL variable values”, and so on. Thus, the expert wastes effort,

Factors Impacting the Inputs of Traceability Recovery Approaches 17

making inaccurate queries; whereas, with appropriate domain knowledge, she
would simply use the query “query string” to search the relevant function.

Literature Review: Hayes et al. [Hayes et al(2005)Hayes, Dekhtyar, and Sundaram]
reported that several factors impact the quality of experts’ opinion, including
their domain knowledge.
Taira et al. [Taira(2008)] conducted an empirical study to identify the impact of
domain knowledge when learning with the help of a search engine. Their results
showed that confusion in Web surfing was caused by a lack of knowledge in the
domain of interest. They observed that domain knowledge may assist an expert
in avoiding being confused and in finding suitable Web pages.
Park and Black [Park and Black(2007)] performed an experiment to investigate
the impact of domain knowledge on search activities. Their results showed that
domain knowledge impacts the precision of search results.

Preventive Measures: Domain knowledge improves the experts’ opinion during
traceability tasks. Thus, an expert must acquire adequate domain knowledge
before exploring source code and other artifacts. An expert can obtain domain
knowledge by using the software system [Rajlich and Wilde(2002)]. An expert
must also have enough time to learn and understand the overall functionality
of the system to consequently be able to recover/verify traceability links ade-
quately.

3.3.2 Programming Knowledge

Definition: Programming Knowledge relates to an expert’s ability to solve pro-
gramming problems and write quality software in a particular programming
language.

Scenario: An expert in Java may not be able to understand Smalltalk source code
adequately. Indeed, if an expert does not have Smalltalk programming knowl-
edge, she may find concept in source code that she cannot readily understand or
could misunderstand. For example, if an expert, with Java programming expe-
rience, queries some Smalltalk source code for “add patient”, she may find the
string “add patient” and think that it has something to do with the correspond-
ing functionality while quoted strings in Smalltalk are comments.

Literature Review: Studies [Hayes et al(2003)Hayes, Dekhtyar, and Osborne, Hayes et al(2005)Hayes, Dekhtyar, and Sundaram]
showed that experts can recover false links and skip correct links during
TR. However, to the best of our knowledge, these studies did not consider
the experts’ programming knowledge. It is quite possible that experts who
vet the final traceability links have good programming knowledge experience
[Soloway and Ehrlich(1989)] but not of the specific language that the current
system uses.
Chan [Chan(2008)] performed an empirical study with 100 undergraduate stu-
dents to measure the effect of domain-specific knowledge and programming
knowledge for software maintenance tasks. Their study showed that both pro-
gramming and domain-specific knowledge have a significant impact on soft-

18 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

ware maintenance productivity. They also discussed that hiring fresh graduates
for maintenance tasks can increase the effort and cost.
Lau et al. [Lau and Yuen(2009)] conducted an empirical study on 217 sec-
ondary students to measure the effects of gender and learning styles on com-
puter programming performance. Their results showed that there is no sig-
nificant effect of gender on programming performance, but academic abil-
ity had a differential effect on programming knowledge. Sequential learners
[Gregorc(1982)] in general performed better than random learners [Gregorc(1982)].

Preventive Measures: Domain knowledge is important to understand a system in-
ternal workings. Yet, we cannot ignore that general and specific programming
knowledge also matter. It is important that the experts must be knowledgeable
of the programming language that the analysed software system uses when per-
forming TR. An expert with one-year Smalltalk programming experience can
understand Smalltalk source code better than an expert who has ten years of
Java experience, as discussed in Section 4.4. Expert must be selected based on
specific programming language experience if possible.

4 Empirical Study for a Factor Impacting the Inputs of TRAs

Goal. We want to quantify the impact of one identified factor on TRA input. Quanti-
fying one of the factor’s impact on TRA inputs is one more step towards improving
TR process. We select experts’ programming knowledge because if other factors
impact TRA to create wrong links or miss correct links, then expert could cre-
ate/recover that links. However, if experts create wrong links or miss correct links
then these links are likely to be so forever.

Study. We study whether experts without the programming knowledge of a sys-
tem under analysis can perform different traceability tasks, such as creating links
missed by TRAs and verifying links recovered by TRAs. We use Java and PHP as
programming languages. We use 40 subjects from both industry and academia, di-
vided in two groups; the first group with good Java knowledge and the second group
with good PHP knowledge. We ask all the subjects to create and verify traceability
links for Java and PHP systems. We measure the subjects’ performance with: (1) the
NASA task load index for their effort; (2) the time that they spent performing their
tasks; and, (3) their percentage of correct answers.

Results. Collected data shows that, in the first group, Java experts’ programming
knowledge positively impacted their results when they performed TR tasks for a
Java system and negatively when they performed TR tasks on a PHP system. In the
second group, for PHP experts and Java and PHP systems, collected data show the
inverse results.

Factors Impacting the Inputs of Traceability Recovery Approaches 19

Relevance. Understanding the impact of the factors is important from the point of
view of both researchers and practitioners. For researchers, our results bring fur-
ther evidence to support our claim of the impact of the identified factors on TRA
inputs. For practitioners, our results provide concrete evidence that they should pay
attention to the identified factors to improve their TR process and use the reported
preventive measures to handle these factors. Our results support our claim that it is
also important to control TRA impacting factors to improve precision and recall.

4.1 Experimental Design

Our experiment uses two groups, the subjects in the first group have expertise in
Java but not in PHP whereas those in the second group have expertise in PHP but
not in Java. We use a within-subject design [Sheskin(2007)] in this experiment. An
advantage of the within-subject experimental design is that confounding variables
due to differences in subjects’ skills are reduced [Wake(2003)].

4.1.1 Research Question

The goal of our experiment is to analyse how experts’ programming knowledge
supports or hinders experts’ opinion during TR tasks. The experiment addresses
the following research question: RQ – Experts’ Programming Knowledge: Will
experts with specific programming language experience provide better traceability
results than others?

We try to reject the following null-hypothesis: The presence or absence of ex-
perts’ specific programming language knowledge has no statistically significant ef-
fect on average performance while performing requirement traceability tasks.

4.1.2 Subjects Selection

The subjects are volunteers. Subjects have guaranteed anonymity and all data has
been anonymised. We received the agreement from the Ethical Review Board of
École Polytechnique de Montréal to perform and publish this study. The subjects
were aware that they were going to perform requirement traceability tasks, but do
not know the particular experimental research question.

We recruited subjects from academia and industry to make sure that academic or
industry experience has little impact on our experiment. There are 26 subjects from
academia and 14 from industry. Industrial subjects have between 11 months to 5
years industrial experience whereas academic subjects are M.Sc. and Ph.D. students
at École Polytechnique de Montréal (ÉPM). Industrial subjects are currently work-
ing in industry and academia subjects are currently enrolled at ÉPM. Table 4 shows

20 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Table 4 Average precision and recall range of TRAs
Industry Academia Industry Academia

General Programming General Programming Java Php Java Php
Group I 1.038461538 4.75 0.503846154 0.038461538 2.280769231 0.307692308
Group II 2.122142857 3.857142857 0.042857143 1.550714286 0.492857143 0.635714286

the subjects programming experience statistics. We only consider a subject expert
in Java or PHP, if she has more than four months experience in Java or PHP.

In the first group, the subjects have expertise in Java, Eclipse, basic domain
knowledge of content management systems and medical systems, and no exper-
tise in PHP, to qualify for the experiment whereas in the second group, they have
expertise in PHP, Eclipse, basic domain knowledge of content management systems
and medical systems and no expertise in Java.

4.1.3 Source Code Selection

We used several criteria to select the systems used in our experiment. First, we
selected open-source software systems, so that other researchers can replicate our
experiment. Second, we avoided small systems that do not represent systems han-
dled by most developers. Finally, we conducted a pre-experiment survey about the
subjects’ known systems. We selected the systems that subjects did not know to
avoid any learning bias. For the experiment, we used iTrust 5 and Joomla6. iTrust is
developed in Java. It is an online medical record system with 19,604 KLOC, 526
classes, and 3,404 functions. Joomla is a content management system developed in
PHP with 203 KLOC, 737 classes, and 4,834 methods.

4.1.4 Links, Tasks, and Questionnaires

The first author created traceability links manually between source code and re-
quirements for Joomla and the second author verified these links to avoid bias. For
iTrust, we used the links that iTrust developers provided us. The manually-created
links help to evaluate subjects’ answers. (One of the subject performed a pilot-study
to validate that the requirements used in the experiment are clear and simple. We
excluded this subject and pilot-study from our final results.)

In any traceability task, an expert must verify traceability links created by a TRA
and create new links that the TRA missed. We designed our questionnaire to address
both these tasks. We asked two set of questions to the subjects, in two categories. In
the first category, we asked subjects to create missing traceability links among re-
quirements and source code. This category contains two questions for each system.
We used vector space model (VSM) [Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo]

5 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
6 http://www.joomla.org

Factors Impacting the Inputs of Traceability Recovery Approaches 21

Table 5 Experimental questionnaire format

Category 1: recover traceability links
Question 1 & 2 System shall allow this functionality
Category 2: Verify traceability links.
Question 3 (a,b,c) System shall allow this functionality, links to this class or method.

to automatically create traceability links between requirements and source code.
VSM provided true and false traceability links. In the second category, we asked
subjects to verify requirement traceability links recovered by VSM as true or false.
This category contains three questions for each system. In the second category, the
first system contains 2 true and 1 false traceability links, whereas the second system
contains 1 true and 2 false traceability links. Table 5 shows the experimental cate-
gories and questions, the text in bold is a placeholder that we replace by appropriate
required behaviour of the systems.

For example, with Joomla, we replace “this functionality” in Question 1, Cate-
gory 1, by “update any article’s contents” and the question reads as: system shall al-
low updating any article’s contents. In Question 3(a), Category 2, we replace ”this
functionality” and “class” by ”administrator to add different sections in website”
and administrator.components.com sections.admin.sections.php
and the question reads: “System shall allow administrator to add different sections
in website” links to administrator.components.com sections.admin.
sections.php.

4.2 Procedure

We divide the experiment into three steps. In the first step, subjects are explained
the systems. We provide basic details of the systems on the answer sheets. In the
second step, we ask the subjects to provide their general Java or PHP industrial and
academic programming experience in years. To confirm the subjects’ experience,
we ask them the maximum source code size that they have developed in the past.
We consider that a subject has expertise in a programming language, if she has
more than four months experience and has written more than 5,000 LOCs. We use
four months because in academia a semester duration is four to six months and in
industry it is considered as probation period. Therefore, considering a subject who
is currently studying a programming language subject or industry subject who is
in probation period could bias the results. In the third step, we ask the subjects to
recover and verify traceability links.

For each system, we ask subjects to spend adequate time to explore the code and
perform their traceability tasks. We prepare each of the target system in an Eclipse
Workspace. We provide the subjects with a timer, developed in Java to record the
time that they take to answer a question. We ask subjects to start the timer when they
begin looking for an answer and stop when they find the answer. We ask subjects

22 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

not to start the timer when they are reading and understanding a question or writing
an answer.

We measure the subjects’ effort using the NASA Task Load Index (TLX) [Hart and Stavenland(1988)].
The TLX assesses the subjective workload of subjects. It is a multi-dimensional
measure that provides an overall workload index based on a weighted average of rat-
ings on six sub-scales, i.e.,, mental demands, physical demands, temporal demands,
own performance, effort, and frustration. NASA provides a computer program to
collect weights and ratings for the six sub-scales. We combine all workload factors
to compute an average workload for each subject. To combine all workload factors,
each rating is multiplied by the weight given to that rating by the subject. The sum
of the weighted ratings for each task are divided by 15 to get the average workload
[Hart and Stavenland(1988)].

4.3 Analysis Method

We perform the following analysis to answer our research question and attempt
rejecting our null hypothesis. We use programming language knowledge as an inde-
pendent variable whereas time, percentage of correct answers, and effort are depen-
dent variables. We divide the total number of correct answers by the total number of
questions to obtain an average of correct answers for each subject.

We use the Mann-Whitney test to compare the two sets of dependent variables
and assess whether their difference is statistically significant. The two sets are the
subjects’ data that we collected when they answered traceability questions with
or without specific programming expertise. For example, we compute the Mann-
Whitney test to compare the set of average correct answers of Java experts with
non-Java expert for the Java system. Mann-Whitney is a non-parametric test; there-
fore, it does not make any assumption about the distribution of the data.

We compute the Cohen’s d impact size [Sheskin(2007)], which indicates the
magnitude of the effect of a treatment on the dependent variables. The effect size is
considered small for 0.2 < d < 0.5, medium for 0.5 < d < 0.8 and large for d > 0.8.
It is defined as the difference between the means (µ1 −µ2), divided by the pooled

standard deviation
√(

σ2
1 −σ2

2

)
/2 of both variables: d = (µ1 −µ2)/σ .

4.4 Experimental Results

After collecting the answer sheets, we compared subjects’ responses with the prede-
termined correct answers to compute the average correct answers for each subject.
Table 6 shows the statistics of the results, all the results’ values are average values.
For example, in the first group with Java expertise, the subjects took an average of
186.04 seconds to answer a question for the Java system while they took on average
379 seconds to answer questions for the PHP system. Table 7 shows the p-values

Factors Impacting the Inputs of Traceability Recovery Approaches 23

Table 6 Experiment Result’s Statistics

Factor: Expert Programming Knowledge
Systems Knowledge # of Subjects Correct Answers Times Efforts
iTrust (Java) Good 26 69.23 186.04s 30.12
Joomla (PHP) Bad 26 30.00 379.00s 60.02
iTrust (Java) Bad 14 44.29 205.93s 39.33
Joomla (PHP) Good 14 80.00 87.57s 49.07

Table 7 Mann Whitney p-values, precision, recall, and Cohen’s d effect size for each experiment

Time Answers Efforts
M.-W. p Cohen d M.-W. p Cohen d M.-W. p Cohen d

Group I 0.000009 2.38 0.000015 2.40 0.000001 2.79
Group II 0.001094 1.89 0.001453 2.43 0.003052 1.62

and Cohen’s d values calculated by comparing the differences between the data col-
lected for each experiment.

There is statistical significant evidence to reject the null hypothesis. Table 7
shows that the p-values are below the standard significant value, α = 0.05. More-
over, the Cohen’s d values are also high (> 0.8). Subjects with expertise in Java
were able to create/verify more correct links in less time and with less effort than
the subjects who did not have expertise in Java for the Java system and vice-versa
for the PHP experts and the PHP system. We also find some interesting observa-
tions. In both groups, there are 3 subjects who are good in both PHP and Java. They
performed better than other subjects on both systems by spending less effort and
time to find the correct answers.

Thus, we answer the RQ as follows: programming knowledge does impact ex-
perts’ opinion. It is important for an expert to have good knowledge of the specific
programming language in which the system under analysis is written.

4.5 Threats to Validity

Several threats potentially impact the validity of our experimental results. We dis-
cuss below these threats and how we alleviate or accept them.

Construct validity: The construct validity concerns the relation between theory
and observations. In this experiment, it could be due to measurement errors. The
average correct traceability links created and time spent by a subject, are the main
measure in our study. As the correct answers are predetermined before conducting
the experiment, measuring individual subject’s performance is simply a matter of
comparing each subject’s answers with the expected correct answers.

Internal validity: The internal validity of a study is the extent to which a treat-
ment effects change in the dependent variable. There can be learning threat in our

24 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

experiment. We used two different systems and different kinds of requirements’
links to avoid this learning threat. We give subjects an opportunity to ask any ques-
tions that they may have about the material. While answering their question, we
were careful not to reveal any information that could help them to find the correct
answers. We only explained what was already available in the training material. We
also instruct subjects not to discuss the experiment among themselves. The source
code of both systems was not same and we used two groups with different expertises
to avoid source code size effect on our results.

External validity: The external validity of a study relates to the extent to which
we can generalize the results of our studies. To avoid any external validity threat, we
engaged subjects from academic and industry to help generalising our findings to
both contexts. Moreover, we performed our study with 40 (26 for first group and 14
for second) and we used two different systems in different languages, Java and PHP.
Yet, we cannot claim to generalise our results to other programming languages.

There were only five links (two links to recover and three links to verify) in our
experiment, while the traceability links that experts recover or verify in practice are
numerous. One major reason to use few traceability links was experimental control.
Table 7 shows that the results are significant and that, moreover, the magnitude
of the observed effects is large and thus cannot be ignored. Our preliminary study
support the claim that it is important to control the factors that impact traceability
approaches inputs.

Conclusion validity: Conclusion validity threats deals with the relation between
the treatment and the outcome. We paid attention not to violate assumptions made
by statistical tests. Therefore, we used a non-parametric test that does not make any
assumptions about the distribution of data.

5 Discussions

We now discuss four questions related to the discussed factors and our methodology.

How much does controlling all the factors increase an experts’ workload. Using
poor quality TRA inputs will result in large number of false positive and missing
links. It could be easier for an expert to improve TRA inputs quality than to manually
recover missing links and verify large amount of false positive links. Improving
TRA inputs may also help during program comprehension, maintenance, and reuse.
In future work, we will perform empirical studies to see how much time and effort
can be saved if we control these factors’ effect on TRA inputs.

Is it possible to control all the factors. It might not be possible for an expert to con-
trol all these factors, but controlling the maximum possible number of factors could
still yield better results than using poor quality inputs. Future work includes devel-

Factors Impacting the Inputs of Traceability Recovery Approaches 25

oping and assessing the cost model to compute the ROI of controlling the various
factors and combination thereof.

What are the most critical factors. We have not performed a systematic literature
review due to space limitations. However, we performed an ILR and found more
than 60 papers related to our study. The provided list of factors is a starting point
towards traceability improvement by controlling these factors. We will perform in
future work a systematic literature review to attempt identifying all factors and their
impact on TRA inputs.

Are there more factors then these seven identified factors. We excluded five fac-
tors from our study: document type, document language, work environment, project
size, and dead code because we could not find significant evidence in the literature
that these factors impact TRA inputs. Yet, these excluded factors may impact TRA
inputs. For example, if a TRA takes as input some source code and requirement doc-
uments and computes their textual similarity, it is possible that many requirements
would link to dead code and an expert would have to verify these links even though
they are useless. We add these excluded factors in our list of future experiments to
quantify their impact on TRA inputs.

6 Conclusion and Future Work

It is important to develop new and improve existing traceability approaches, but it
is also important to gain a better understanding of and support for the factors that
impact TRA inputs. We claimed in this chapter that some factors impact TRA inputs,
in particular, source code, requirements, and experts’ opinion.

We defined a methodology to identify in the literature factors impacting TRA
inputs as well as their definitions and associated preventive measures. Our method-
ology is based on two incremental literature reviews (ILRs) to identify critical fac-
tors that impact TRA inputs and tools/metrics to measure/improve the quality of the
TRA inputs. We also used the ILRs to collect precautions to control the effect of the
factors. We documented seven factors using a consistent template and rejected five
factors for which we could not find enough supporting evidence.

To empirically support our claim, we conducted an empirical study to measure
the experts’ programming knowledge impact on experts’ opinion. We showed that
a group of Java experts could not perform well traceability-related tasks on a PHP
system, while PHP experts could, and vice-versa for PHP and Java experts on a
Java systems. These results support our claim that expert’s programming language
knowledge impacts TRA inputs. Thus, the expert must be knowledgeable about the
programming language(s) that the system under analysis uses.

In future work, we will perform a systematic literature review to identify more
factors and their effect on TRA inputs. We will perform more experiments on all

26 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

other remaining factors to assess their impact on TRA inputs. We will provide a
priority list for project managers so that they can find which factors can impact
their inputs more. We also want to provide a TR process that automatically handles
potential factors impacting any TRA inputs.

References

[Abadi et al(2008)Abadi, Nisenson, and Simionovici] Abadi A, Nisenson M, Simionovici Y
(2008) A traceability technique for specifications. In: Program Comprehension, 2008. ICPC
2008. The 16th IEEE International Conference on, pp 103 –112

[Ali(2011)] Ali N (2011) Trustrace: Improving automated trace retrieval through resource trust
analysis. In: ICPC ’11: Proceedings of the International Conference on Program Comprehen-
sion (ICPC’11), IEEE Computer Society, Washington, DC, USA, p 4

[Antoniol(2003)] Antoniol G (2003) Recovery of traceability links in software artifacts and sys-
tems. PhD thesis, Montreal, Canada

[Antoniol et al(2002)Antoniol, Canfora, Casazza, De Lucia, and Merlo] Antoniol G, Canfora G,
Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code and doc-
umentation

[Antoniol et al(2008)Antoniol, Hayes, Guéhéneuc, and di Penta] Antoniol G, Hayes J,
Guéhéneuc YG, di Penta M (2008) Reuse or rewrite: Combining textual, static, and dynamic
analyses to assess the cost of keeping a system up-to-date. In: Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on

[Bianchi et al(2000)Bianchi, Fasolino, and Visaggio] Bianchi A, Fasolino A, Visaggio G (2000)
An exploratory case study of the maintenance effectiveness of traceability models. In: Pro-
gram Comprehension, 2000. Proceedings. IWPC 2000. 8th International Workshop on, IEEE
Computer Society, pp 149 –158

[Binkley et al(2007)Binkley, Feild, Lawrie, and Pighin] Binkley D, Feild H, Lawrie D, Pighin M
(2007) Software Fault Prediction using Language Processing. In: Testing: Academic and
Industrial Conference Practice and Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007, IEEE, pp 99–110

[Binkley et al(2009)Binkley, Feild, Lawrie, and Pighin] Binkley D, Feild H, Lawrie D, Pighin M
(2009) Increasing diversity: Natural language measures for software fault prediction. Journal
of Systems and Software 82(11):1793–1803

[Butler et al(2009)Butler, Wermelinger, Yu, and Sharp] Butler S, Wermelinger M, Yu Y, Sharp H
(2009) Relating identifier naming flaws and code quality: An empirical study. IEEE Computer
Society, Los Alamitos, CA, USA, vol 0, pp 31–35

[Chan(2008)] Chan T (2008) Impact of programming and application-specific knowledge on
maintenance effort: A hazard rate model. In: Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, IEEE, pp 47–56

[Chantree et al(2006)Chantree, Nuseibeh, de Roeck, and Willis] Chantree F, Nuseibeh B,
de Roeck A, Willis A (2006) Identifying nocuous ambiguities in natural language re-
quirements. In: Requirements Engineering, 14th IEEE International Conference, pp 59
–68

[Cleland-Huang et al(2003)Cleland-Huang, Chang, and Christensen] Cleland-Huang J, Chang
CK, Christensen M (2003) Event-based traceability for managing evolutionary change. IEEE
Transaction Software Engineering 29(9):796–810

[Cleland-Huang et al(2007)Cleland-Huang, Berenbach, Clark, Settimi, and Romanova] Cleland-
Huang J, Berenbach B, Clark S, Settimi R, Romanova E (2007) Best practices for automated
traceability. Computer 40:27–35

[D. Cuddeback(2010)] D Cuddeback JHH A Dekhtyar (2010) Automated requirements traceabil-
ity: the study of human analysts. IEEE Computer Society, Los Alamitos, CA, USA

Factors Impacting the Inputs of Traceability Recovery Approaches 27

[De Lucia et al(2009)De Lucia, Oliveto, and Tortora] De Lucia A, Oliveto R, Tortora G (2009)
Assessing ir-based traceability recovery tools through controlled experiments. Empirical Soft-
ware Engineering 14:57–92

[Deissenboeck and Pizka(2006)] Deissenboeck F, Pizka M (2006) Concise and consistent naming.
Software Quality Journal 14:261–282

[Dekhtyar et al(2007)Dekhtyar, Hayes, and Larsen] Dekhtyar A, Hayes J, Larsen J (2007) Make
the most of your time: How should the analyst work with automated traceability tools? In:
Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007. In-
ternational Workshop on, pp 4 –4

[Eder et al(1999)Eder, Panagos, and Rabinovich] Eder J, Panagos E, Rabinovich M (1999) Time
constraints in workflow systems. In: Proceedings of the 11th International Conference on Ad-
vanced Information Systems Engineering, Springer-Verlag, London, UK, CAiSE ’99, pp 286–
300

[Egyed(2001)] Egyed A (2001) A scenario-driven approach to traceability. In: Software Engineer-
ing, 2001. ICSE 2001. Proceedings of the 23rd International Conference on, pp 123 – 132

[Egyed and Grünbacher(2002)] Egyed A, Grünbacher P (2002) Automating requirements trace-
ability: Beyond the record & replay paradigm. In: ASE’02: Proceedings of the 17th IEEE
international conference on Automated software engineering, IEEE Computer Society, Wash-
ington, DC, USA, p 163

[Egyed and Grunbacher(2004)] Egyed A, Grunbacher P (2004) Identifying requirements conflicts
and cooperation: How quality attributes and automated traceability can help. Software, IEEE
21(6):50–58

[Egyed et al(2005)Egyed, Biffl, Heindl, and Grünbacher] Egyed A, Biffl S, Heindl M,
Grünbacher P (2005) A value-based approach for understanding cost-benefit trade-offs
during automated software traceability. In: Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering, ACM, New York, NY, USA, TEFSE
’05, pp 2–7

[Egyed et al(2010)Egyed, Graf, and Grunbacher] Egyed A, Graf F, Grunbacher P (2010) Effort
and quality of recovering requirements-to-code traces: Two exploratory experiments. In: Re-
quirements Engineering, IEEE International Conference on, IEEE Computer Society, Los
Alamitos, CA, USA, pp 221–230

[Fabbrini et al(2001)Fabbrini, Fusani, Gnesi, and Lami] Fabbrini F, Fusani M, Gnesi S, Lami G
(2001) The linguistic approach to the natural language requirements quality: benefit of the use
of an automatic tool. In: Software Engineering Workshop, 2001. Proceedings. 26th Annual
NASA Goddard, pp 97 –105

[Gervasi and Zowghi(2010)] Gervasi V, Zowghi D (2010) On the role of ambiguity in requirement
engineering. In: REFSQ, pp 248–254

[Ghazarian(2009)] Ghazarian A (2009) A design-rule-based constructive approach to building
traceable software. PhD thesis, Toronto, Canada

[Gibson and Conheeney(1995)] Gibson MD, Conheeney K (1995) Domain knowledge reuse dur-
ing requirements engineering. In: Proceedings of the 7th International Conference on Ad-
vanced Information Systems Engineering, Springer-Verlag, London, UK, pp 283–296

[Gleich et al(2010)Gleich, Creighton, and Kof] Gleich B, Creighton O, Kof L (2010) Ambiguity
Detection: Towards a Tool Explaining Ambiguity Sources. Requirements Engineering: Foun-
dation for Software Quality pp 218–232

[Gregorc(1982)] Gregorc A (1982) An adultâs guide to style. Columbia, CT: Gregorc Associates,
Inc 1

[Grunbacher and Briggs(2001)] Grunbacher P, Briggs R (2001) Surfacing tacit knowledge in re-
quirements negotiation: experiences using easywinwin. In: System Sciences, 2001. Proceed-
ings of the 34th Annual Hawaii International Conference on, p 8 pp.

[Haiduc and Marcus(2008)] Haiduc S, Marcus A (2008) On the use of domain terms in source
code. In: Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference
on, pp 113 –122

28 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

[Hall et al(2002)Hall, Beecham, and Rainer] Hall T, Beecham S, Rainer A (2002) Requirements
problems in twelve software companies: an empirical analysis. Software, IEE Proceedings -
149(5):153 – 160

[Hart and Stavenland(1988)] Hart SG, Stavenland LE (1988) Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds)
Human Mental Workload, Elsevier, chap 7, pp 139–183

[Hausmann et al(2005)Hausmann, Heckel, and Taentzer] Hausmann J, Heckel R, Taentzer G
(2005) Detection of conflicting functional requirements in a use case-driven approach. In:
Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference
on, IEEE, pp 105–115

[Hayes(2003a)] Hayes J (2003a) Building a requirement fault taxonomy: experiences from a nasa
verification and validation research project. In: Software Reliability Engineering, 2003. ISSRE
2003. 14th International Symposium on, pp 49 – 59

[Hayes(2003b)] Hayes JH (2003b) Building a requirement fault taxonomy: Experiences from a
nasa verification and validation research project. In: Proceedings of the 14th International
Symposium on Software Reliability Engineering, IEEE Computer Society, Washington, DC,
USA, ISSRE ’03

[Hayes and Dekhtyar(2005)] Hayes JH, Dekhtyar A (2005) Humans in the traceability loop:
can’t live with ’em, can’t live without ’em. In: Proceedings of the 3rd international work-
shop on Traceability in emerging forms of software engineering, ACM, New York, NY,
USA, TEFSE ’05, pp 20–23, DOI http://doi.acm.org/10.1145/1107656.1107661, URL http:
//doi.acm.org/10.1145/1107656.1107661

[Hayes et al(2003)Hayes, Dekhtyar, and Osborne] Hayes JH, Dekhtyar A, Osborne J (2003) Im-
proving requirements tracing via information retrieval. In: RE ’03: Proceedings of the 11th
IEEE International Conference on Requirements Engineering, IEEE Computer Society, Wash-
ington, DC, USA, p 138

[Hayes et al(2005)Hayes, Dekhtyar, and Sundaram] Hayes JH, Dekhtyar A, Sundaram S (2005)
Text mining for software engineering: how analyst feedback impacts final results. In: Pro-
ceedings of the 2005 international workshop on Mining software repositories, ACM, New
York, NY, USA, MSR ’05, pp 1–5

[Hayes et al(2008)Hayes, Antoniol, and Guéhéneuc] Hayes JH, Antoniol G, Guéhéneuc YG
(2008) Prereqir: Recovering pre-requirements via cluster analysis. IEEE Computer Society,
Los Alamitos, CA, USA, vol 0, pp 165–174

[Jirapanthong and Zisman(2007)] Jirapanthong W, Zisman A (2007) Xtraque: traceability for
product line systems. Software Systems Modeling 8(1):117–144

[Joseph(2000)] Joseph JC (2000) Requirements engineering and management: the key to design-
ing quality complex systems. In: The TQM Magazine, MCB UP Ltd, vol 12, pp 400–407

[Kamsties et al(1998)Kamsties, H”ormann, and Schlich] Kamsties E, H
”ormann K, Schlich M (1998) Requirements engineering in small and medium enterprises.
Requirements engineering 3(2):84–90

[Kamsties et al(2001)Kamsties, Berry, and Paech] Kamsties E, Berry D, Paech B (2001) Detect-
ing ambiguities in requirements documents using inspections. In: Workshop on Inspections in
Software Engineering, pp 68–80

[Kasser(2004)] Kasser J (2004) The first requirements elucidator demonstration (FRED) Tool.
Systems engineering 7(3):243–256

[Kitchenham et al(2009)Kitchenham, Brereton, Budgen, Turner, Bailey, and Linkman]
Kitchenham B, Brereton O, Budgen D, Turner M, Bailey J, Linkman S (2009) System-
atic literature reviews in software engineering - a systematic literature review. Information
and Software Technology 51:7–15

[Lau and Yuen(2009)] Lau W, Yuen A (2009) Exploring the effects of gender and learning styles
on computer programming performance: implications for programming pedagogy. British
Journal of Educational Technology 40(4):696–712

[Lawrie et al(2006)Lawrie, Morrell, Feild, and Binkley] Lawrie D, Morrell C, Feild H, Binkley D
(2006) What’s in a name? a study of identifiers. In: Proceedings of the 14th IEEE International

Factors Impacting the Inputs of Traceability Recovery Approaches 29

Conference on Program Comprehension, IEEE Computer Society, Washington, DC, USA, pp
3–12

[Lawrie et al(2007a)Lawrie, Feild, and Binkley] Lawrie D, Feild H, Binkley D (2007a) Quantify-
ing identifier quality: an analysis of trends. Empirical Software Engineering 12:359–388

[Lawrie et al(2007b)Lawrie, Morrell, Feild, and Binkley] Lawrie D, Morrell C, Feild H, Binkley
D (2007b) Effective identifier names for comprehension and memory. Innovations in Systems
and Software Engineering 3:303–318

[Lee and Kuo(2002)] Lee J, Kuo J (2002) New approach to requirements trade-off analysis for
complex systems. Knowledge and Data Engineering, IEEE Transactions on 10(4):551–562

[Lucia et al(2005)Lucia, Fasano, Oliveto, and Tortora] Lucia AD, Fasano F, Oliveto R, Tortora G
(2005) Adams re-trace: A traceability recovery tool. IEEE Computer Society, Los Alamitos,
CA, USA, vol 0, pp 32–41

[Lucia et al(2006)Lucia, Penta, Oliveto, and Zurolo] Lucia AD, Penta MD, Oliveto R, Zurolo F
(2006) Coconut: Code comprehension nurturant using traceability. IEEE Computer Society,
Los Alamitos, CA, USA, pp 274–275

[Lucia et al(2007)Lucia, Fasano, Oliveto, and Tortora] Lucia AD, Fasano F, Oliveto R, Tortora G
(2007) Recovering traceability links in software artifact management systems using informa-
tion retrieval methods. ACM Transaction on Software Engineering Methodology 16

[Lucia et al(2010)Lucia, Penta, and Oliveto] Lucia AD, Penta MD, Oliveto R (2010) Improving
source code lexicon via traceability and information retrieval. IEEE Transactions on Software
Engineering 99

[Madani et al(2010)Madani, Guerrouj, Di Penta, Guéhéneuc, and Antoniol] Madani N, Guerrouj
L, Di Penta M, Guéhéneuc YG, Antoniol G (2010) Recognizing words from source code
identifiers using speech recognition techniques. In: Proceeding of the Conference on Software
Maintenance and Reengineering, IEEE, pp 69–78

[Maletic et al(2003)Maletic, Munson, Marcus, and Nguyen] Maletic J, Munson E, Marcus A,
Nguyen T (2003) Using a hypertext model for traceability link conformance analysis. In: Pro-
ceedings of the 2nd International Workshop on Traceability in Emerging Forms of Software
Engineering, Montreal, Canada, pp 47–54

[Marcus and Maletic(2003)] Marcus A, Maletic JI (2003) Recovering documentation-to-source-
code traceability links using latent semantic indexing. In: ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, IEEE Computer Society, Washington, DC,
USA, pp 125–135

[Marcus and Poshyvanyk(2005)] Marcus A, Poshyvanyk D (2005) The conceptual cohesion of
classes. In: Proceedings of the 21st IEEE International Conference on Software Maintenance,
IEEE Computer Society, Washington, DC, USA, pp 133–142

[Moha et al(2010)Moha, Guéhéneuc, Duchien, and Le Meur] Moha N, Guéhéneuc YG, Duchien
L, Le Meur AF (2010) Decor: A method for the specification and detection of code and design
smells. Software Engineering, IEEE Transactions on 36(1):20 –36

[Oliveto et al(2010)Oliveto, Gethers, Poshyvanyk, and De Lucia] Oliveto R, Gethers M, Poshy-
vanyk D, De Lucia A (2010) On the equivalence of information retrieval methods for au-
tomated traceability link recovery. In: Proceedings of the 2010 IEEE 18th International Con-
ference on Program Comprehension, IEEE Computer Society, Washington, DC, USA, ICPC
’10, pp 68–71

[Park and Black(2007)] Park Y, Black J (2007) Identifying the impact of domain knowledge and
cognitive style on web-based information search behavior. Journal of Educational Computing
Research 36(1):15–37

[Rajlich and Wilde(2002)] Rajlich V, Wilde N (2002) The role of concepts in program compre-
hension. In: Proceedings of the 10th International Workshop on Program Comprehension,
IEEE Computer Society, Washington, DC, USA, IWPC ’02, pp 271–

[Sherba(2005)] Sherba SA (2005) Towards automating traceability: an incremental and scalable
approach. PhD thesis, Boulder, CO, USA

[Sheskin(2007)] Sheskin DJ (2007) Handbook of Parametric and Nonparametric Statistical Pro-
cedures, 4th edn, Chapman & Hall/CRC

30 Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

[Soloway and Ehrlich(1989)] Soloway E, Ehrlich K (1989) Empirical studies of programming
knowledge, ACM, New York, NY, USA, pp 235–267

[Spanoudakis et al(2004)Spanoudakis, Zisman, Pérez-Minana, and Krause] Spanoudakis G, Zis-
man A, Pérez-Minana E, Krause P (2004) Rule-based generation of requirements traceability
relations. Journal of Systems and Software 72(2):105 – 127

[Sundaram et al(2005)Sundaram, Hayes, and Dekhtyar] Sundaram SK, Hayes JH, Dekhtyar A
(2005) Baselines in requirements tracing. In: Proceedings of the 2005 workshop on Predic-
tor models in software engineering, ACM, New York, NY, USA, pp 1–6

[Taira(2008)] Taira M (2008) The Influence of Domain Knowledge and Task Requirement on the
Selection of Learning Strategies in the Internet. The International Journal of Creativity and
Problem Solving 18(1):45–53

[Takang et al(1996)Takang, Grubb, and Macredie] Takang AA, Grubb PA, Macredie RD (1996)
The effects of comments and identifier names on program comprehensibility: an experimental
investigation. Journal of Programming Language 4(3):143–167

[Wake(2003)] Wake WC (2003) Refactoring Workbook, Addison-Wesley Longman Publishing
Co. Inc., Boston, MA, USA

[Zisman et al(2002)Zisman, Spanoudakis, Pérez-Miñana, and Krause] Zisman A, Spanoudakis
G, Pérez-Miñana E, Krause P (2002) Towards a traceability approach for product families
requirements. In: Proceedings of 3rd ICSE Workshop on Software Product Lines: Economics,
Architectures, and Implications, Orlando, USA, Orlando, USA

