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ABSTRACT
Open-source and industrial software systems often lack up-
to-date documents on the implementation of user-observable
functionalities. This lack of documents is particularly hin-
dering for large systems. Moreover, as with any other soft-
ware artifacts, user-observable functionalities evolve through
software evolution activities. Evolution activities sometimes
have undesired and unexpected side-effects on other func-
tionalities, causing these to fail or to malfunction. In this
position paper, we promote the idea that a traceability link
between user-observable functionalities and constituents of a
software architecture (classes, methods. . . implementing the
functionalities) is essential to reduce the software evolution
effort. We outline an approach to recover and to study the
evolution of features—subsets of the constituents of a soft-
ware architecture—responsible for a functionality.

Keywords
Feature traceability during evolution.

1. INTRODUCTION
Evolution of implementation and evolution of functional-

ities characterises the life of any software system. Success-
ful systems operate for decades and often outlive the hard-
ware and operational environments for which they were con-
ceived, designed, and developed originally. Source code of
industrial systems often evolves without the documentation
being updated because maintaining consistency and trace-
ability between high-level abstractions, functionalities, and
software constituents is costly and time-consuming. Docu-
mentation updates are also frequently neglected due to time
and evolution pressure. High-level documentation, such as
requirement or design documents, is often absent in open-
source systems and no effort is pursued to provide traceabil-
ity information. Yet, open-source systems are now common,
e.g., most ADSL routers, modems, and fire-walls, run cus-
tomised versions of the open-source Linux operating system.
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Meanwhile, software evolution involves costly and tedious
program comprehension activities to identify and to under-
stand data structures, functions, methods, objects, classes,
and—more generally—any high-level abstractions required
by maintainers to perform the evolution. As of the year
2005, source code browsing is required during software evo-
lution (and maintenance) because missing or obsolete doc-
umentation leads maintainers to rely on source code only.
Source code browsing is resource consuming as the size and
the complexity of systems increase.

An alternative to source code browsing is the automated
recovery of higher-level abstractions beyond those obtained
by examining the system itself [7], such as program features.
We define a program feature as a micro-architecture, which
is a subset of a program architecture grouping data struc-
tures, fields, classes, functions, and methods participating in
the realisation of a user-observable functionality in a given
scenario. The scenario details the conditions and steps of
realisation of the functionality. For example, in a ADSL
router, setting the user’s name and password corresponds
to one feature, as is adding a new fire-wall rule.

In this position paper, we support the idea to recover pro-
gram features automatically, i.e., to build traceability links
between source code and user-observable functionalities, and
to maintain traceability links among subsequent releases of
a same feature as well as among different features of a given
release. We define a traceability link as an association be-
tween a micro-architecture and a user-observable function-
ality. A traceability link can be used to highlight differences
among features in a release or among releases for a given
feature. Indeed, information on a feature evolution, along
with the rationale for evolution (bug lists, user requests), is
essential to identify fault-prone features. Information on fea-
ture interactions is essential to avoid undesired side-effects
on unmodified features during evolution.

Recovering feature, i.e., identifying micro-architectures
responsible for a functionality, and maintaining traceability
links among releases and among features require the devel-
opment of several technologies. We need to resort to:

• Static and dynamic analyses.

• 2D and 3D visualisation.

• Information retrieval and computational linguistics.

Recently, several authors (see, for example, [3, 8]) ad-
dressed the problem of identifying feature in object-oriented
systems. We concur with previous contributions that these
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Figure 1: Outline of the process of traceability recovery.

systems should be the target of studies for feature identifi-
cation and evolution, because of the wide adoption of the
object-oriented paradigm. Also, we agree that both static
and dynamic analyses are needed. We believe, in addition
to mapping features and software constituents, that trac-
ing feature evolution across releases and identifying feature
interactions reduce the program comprehension effort and,
thus, decrease the maintenance and evolution costs.

2. OUR APPROACH IN A NUTSHELL
We borrow from a previous work [3] key definitions and

equations. A feature links a program architecture with the
program dynamic behaviour. Thus, a first step is to recover
the program architecture. Second, a subset of the program
architecture, a micro-architecture, must be identified as par-
ticipating in the realisation of a functionality. Third, intra-
and inter-feature relationships across releases are studied to
highlight feature evolution. Feature evolution and feature
traceability are not addressed in previous work nor is, to
the best of our knowledge, features to micro-architectures
traceability and evolution.

We assume that the source code is available and that a
compiled version can be exercised under different scenarios.
Data collected from the realisation of a functionality, under
different scenarios, is used to filter static data, thus relating
files, functions, classes, and methods, with functionalities
and scenarios. Clearly, this filtering process is an unavoid-
able preliminary step to study feature interaction and evo-
lution and to highlight differences among features.

Figure 1 shows the key steps of the process of identifying

features and studying their evolution. Static and dynamic
analyses are used to extract data from executions of several
releases of a system, following given scenarios. These data
are analysed using a filtering and a probabilistic approaches
to identify features. The features are micro-architectures,
which are in turn analysed to identify traceability links, de-
pending on the releases. The micro-architectures and trace-
ability links are displayed to ease understanding and to con-
firm and to improve the previous analyses. Indeed, with
available technologies and tools, user interaction is neces-
sary to confirm identified features and traceability links. We
aim at reducing the effort required to perform feature iden-
tification and evolution analyses but we do not believe that
maintainers are not be needed to study feature evolution.

3. FEATURE IDENTIFICATION
For each needed technology, we provide a rationale for its

adoption and we outline foreseeable results.

3.1 Static Analyses
Static analyses aim at obtaining compact representations

of a system, such as metrics profiles, class diagrams, call
graphs, dependency graph, and architectural views.

For example, metric profiles are used to study macro-
evolution [4, 24] from a high-level point of view. Metric
profiles are also use for scalable clone detection approaches.
Recently, these approaches were extended to object-oriented
systems [23]. Other approaches to identify duplicated code
snippets were developed for procedural code [5, 6, 16, 18,
22], but are, in general, not well suited for object-oriented



systems. The ability to identify duplicated code can also be
used to verify whether or not changes in classes, methods,
or functions are limited to their structures or also impact
their behaviours.

Static analyses are essential to recover a system architec-
ture as is (directory and files organisations, file and sub-
directory dependencies, and other representations). Unfor-
tunately, static analyses only are imprecise. In particular,
analysing programming languages such as C or C++ poses
several challenges. Besides the intrinsic language peculiari-
ties (e.g., union, struct, class, function pointers. . . ), pre-
processor directives must be managed. Preprocessor direc-
tives are a usual way to obtain portability when developing
in C or C++. Analysing multi-platform source code where
preprocessor directives are platform-dependent is similar to
projecting the source code onto a given hardware/software
configuration. Thus, two approaches are possible to analyse
multi-platform source code:

• Pre-process and analyse the code sources with different
configurations.

• Construct a fictitious reference configuration assuming
that each preprocessor #ifdef condition is true.

The first approach is feasible only for small or medium size
systems, for which the entire software configuration to pre-
process and to analyse is available. The second approach
assumes that, very often, only the then part of a #ifdef

is present and that the then branch almost always contains
more code than the else branch. However, a fictitious refer-
ence configuration does not characterise a specific platform.
Nevertheless, the later approach is well-suited for studying
software evolution and for recovering high-level traceability
links among releases.

Extracting information about methods and class relation-
ships from object-oriented source code is difficult. Rela-
tionships may have degrees of imprecision due to intrinsic
ambiguities. Given two classes and a relation between these,
there are ambiguities due to implementation choices and to
relationship characteristics (association or aggregation, uni-
directional or bidirectional). Pointers, references, templates
(e.g., list<tree>), and arrays (e.g., Heap a[MAX]) can rep-
resent both associations and aggregations. Recently, studies
[13, 17] highlighted that no two approaches agree on the ex-
traction of relationships from object-oriented source code.

We do not consider the limitations of static analyses as
severe issues. We acquired and developed several parsers
and tools to analyse systems statically with reasonable pre-
cision. In particular, we developed our own C++ parser,
which manages the previous degrees of imprecisions, to gen-
erate AOL files. AOL files are higher-level representations
of object-oriented systems (classes, methods, relationships)
simple to handle programmatically. Also, we extract dy-
namic data, which compensates for the imprecisions of the
static analyses.

3.2 Dynamic Analyses
Dynamic analyses are a necessary source of data to link

functionalities with software constituents and, thus, to iden-
tify micro-architectures responsible for the specific imple-
mentation of functionalities. We follow a previous approach
[3] inspired by Wilde [10] in which we extract and filter dy-
namic data during feature identification.

We instrument and generate a trace of the execution of
a system, given a scenario. We associate events in the exe-
cution trace with a functionality using a relevance index, a
ranking quantifying the probability that an event is relevant
to the functionality under study. We concur with Wilde [10]
that the use of set operations must be avoided. Unfortu-
nately, avoiding set operations imply using thresholds and
maintainer interactions to validate identified features. Let
F be a set of scenarios exercising a functionality of inter-
est and F a set of scenarios not exercising the functionality.
Execution of scenarios in F produces a set of intervals I∗
containing events relevant to the functionality under study.
We mark these intervals as relevant via Start / Stop sig-
nals. Scenarios in F always produce intervals in I, intervals
irrelevant to the functionality. However, intervals I∗ (I, re-
spectively) may contain irrelevant (relevant) events. Indeed,
any scenario is likely to decompose in a few intervals in I∗
surrounded by many intervals in I. If NI∗ and NI are the
overall numbers of events in the two sets I∗ and I, then the

frequency of ei in I∗ is fI∗(ei) =
NI∗ (ei)

NI∗
and its frequency

in I is fI(ei) = NI(ei)
NI

. The relevance index is:

r(ei) =
fI∗(ei)

fI∗(ei) + fI(ei)
(1)

Equation 1 is a renormalization of Wilde’s equation [10],
where events are re-weighted by population sizes to make
events comparable directly.

Depending on the required details, tools, and available
space, complete execution traces could be kept. Technolo-
gies to compress traces were proposed in the literature [14]
and used for different purposes, see for example [8]. We
experimented with processor emulation on the Mozilla web-
browser, using Valgrind, with satisfying results. We also
compared processor emulation with profiling techniques and
found that processor emulation collects more accurate data
from with little performance over-head.

3.3 2D and 3D Visualisation
One of the most recent technology to support maintainer

activities is visualisation [20]. Visualisation allows repre-
senting on a single view complex information. Visualisation
is a good cognitive support to the understanding of sys-
tems. Furthermore, animations can be used to help main-
tainers in grasping relevant information on evolution read-
ily. Once functionality are linked with micro-architectures,
micro-architecture evolution can be studied with the sup-
port of 2D and 3D visualisation techniques [9, 12, 19].

For example, Ghoniem applies adjacency matrices to ease
the visualisation and the understanding of the evolution of
large constraint problems [11]. We apply this technique to
the visualisation and the understanding of the interaction
among objects during executions of object-oriented systems.
We predict that this technique could also be useful for the
evolution of features across releases.

Another example is the use of 3D representations to visu-
alise features and to assess the overlapping among features
and their evolution. We succinctly describes a visualisa-
tion technique presented elsewhere by one of the author [19].
Classes of a system are represented as 3D boxes, which met-
ric values characterise height, colour, and twist, to highlight
the roles of the classes in the system. For instance, ker-
nel packages contain a large proportion of complex classes



Figure 2: Visualisation of metric values and roles.

Figure 3: Visualisation of overlaps among features.

with high coupling. If we consider that a class is a 3D box
where complexity is mapped to the height and coupling to
the colour (blue to red), these classes are big and red. Simi-
larly, utility packages contain a large proportion of complex
classes with medium-to-low coupling (big purple). Without
additional (semantic) information, we have a first idea on
the roles of packages, which eases understanding. Figure
2 displays the 3D representation of a system, where high,
twisted boxes are kernel classes, while the low, straight boxes
are data classes.

A second use of 3D visualisation is highlighting overlaps
among micro-architectures. Filters can be applied to a rep-
resentation to highlight the constituents of a micro-architecture
exercised in more than one functionality. Figure 3 shows the
3D representation of a system with few classes implementing
several functionalities are highlighted.

Finally, visual analysis can be applied to analyse the evo-
lution of a system and to compare this evolution against
external information. For instance, when evolving from one
release to another, we can display differences among rep-
resentations. Figure 4 shows the 3D representation of the
evolution of classes represented by their metric values across
several releases. Using external data (bug corrections, fea-
ture implementation. . . ), we can link this information with
past evolution activities. We can also trace the evolution of
micro-architectures and of the corresponding functionalities.

Figure 4: Visualisation of feature evolutions.

3.4 Information Retrieval
Information retrieval and computational linguistic tech-

nologies have been widely adopted in the traceability recov-
ery community [21, 15, 2]. We concur with previous work
that these technologies are essential to identify traceability
links and to assess their accuracy.

We support the hypothesis that information retrieval tech-
nologies are useful to highlight micro-architectures across
releases and, thus, to support the study of feature evolu-
tion. These technologies must be compared with graph and
sub-graph matching approaches or hybrid approaches where
similarity scores are defined among vertices of graphs [1].
Comparison must be performed in terms of accuracy and of
effort required to post-process identified traceability links.

Since multiple technologies for traceability links are avail-
able, it is important to combine different sources of data,
weighing the data with its (dis)advantages wrt. the specific
approach performance. Thus, for example, vector space re-
sults could be combined with graph matching approaches
to reinforce conjectures on traceability links and to decrease
the required effort to assess their accuracy.

4. FEATURE EVOLUTION
We envision several studies of feature evolution across re-

leases of a same system, depending on the original hypothe-
ses. The following subsections highlight possible hypotheses.

4.1 Functionality Existing across Releases
A first study could focus on functionalities which exist

across several releases of a system. Interesting questions
to answer to assist maintainers in understanding the imple-
mentation are:

• Does the micro-architecture associated with the func-
tionality changes across releases?

• Do the changes come from users’ requests for this func-
tionality or from other evolution activities?

Functionalities existing across releases and being modified
are observable software improvements potentially. Main-
tainers observe both the modification of the functionality
and the evolution of the functionality implementation. We
believe that traceability links are useful to ease program
comprehension and to promote bug-free evolution.

4.2 Appearing Functionality
In the case of a functionality appearing in a subsequent

release of a system, interesting questions relate to the im-
plementation of this functionality wrt. previously existing
functionalities:



• Does the implementation of this functionality uses con-
stituents in previously-existing functionalities?

• How well integrated is this functionality wrt. other
functionalities? (How many previously-existing func-
tionalities have been impacted by the introduction of
this functionality?)

Appearing functionalities are likely to be the result of new
code interacting with existing code and, thus, functionali-
ties. The ability to locate functionality implementation, to
identify constituents in common with existing functionalities
helps in understanding the system, in ensuring its maintain-
ability, and in avoiding unexpected side-effects. For exam-
ple, when adding a new functionality, if existing classes and
methods are modified, other functionalities may be nega-
tively impacted. The probability of such undesired side-
effects is higher if functionalities are not linked to source
code and if their interactions are undocumented.

4.3 Disappearing Functionality
It is well known that functionalities disappear rarely, even

when unused. As an example, Microsoft products include
dozens of new functionalities in each new release, while no
functionalities are ever removed. Nonetheless, we believe
that removing functionalities should become more common-
place as good design and programming practices spread.
Thus, interesting questions are:

• How does the micro-architecture associated with a dis-
appearing functionality evolve?

• Does the removal of the functionality impact other
functionalities through their micro-architectures?

The removal of a functionality must be documented and
the impacted architectural constituents identified to reduce
the impact of the removal on remaining functionalities. It
is seldom the case that functionalities are implemented via
completely decoupled micro-architectures. Thus, traceabil-
ity links are beneficial to reduce required removal efforts and
associated risks.

4.4 Changing Micro-architecture
Finally, it is possible that micro-architectures change while

the user-observable functionalities of a system remain seem-
ingly unchanged. Interesting questions are:

• Why did the micro-architectures change?

• What functionalities are potentially impacted by the
changes?

The problem is somehow the opposite of the previous case.
Indeed, maintainers should be able to navigate traceabil-
ity links in both directions, from high-level user-observable
functionalities to implementing micro-architectures, and vice-
versa. This navigability is essential to any evolution activity.
With a traceability link available, data on bug and number
of changes can be related to functionalities easily. Thus, a
relation between stability, quality, and frequency of changes
can be drawn. We hope that such a relation may lead to
understand better the pros and cons of different implemen-
tations and to identify more robust, more evolvable, and less
error-prone micro-architectures.

5. CONCLUSION AND CURRENT WORK
In this position paper, we outlined an approach to iden-

tify features, to study feature evolution, and to provide fea-
ture traceability in object-oriented software systems. Sev-
eral technologies, which are readily available, are needed in
combination to study feature evolution. Challenges remain
with respect to the amount of data to process and to need
for maintainers interactions.

We are currently parsing and executing scenarios on sev-
eral releases of the Mozilla web-browser to identify micro-
architectures implementing functionalities, such as sending
an e-mail or accessing a WEB page, and to study the feature
evolution. We are also relating features across releases with
external information, such as change requests. We will then
apply our complete approach to the collected data to study
feature evolution and assess our approach quality.
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