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An Empirical Study of the Effectiveness of an Ensemble of Stand-alone

Sentiment Detection Tools for Software Engineering Datasets
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Sentiment analysis in software engineering (SE) has shown promise to analyze and support diverse development activities. Recently,
several tools are proposed to detect sentiments in software artifacts. While the tools improve accuracy over off-the-shelf tools, recent
research shows that their performance could still be unsatisfactory. A more accurate sentiment detector for SE can help reduce
noise in analysis of software scenarios where sentiment analysis is required. Recently, combinations, i.e., hybrids of stand-alone
classifiers are found to offer better performance than the stand-alone classifiers for fault detection. However, we are aware of no such
approach for sentiment detection for software artifacts. We report the results of an empirical study that we conducted to determine
the feasibility of developing an ensemble engine by combining the polarity labels of stand-alone SE-specific sentiment detectors. Our
study has two phases. In the first phase, we pick five SE-specific sentiment detection tools from two recently published papers by Lin
et al. [31, 32], who first reported negative results with stand alone sentiment detectors and then proposed an improved SE-specific
sentiment detector, POME [31]. We report the study results on 17,581 units (sentences/documents) coming from six currently available
sentiment benchmarks for software engineering. We find that the existing tools can be complementary to each other in 85-95% of the
cases, i.e., one is wrong but another is right. However, a majority voting-based ensemble of those tools fails to improve the accuracy of
sentiment detection. We develop Sentisead, a supervised tool by combining the polarity labels and bag of words as features. Sentisead
improves the performance (F1-score) of the individual tools by 4% (over Senti4SD [5]) - 100% (over POME [31]). The initial development
of Sentisead occurred before we observed the use of deep learning models for SE-specific sentiment detection. In particular, recent
papers show the superiority of advanced language-based pre-trained transformer models (PTM) over rule-based and shallow learning
models. Consequently, in a second phase, we compare and improve Sentisead infrastructure using the PTMs. We find that a Sentisead
infrastructure with RoBERTa as the ensemble of the five stand-alone rule-based and shallow learning SE-specific tools from Lin et

al. [31, 32] offers the best F1-score of 0.805 across the six datasets, while a stand-alone RoBERTa shows an F1-score of 0.801.
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1 INTRODUCTION

According to Bing Liu, “the textual information in the world can broadly be categorized into two main types: facts
and opinions" [33]. Such conjecture can also be applied to software-engineering (SE) artifacts, e.g., the discussions in
online developer forums, and so on. “Facts” are objective expression (e.g., “I use this tool”). Opinions are subjective
expressions that convey the sentiments towards entities (e.g., “I like this tool”). While the concept of opinion can be
broad, the major focus of sentiment analysis is to detect polarity [33, 51], i.e., given a sentence or a post as a unit of

analysis (e.g., a sentence/post - denoted as “unit" from now on), whether the unit exhibits positive, negative, or neutral

sentiment (i.e., absence of positivity or negativity).

Opinions are key determinants to many of the activities in SE [18, 38, 62]. The productivity in a team may depend on
developers’ sentiments in/of their diverse development activities [18, 48, 54], while the analysis of sentiments towards
software artifacts may lead to better selections of software artifacts [62, 64]. Therefore, it is necessary to accurately
detect sentiments in software-engineering artifacts [43].

Most prior work on sentiment analysis in SE used cross-domain sentiment-detection tools. This “off-the-shelf” usage
is insufficiently accurate for SE, due to the difference in the domain (see Section 7). Many cross-domain sentiment-
detection tools were developed using movie reviews (e.g., Stanford [59]). The context of sentiments expressed in movie
reviews is different from that in SE. For example, the ‘API is simple’ is a positive API review [62], but “The movie is
simple’ is generally a negative movie review [33]. Over the last few years, several tools have been developed to detect
sentiments in software artifacts, e.g., SentistrengthSE [22], Senti4SD [5], SentiCR [1]. These tools offer better accuracy
than off-the-shelf tools. However, recently Lin et al. [32] reported that the tools can still be inaccurate significantly.

Recent research in other domains has seen a rise in combining multiple sentiment detectors, such as hybrids of
rule-based and supervised classifiers observed to be better detectors of sentiments in Twitter messages [12, 15]. In
software engineering, the choice of classification methods and the combination of diverse classifiers is effective to detect
defects [14, 47]. Intuitively, an ensemble of existing sentiment detection tools for SE can learn from the strengths and
weaknesses of each tool for a given dataset, which then may offer it better insight to determine the correct sentiment
polarity label of the different units in the dataset. This is because we find that different SE specific sentiment detection
tools are developed using diverse rules and algorithms. We are particularly interested to study how a hybrid of existing
sentiment detection tools for SE performs, because of the superiority of hybrid tools for sentiment detection other
domains like Twitter. For example, Balage et al. [12] found that a hybrid of rule-based (i.e., that uses sentiment lexicons
as cues) and supervised tools (i.e., that uses features to learn) offered better sentiment detection performance for Twitter
messages, because the tools could completement each other. The hybrid tool in Balage et al. [12] was superior to the
stand-alone tools, because each stand-alone tool (e.g., the rule-based tool) focused on specific estimators (e.g., sentiment
lexicons). In SE, sentiment detection tools like SentistrengthSE are rule-based while other tools like Senti4SD are
supervised. Therefore, the tools can also exhibit strengths and weaknesses on particular features/estimators in a dataset,
which a hybrid tool can find as complementary. However, we are aware of no such hybrid sentiment detection tool
developed for SE so far.

To determine the feasibility of developing a hybrid of stand-alone SE-specific sentiment tools, we performed in 2019
an empirical study with a more positive outlook on the state of sentiment detection than the negative results reported
by Lin et al. [32]. We intended to study all the sentiment detection tools developed for software engineering included in
the study of Lin et al. [32] and that are currently available through GitHub or other online sources, including the latest

such tool, POME, by also Lin et al. [31]. These tools are either rule-based or shallow machine learning models. Looking
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forward in 2020, we observed new uses of deep learning models to detect sentiment in software engineering [3, 4, 9, 73].
The most recent works are by Zhang et al. [73] and Biswas et al. [3], who investigated the effectiveness of advanced
pre-trained language based transformer models (PTMs) like BERT [11]. They found that the PTMs outperform rule-based
and shallow learning models. Therefore, we also study the effectiveness of those PTMs to support/outperform our

hybrid engine of SE-specific sentiment detectors. Thus, we divided our empirical study into two phases:

o Phase 1. We studied the feasibility of developing a hybrid of stand-alone SE-specific sentiment tool, based on
the tools studied by Lin et al. [31, 32].

e Phase 2. We studied how the hybrid tool that we developed in Phase 1 compares (and can be improved) with
the recent, advanced pre-trained language-based models by Zhang et al. [73].

We studied a total of nine available sentiment detection tools for software engineering based on the studies of Lin et
al. [31, 32] and Zhang et al. [73]: five from Lin et al. [31, 32] and four from Zhang et al. [73]. Through our empirical
study, we answer total eight research questions as discussed below.

In Phase 1, our focus was the feasibility of developing an ensemble of the five tools that could potentially offer
better performance than each of the stand-alone tools from Lin et al. [31, 32]. In Phase 1, we answered a total of five

research questions as follows:

RQ;. How frequently do we get at least one correct classification while using multiple SE-specific tools? On
a total of 17,581 units from six software specific sentiment benchmarks from the literature, we ran five stand-alone
SE-specific sentiment tools: Senti4SD [5], SentiCR [1], SentistrengthSE [22], Opiner [65], and POME [31]. We find that
85% of misclassification by the tools related to non-neutral polarity (positive, negative) and 99% neutral classes can be
potentially corrected by at least one other tool. This finding motivated us to investigate whether a hybrid sentiment

detector can be developed by a simple majority analysis as follows.

RQ>. Can a majority voting-based classifier perform better than individual classifiers? For each of the 17,581
units, we assign a polarity label by simply taking the majority voting on the unit by the tools, i.e., if three tools say
‘positive’ and two say ‘negative’, we assign a final polarity as ‘positive’. Unfortunately, this classifier only achieves a
F1-score (Macro) of 0.746, which was outperformed by both supervised stand-alone detectors, Senti4SD (0.750) and
SentiCR (0.756). This finding necessitates towards a more sophisticated design of the hybrid tool. To determine that, we

analyzed why one tool misclassifies when another does not.

RQs. What are the error categories that could potentially be corrected by combining multiple SE-specific
tools? We manually label 153 units where at least one tool was right and at least one another was wrong. For the
labeling, we follow error categories similar to [45], i.e., we determine the specific reason for misclassification by a tool.
We find five major error categories. The most prevalent category is the failure of a tool to understand the underlying
context (related to an expressed sentiment). Such contexts can be better understood by analyzing the textual contents
in the unit. This motivates us to investigate the possibility of leveraging ensemble learning to capture the strength of

multiple sentiment detectors. We therefore answer the following research questions.

RQ4. Can a supervised ensemble of classifiers offer better performance than individual classifiers? For each
of the 17,581 units, we combine the polarity labels of the five individual sentiment tools with the bag of words of the
unit as features. We train a supervised machine learning classifier based on shallow machine learning Random Forest

(RF) model using the features. We name the classifier Sentiseadgr. Sentiseadgr outperforms each stand-alone sentiment
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detectors from 4% (Senti4SD) to >100% (POME). We investigate the possibility to further improve Sentiseadgp with

additional features through the following research question.

RQs. Can the addition of more features improve the performance of the hybrid tool? We introduce two new
types of features in Sentiseadgrr based on the analysis of polarity words and their positions in a given unit (e.g., first vs.
last) and entropy measures using information theory. The enhanced hybrid engine, i.e., Sentiseadgr+, however, shows
negligible performance increase over Sentiseadgrp (increase of 0.001 in F1-score Macro).

In Phase 2, our focus was to study the effectiveness of Sentiseadrr against the most recently introduced advanced
language-based models for SE-specific sentiment tools, which were studied in multiple papers like Zhang et al. [73]. We

answer a total of three research questions as follows:

RQs. Can Sentiseadrr outperform the BERT-based advanced pre-trained language based models? Given that
pre-trained advanced language-based transformers (PTMs for short) offer better performance than shallow learning
models for sentiment detection in SE, we want to know whether the PTMs can also outperform Sentiseadrp, our
hybrid tool of rule-based and shallow learning models based on the Random Forest model. We investigated four PTMs
from Zhang et al. [73], ALBERT, BERT, RoBERTa, and XLNet, on our six datasets. We found that RoBERTa is the best
performer among the four stand-alone PTMs with a Macro F1-score of 0.801, which is slightly better than Sentiseadgr

by 1.8%. Following this minor improvement, we decided to investigate the following research question.

RQj7. Can a deep learning model as ensembler for Sentisead outperform the stand-alone BERT-based PTMs?
Motivated by superior performance of stand-alone PTMs over Sentiseadrr that uses a shallow learning Random Forest
model, we replaced the Random Forest model in Sentiseadgr by the PTMs: we trained and tested four versions of
Sentisead where features are the unit textual contents and the polarity labels from the five rule-based and shallow
learning models from Lin et al. [31, 32]. However, the ensembler was a PTM instead of Random Forest. We found that
the best performing PTM-based ensembler of the stand-alone rule-based and shallow learning sentiment detectors
is based on RoBERTa, which we named Sentiseadr,pgrTq- Across the six datasets (and using the same 10-fold cross
validation), Sentiseadg,geRrT4 Shows a Macro F1-score of 0.805: it offers 0.5% increase over a stand-alone RoBERTa
model and a 2.3% increase in performance over Sentiseadgrr. This slight performance increase motivated us to include

the stand-alone PTMs into the hybrid architecture as follows.
RQg. Can Sentisead based on an ensemble of all the models (i.e., PTMs + non-PTMs) offer the best perfor-

mance of all tools? We investigated whether the performance of the ensembler could further increase using the
sentiment polarity labels of a unit from all available stand-alone models (i.e., rule-based, shallow, and deep learning
models) in addition to the textual content of the unit. We trained and tested four versions of Sentisead by taking as
input the above polarity labels and textual content of a unit as features. The ensemblers are the four PTMs, which yield
four ensemblers: Sentisead s pgrT+, Sentiseadgprr+, Sentiseadr,BERT e+, and Sentiseadx| Nes+. The best performing
model is Sentiseadg,gerTq+ With a Macro F1-score of 0.8. However, Sentiseadg,BgRrT4+ 1 not more accurate than
SentiseadroBERTq from RQ7. Therefore, the inclusion of polarity labels of individual PTMs does not contribute to any
performance improvement in Sentisead.

Based on our empirical study findings, we make following major observations and suggestions:

(1) Our hybrid classifier, Sentiseadr,pgrTq, Which is based on the PTM RoBERTa, offers the best Macro F1-score
of 0.805. This classifier can be easily built by taking as input the sentiment polarity of the five stand-alone
sentiment detectors (Opiner, POME, Senti4SD, SentiCR, and SentistrengthSE) and the unit textual contents.
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However, SentiseadrogrrTq shows only 0.5% performance improvement over the stand-alone RoBERTa model.
Therefore, when a mere increase of 0.5% is not warranted, a stand-alone RoBERTa model should suffice.

(2) On the six benchmarks, Sentiseadgp or Sentiseadr,grrTa Show more than 0.8-0.9 F1-score (for positive and
negative classes) for four datasets but only 0.3-0.5 for the other two datasets. Further improvement in the latter
two datasets require the analysis of contextual information surrounding a given unit (e.g., preceding & following
units); an aspect that current tools cannot handle. Thus, future improvement of stand-alone SE-tools should

focus on developing algorithms to analyze surrounding contexts.

Our study benefited from the availability of open source code, tools, and datasets that were shared by software
engineering researchers working on sentiment detection. In fact, the code base of Sentisead uses the SentiCR [1] code
base to bootstrap. Given that our study shows promise to advance the state-of-the-art research in software engineering,

we have open sourced the entire codebase of Sentisead in our online appendix [29].

2 STUDIED BENCHMARKS AND TOOLS

In this section, we describe the sentiment detection benchmarks and tools that we studied to develop our hybrid engine.

2.1 Studied Sentiment Benchmarks

We analyze the following six benchmarks available from software-engineering research. Each unit in a benchmark is
labeled as a polarity (positive, negative, or neutral). A unit can be a sentence or a document (i.e., a list of sentences).
Table 1 provides descriptive summary statistics of the benchmarks. Overall, 46% of the units in the benchmarks are
labeled as positive or negative and the rest (64%) are labeled as neutral (see last column in Table 1).

(1) Stack Overflow: Calefato et al. [5]. The benchmark is based on 4,423 randomly-sampled units from Stack
Overflow. It was annotated for polarity by 12 coders. Each unit was annotated by three coders using majority voting.
The benchmark was used to train and test Senti4SD [5]. It is available in the Senti4SD GitHub repository.

(2) Stack Overflow: Lin et al. [32]. The benchmark contains 1,500 units, each manually assigned a sentiment score
ranging from -2 (strong negative) to +2 (strong positive) by two coders. Each unit was divided into a number of nodes
(e.g., clauses), which were assigned a sentiment score. We use the final sentiment scores available in the replication
package of [32] to assign a polarity: +1 positive, -1 negative, and 0 neutral.

(3) Stack Overflow: Uddin et al. [65]. The benchmark consists of the 4,522 units in 71 randomly-sampled Stack
Overflow threads. Each unit was manually labeled for polarity by at least two coders with a third coder consulted in
case of disagreements. Unlike the above four benchmarks, this benchmark includes all the units from the threads, i.e.,
contextual information. We obtained this benchmark from the authors of Opiner [62], who used it to develop an online
opinion summarization engine.

(4) Jira: Ortu et al. [48]. The benchmark consists of 6,000 units (2,000 issue comments and 4,000 units contributed
by developers using Jira). The issue comments were collected from four popular open-source frameworks/repositories:
Apache, Codehaus, JBoss, and Spring. The original benchmark was annotated for emotions, such as love, joy, surprise,
anger, fear, and sadness and later labeled with three polarities by Novielli et al. [45], which we obtained from the authors

for this paper. In their translation, Novielli et al. coded “joy” and “love” as positive, while “sadness”, “fear” and “anger”
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Table 1. Benchmarks used in the study (SO = Stack Overflow)

Dataset #Units +VE -VE  +/#Units
SO Calefato et al. [5] 4423 | 1527 1202 62%
SO Lin et al. [32] 1,500 | 131 178 21%
SO Uddin et al. [65] 4,522 | 1,048 839 42%
JIRA Ortu et al.. [48] 5,869 | 1,128 786 33%
JIRA Lin et al. [32] 926 290 636 100%
Mobile App Lin et al. [32] 341 186 130 93%
Total 17,581 | 4,310 3,771 46%

as negative. An absence of any emotion for a unit was considered neutral. They discarded 131 units labeled as “surprise”
because of the lack of contextual information needed to identify the underlying polarity.

(5) Jira: Lin et al. [32]. Lin et al. [32] took 926 units from Ortu et al. [48] dataset that was originally labeled as six
different types of emotions: love, joy, surprise, anger, fear, and sadness. Lin et al. [48] considered the units labeled as joy
and love as positive and the units labeled as anger and sadness as negative.

(6) Apps Reviews: Lin et al. [32]. It contains 341 mobile-app reviews from Villarroel et al. [67], who labeled each
review to identify its type (e.g., bug reporting, request for enhancement, etc.). Each review was labeled for polarity by
two of the authors of [32].

2.2 Studied Sentiment Detection Tools in Phase 1

The observed shortcomings in cross-domain sentiment detection tools motivated the development of several recent
sentiment detection tools for software engineering. In this paper, we have studied five sentiment detection tools
developed for software engineering: SentistrengthSE [22], Senti4SD [5], SentiCR [1], Opiner [65], and POME [31]. While
Senti4SD and SentiCR are supervised, the other three tools are rule-based classifiers. As we noted in Section 1, these
tools were the subject of two papers by Lin et al. [31, 32]. From the two studies of Lin et al. [31, 32], we picked the
tools whose trained model/source code were available online during the time of analysis. We also picked the tools that
were developed specifically for software engineering artifacts. These five tools are also the five most cited sentiment
detection tools developed for software engineering as of now.

(1) Senti4SD [5]. Given as input a short text, Senti4SD detects the polarity of the text as positive, negative or neutral.
Senti4SD [5] is trained on a dataset of 4000 posts (questions, answers, and comments) from Stack Overflow. The classifier
leverages a suite of textual features both based on input text (e.g., ngrams) as well as a pre-defined list of sentiment
lexicons and word embeddings. The word embeddings are compiled from an entire Stack Overflow dump to offer
domain specific information, such as semantic similarity between the input text and Stack Overflow texts that are
closely similar to the 4000 posts used in the benchmark. The supervised classifier is a trained support vector machine
(SVM) model.

(2) SentiCR [1]. SentiCR [1] was trained on a dataset of 1600 code reviews from Gerrit. While Senti4SD uses a
SVM classifier, the currently distributed version of SentiCR leverages the Gradient Boosting Tree (GBT) algorithm.
Unlike Senti4SD, SentiCR handles the under-representation (i.e., class imbalance) of the polarity labels (i.e., positive
and negative) compared to the neutral classes by using the SMOTE algorithm (synthetic minority over-sampling
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technique) [8]. Note that we train SentiCR to detect three polarity classes following Novielli et al. [45] by using numeric
identifiers: positive (+1), negative (-1), and neutral (0).

(3) SentistrengthSE [22]. SentiStrengthSE [22] was developed on top of Sentistrength [60] by introducing rules
and sentiment words specific to the domain of software engineering [22]. Each negative word has a score ranging
from -2 to -5, positive word has a score ranging from +2 to +5. The polarity scores are a priori, i.e., they do not depend
on the contextual nature of the sentiment expressed in a unit. Similar to Sentistrength, SentistrengthSE outputs both
positive and negative scores for an input text. Following state of art [45], the overall polarity score of an input text can
be calculated by taking the algebraic sum of the positive and negative scores. The text is labeled as ‘positive’ if the sum
of scores is greater than 0, negative if the sum is less than 0, and neutral otherwise.

(4) Opiner [65]. The tool adapts the Domain Sentiment Orientation (DSO) algorithm originally proposed by Hu and
Liu [21] to collect online customer reviews. DSO assigns a polarity to a unit based on the presence of sentiment words.
The SE-specific adaptation in Opiner was used to mine and summarize API reviews from Stack Overflow [62, 64, 65].
Opiner assigns polarity to an input text in three major steps: (a) Detect potential sentiment words. by identifying adjectives
in the unit that match the sentiment words in a list of predefined sentiment vocabularies. Opiner gives a score of +1 to a
recorded adjective with positive polarity and a score of -1 to an adjective of negative polarity. (b) Detect Negations. The
sign for an adjective alternates if a negation word is found close to the word. (c) Label unit. If the sum of all polarity
scores is greater than 0, Opiner labels the unit as ‘positive’. If the sum is less than 0, Opiner labels it as ‘negative’.

(5) POME [31].1In 2019, Lin et al. [31] proposed POME, a pattern-based tool to mine opinions about software aspects
from Stack Overflow. The tool serves two purposes simultaneously: detection of the aspects and of sentiment polarity
in units (i.e., sentences). The patterns are derived by manually assessing 1,662 units from Stack Overflow. The manual
assessment produced 157 distinct patterns. For example, a pattern can check the presence of specific API aspect (e.g.,
performance) and sentiment lexicons related to the API aspect in an input text. The pattern follows strict matching
rules, such as subject (in a unit) followed by API aspect (e.g., performance, usability), followed/preceded by a list of
predefined sentiment lexicons.

In a benchmark-based study against six state-of-the-art SE-specific sentiment detection tools including all four
stand-alone rule-based and shallow sentiment detection tools that we have studied in this paper (i.e., Opiner, Senti4SD,
SentiCR, StrengthSE), POME outperformed each tool in the benchmark. While POME serves two features (sentiment
and aspect detection) compared to the other four studied tools that serve one feature (sentiment detection), POME does
not limit itself to a specific purpose (e.g., only aspect detection or only sentiment detection). Indeed, in their evaluation
of POME, Lin et al. [31] considered other sentiment detection tools like Opiner as baselines (see RQz and RQs in Lin et

al. [31]). We, therefore, include POME as a stand-alone sentiment detection tool in our study.

2.3 Studied Deep Learning Tools for Sentiment Detection in Phase 2

Starting from mid 2019, the SE community started using deep learning models to detect sentiment in SE artifacts.
Most recently, several research results showed the superior performance of pre-trained advanced language-based
transformers for sentiment detection in SE. For the sake of brevity, we refer to those models as PTMs (Pre-trained
Transformer Models) in the following. Among the PTMs, four models, ALBERT, BERT, RoBERTa, and XLNet, were
studied in the most recent papers by Zhang et al. [73] and Biswas et al. [3], who found that these PTMs offer better

performance than shallow learning models, like Senti4SD, SentiCR, etc. In the second phase of our study, we thus
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investigate the effectiveness of the PTMs with our ensemble sentiment detection model. We discuss briefly the PTMs
below.

(1) BERT [11] stands for Bidirectional Encoder Representation from Transformers. Google developed this transformer-
based ML technique for textual analysis. BERT is a transformer model that processes words in a unit in relation to all
words in the unit, which is different from sequence to sequence models (e.g., LSTM), which utilizes the forward/backward
sequences of words one-by-one in a unit. BERT models thus are capable of considering the full context of a given word
in a unit by looking at the preceding and following words. Contextual word representations are learned based on two
tasks:

(a) Masking some words from the input unit based on a Masked Language Model (MLM) and predicting the masked
words based on the context.

(b) Next unit prediction (NSP) to determine whether one unit follows another.

Google provided two architecture of BERT, both based on a multi-layer bidirectional transformer model: BERTg4sE
and BERT srGE- BERTgasE has 12 bidirectional self-attention heads while BERT srGEg has 24 heads. Both models are
trained using unlabeled data from English Wikipedia and a corpus of books. BERT achieved state-of-the-art performance
on text understanding tasks in several benchmarks (e.g., GLUE).

(2) RoBERTa [34] is a Robustly Optimized BERT apprach developed by Facebook to offer improvements over the
BERT model developed by Google. RoBERTa follows BERT’s strategy of masking, i.e., the system learns to predict
intentionally masked words within a unit. In addition, the following modifications led to better performance than BERT
for downstream tasks, e.g., classification:

(a) RoBERTa removes next unit prediction in BERT, which is not important for text classification (e.g., for our
sentiement detection). This removal offers more flexibility to improve on the MLM of BERT.

(b) RoBERTa is trained and hyper-tuned on more data than BERT, for a longer amount of time.

(3) XLNet [72] is designed to address the concern in BERT that by “relying on corrupting the input with masks,
BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy”. XLNet
is a generalized auto-regressive pre-training method based on Transformer-XL, which learns bidirectional contexts
by maximizing the expected likelihood of words over all permutations of the order. XLNet also provides a modified
language model training objective over BERT to learn conditional distributions for all permutations of word tokens. In
empirical evaluations, XLNet outperformed BERT in 20 tasks (e.g., sentiment analysis).

(4) ALBERT [30] offers an upgrade on BERT on 12 textual processing tasks (e.g., question answering) by allocating
the model more efficiently for input-level embeddings (words, sub-tokens) that are needed to learn context independent
representations and hidden-layer embeddings that are needed to refine the input-level embeddings into context-
dependent representations. ALBERT factorizes the embedding parameterization, where the embedding matrix is split
into input-level embedding with relative-lower dimension than then hidden-layer embeddings (e.g., 128 in input-level
vs. 768 or more in hidden-layer), which allows ALBERT to achieve an 80% reduction in the parameters. Another design
decision in ALBERT is to apply the same layer on top of each other, while BERT creates separate independent layers on
top of each other. This decision in ALBERT is based on the observation that often multiple layers in BERT learn almost
similar operations. Thus, ALBERT reduces the architectural complexity of BERT, but at the cost of a slight decrease in
performance than BERT. As such, ALBERT is considered as “lite” BERT.

In our study, we use the implementations of the above four models from the Hugging Face transformer library, which

is an open-source community around the PTM libraries. Table 2 shows the architecture of the four PTMs.
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Table 2. Architecture details of variants of BERT Model (L = Layers, H = Hidden, D = Heads, P = Parameters)

Architecture ‘ Used Model L H D P
BERT bert-base-uncased 12 768 12 110M
XLNet xlnet-base-cased 12 768 12 110M
RoBERTa roberta-base 12 768 12 125M
ALBERT albert-base-v1 12 768 12 11M

3 STUDY PHASE 1: ENSEMBLE OF RULE-BASED AND SHALLOW MACHINE LEARNING MODELS

We offer insights into the feasibility of developing a hybrid sentiment detection engine for the domain of software

engineering. Our study has two phases. In the first phase, we answer five research questions we introduced in Section 1.

(1) How frequently can we correct the misclassification of a tool by another tool? (Section 3.1)

(2) Can a majority voting-based classifier perform better than individual classifiers? (Section 3.2)

(3) What are the error categories that could be potentially corrected by combining multiple SE-specific tools? (Section 3.3)
(4) Can an ensemble of classifiers offer better performance than individual classifiers? (Section 3.4)

(5) Can the addition of more features improve the performance of the hybrid classifier? (Section 3.5)

3.1 RQ; How frequently can we correct the misclassification of a tool by another tool?

3.1.1 Motivation. The five SE-specific tools (SentiCR, Senti4SD, Opiner, SentistrengthSE, and POME) in our study
can complement each other, if the misclassification of one tool can be potentially corrected by the correct polarity
label from another tool. If all the tools are wrong for a given unit, the proper processing of the unit may require the
development of a new tool. As noted in Section 1, our focus is to improve the accurate polarity classification probability
of a given unit by analyzing the polarity labels of the units from the existing SE-specific tools. This concept is similar to
the bagging or boosting combination of classifiers in machine learning [39, 53, 71, 74]. However, for the combination
to perform better than the stand-alone SE-specific classifier, we first need to confirm whether another tool can offer

correct polarity classification for a given unit when a tool is wrong on that unit.

3.1.2 Approach. We have six datasets in our study. For each dataset, we collect sentiment polarity labels on each unit
from the five sentiment detection tools as follows. We run each of the three unsupervised classifiers (i.e., SentistrengthSE,
Opiner, and POME) on the entire benchmark dataset. The output is a polarity label for each unit. The other two tools,
Senti4SD and SentiCR, are supervised sentiment detectors so, for each dataset, we trained and tested as follows.

Literature on the evaluation of SE-specific supervised sentiment detection tools has so far split a given dataset into
70% training set and 30% testing set (e.g., Novielli et al. [45] Calefato et al. [5], Zhang et al. [73]. The split is done based
on a stratified sampling, i.e., 70% of each polarity class will stay in the training set and 30% of that class will be in the
testing set. The split is done once, i.e., before a classifier is trained or tested. In our paper, we improved on this approach
as follows.

We split each dataset into 10-folds using a stratified sampling'. Thus, each fold contains the same proportion of
a polarity class as in the entire dataset. Also, a unit cannot be present in two different folds, because otherwise the
classifier would see the same unit in both training and testing sets, which would lead to overfitting. Then, we train and

!We use the StratifiedKFold method from Python Scikit-learn to create the k = 10 folds. The folds preserve the percentage of samples for each of the
polarity classes.
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test a classifier 10 times. For example, in the first run, we train the classifier using folds 1-9 and then test it on Fold 10.
In the second run, we train the classifier using folds 2-10 and test it on Fold 1. Once all the 10 runs are completed, we
have test results on each of the 10 folds (e.g., test result of Fold 10 coming from Run 1, test result of Fold 1 coming from
Run 2, etc.). We can then compute the performance of the classifier on all test results.

Therefore, our approach is similar to the existing 70-30 evaluation approach used in the literature but our training
vs. testing split is 90-10. In addition, unlike current approaches in SE-specific sentiment detection, because we do the
testing on the entire dataset by running a tool 10 times, our test results are more robust than a 70-30 split, which is run
only once and is tested only on 30% of all data.

Because we are training and testing each tool 10 times compared to only once in the current literature, our approach
also better addresses any variance in the machine learning classification model due to its stochastic nature. An alternative
to our approach would have been to do a repeated sampling of training and testing sample from a given dataset for N
times (e.g., N = 10 or N = 100) and then report the performance of the model by taking the average of the performance
across all test samples. Our approach slightly differs from this alternative in that we created the 10 folds once, before
we started all the classification tasks. This means that we were able to track and compare each classification model
performance on each fold, where the training and testing for each model followed the same pattern (i.e., train using
folds 1-9 and testing using fold 10 in run 1, train using folds 2-10 and test using fold 1 in run 2, etc.). This process then
allowed us to also check for tool complementarity, i.e., see when a tool is wrong while another can be right for a given
unit. Moreover, given that we train and test a classification model 10 times instead of one time, we also reduce any
variance in the classification results. Nevertheless, for each model, we pre-set the random variables by using seeds,
which is useful to get similar results for a model for a given dataset, even if we run the model 10, 20, or 100 times in the
dataset.

Given that we have six datasets and five SE-specific sentiment detection tools, we analyze the performance of each
tool across the six datasets as follows. First, we get the test results for each dataset following the steps listed above.
Second, we compute the performance metrics of each model in each dataset by analyzing the polarity labels in the 10
test folds of the dataset. Third, we compute the performance metrics of each model across the six datasets by analyzing
the polarity labels across all the test folds in the six datasets, i.e., across the 60 test folds (10 each for each dataset).
While we report the consolidated performance metric for a given model across the datasets to save space in the paper,
we include the performance metric for each dataset in our online replication package [29].

In summary, given as input the benchmark datasets and the five sentiment detectors, we produce the final output after
all the training and testing for each dataset as a matrix M = U X F X L, where U = {U, U, ... Uy, } (n = 17,581) is each
unit, F = {Fj, Fy, ... F¢} (k = 6) corresponds to the benchmark dataset where unit U; is found, and L = {L, Ly, ..., L}
(m = 5) and L; corresponds to the polarity label of unit U; by a given sentiment detector j in our study.

We analyze the complementarity of the tools on the generated matrix M as follows. First, for each pair (e.g., (i, j)) of
tools in our dataset (e.g., Senti4SD, SentiCR), we collect all the records R; j in M where at least one of the tools is right
(i.e., matches with the ground truth). For each tool in M, we then compute the fraction of misclassification of each tool,

for which one or more of the other tools offer correct classifications.

3.1.3 Results. In Table 3, we show the percentage of misclassified textual units for each tool that can be potentially
corrected by another tool. The second column (‘Polarity Wrong’) shows the polarity that is misclassified by the tool
listed in the first column. The third to seventh column show how frequently each of the other tools can correct the
misclassification of a tool listed in the first column. For example, for Senti4SD (i.e., S4SD in Table 3) the two unsupervised
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Table 3. How the misclassification of a tool can be corrected by one tool or at least one (i.e., last column > 1) tool. O = Neutral.

Tool Polarity Tools Could Correct Wrong Polarity
Wrong Wrong Senti4dSD SentiCR SentistrengthSE Opiner POME ‘ >1
Senti4SD + (2685) 24% 29% 29% 7% | 54%
O (1281) 54% 47% 41% 88% | 97%
SentiCR + (2948) 31% 28% 37% 7% | 59%
0 (917) 36% 37% 43% 88% | 0.96
SentistrengthSE  + (2970) 36% 29% 32% 7% | 59%
0 (1458) 53% 61% 40% 91% | 98%
Opiner + (4087) 54% 55% 51% 4% | 70%
0 (2999) 75% 83% 71% 89% | 99%
POME + (7621) 67% 64% 64% 48% 84%
0 (471) 69% 77% 71% 31% 92%
>1 + (7938) 66% 63% 63% 49% 4% | 85%
O (4049) 68% 77% 64% 26% 88% | 99%

Table 4. Confusion matrix for 3 class sentiment detection

Predicted
Positive (P) ‘ Negative (N) ‘ Neutral (O)
Positive (P) TPp FPy, FNp FPo, FNp
Actual Negative (N) FPp, FNN TPN FPo, FNN
Neutral (O) FPp, FNo FPyn, FNp TPo

classifiers (SentistrengthSE and Opiner) offer the most complemenarity (31% and 34%) to correct the positive polarity as
well as the negative polarity. The last column (> 1) shows how the misclassification of a tool can be corrected by the
correct classification of at least one of the tools. For example, 60% of the misclassified positive polarity by Senti4SD can
be corrected by at least one of the other tools. The last row (> 1) shows the overall distribution of the positive, negative,
and neutral units for which at least one tool is wrong. Around 87% of such misclassified positive polarity and around
82% of such negative polarity can be corrected by at least one of the other tools. The tool POME seems to be the most
effective to correct the misclassifications of neutral units, i.e., when other tools incorrectly label a unit as non-neutral.
Other tools (i.e., except POME) can complement more each other to correct the misclassifications for the positive and
negative polarities. The primary challenge for a hybrid engine would be then to make a final decision from the different

polarity labels on a given unit.

3.2 RQ; Can a majority voting-based classifier perform better than individual classifiers?

3.2.1 Motivation. The findings from RQ; confirm that the sentiment detectors can complement each other to correct
their polarity misclassifications. However, the challenge is to determine the right polarity labels when multiple tools
offer different labels. Given that we analyze five SE-specific sentiment detectors, the majority of the classifiers may

agree on the correct classification for a given unit.

3.2.2 Approach. We take as input the matrix M = U X F X L that we created for RQ1, where for each unit U; we have

polarity labels from each of the five sentiment detectors, i.e., L; = {Lil, Liz, L?, L?, Lf}. As we noted in Section 3.1, this
Manuscript submitted to ACM
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Table 5. Performance comparison of majority voting-based hybrid classifiers with the baselines. Performance analysis for each
polarity class is provided in Table 22 of Appendix A.

Macro Micro

F1 P R F1 P R
Majority-All 0.746  0.806 0.694 | 0.768 0.768 0.768
Majority-Supervised 0.745 0.811 0.690 | 0.769 0.769 0.769
Majority-Unsupervised 0.630 0.715 0.563 | 0.671 0.671 0.671
Baseline - Senti4SD 0.750 0.768 0.732 | 0.774 0.774 0.774
Baseline - SentiCR 0.756 0.791 0.723 | 0.780 0.780 0.780
Baseline - SentistrengthSE  0.723 0.746 0.701 | 0.748 0.748 0.748
Baseline - Opiner 0.563 0.571 0.556 | 0.597 0.597 0.597
Baseline - POME 0.397 0.451 0.354 | 0.540 0.540 0.540

matrix was created by retraining the supervised classifiers on the benchmark datasets using a 10-fold cross validation.
Out of the five polarity labels in L;, we assign U; the label that was observed the most in L;. We report performance

using three standard metrics of information retrieval: precision (P), recall (R), and F1-score (F1).

TP TP P*R
pP= , R= , F1=
TP + FP TP+ FN

= 2% m
TP = # of true positives, FN = # of false negatives, TN = # of true negatives, and FP =# of false positives.

We do not report accuracy as a metric while reporting the performance of the tools due to the following reason.
As we presented the descriptive statistics of our six datasets in Table 1 (Section 2), our datasets are imbalanced. This
means that we do not have each polarity class present in equal proportion in a given dataset. For example, for the SO
Lin et al. [32] dataset, only 21% of the units are either positive or negative polarity and the rest (i.e., 79%) are neutral.
Overall, only 46% of all units across the six datasets are either positive or negative and the rest (i.e., 54%) units are
neutral. Therefore, we are analyzing highly skewed (i.e., imbalanced) datasets. Metrics like accuracy can give misleading
information for imbalanced datasets. For example, if we label each unit as neutral, the overall accuracy across the
datasets would have been 0.46. However, given the accurate detection of negative/positive polarity is more important in
SE, the accuracy would have given us a false impression of the effectiveness of the model. Indeed, in machine learning
literature and discussions, it is warned to not use accuracy as a measure for imbalanced datasets?.

To assess performance, we use the confusion matrix in Table 4, which is consistent with the state of the art [5, 45, 56, 65].
We report overall performance using both micro and macro averages, as well as by each polarity class. Macro average is
useful to emphasize the performance on polarities with few instances (e.g., positive/negative in our case). In contrast,
micro average is influenced mainly by the performance of the majority polarity (e.g., neutral), because it merely takes

the average of each polarity. We use the F1-score to report the best tool, following standard practices [37, 45].

3.2.3 Results. In Table 5, we compare the performance of the developed majority-based voting detector against the
stand-alone sentiment detectors. We show three versions of the majority-based detectors: (1) Majority-All: uses polarity
outputs from all five sentiment detectors. (2) Majority-Supervised: uses polarity outputs from only the supervised

sentiment detectors (i.e., Senti4SD and SentiCR), and (3) Majority-Unsupervised: uses polarity outputs from only

Zsee https://machinelearningmastery.com/failure- of-accuracy-for-imbalanced- class-distributions/
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Table 6. Error Categories in complementarity records

Category Description #
Context Tool fails to understand underlying context required to determine the overall polarity 62
Polarity Diversity | The text contains multiple polarity cues with diverse interpretations 35
Domain Polarity cues are SE-specific 23
General Tool cannot process linguistic cues/typos. 22
Politeness A neutral text is labeled polar due to the existence of politeness 17

the unsupervised sentiment detectors (i.e., POME, Opiner, and SentistrensghtSE). None the of above two majority-
based detectors outperform the individual supervised detectors. The Majority-All detector shows an F1-score of 0.746
(Marco), while Senti4SD shows 0.750 and SentiCR 0.756. With regards to the Micro average, Majority-All shows 0.768,
while Senti4SD shows 0.774 and SentiCR shows 0.780. The breakdown of the Majority-All into sub-components, i.e.,
Majority-Supervised and Majority-Unsupervised shows that the major contributors of success in the Majority-All are
the supervised classifiers. For example, Majority-Supervised shows a Macro F1-score of 0.745 (Majority-All shows 0.746),
while Majority-Unsupervised shows an F1-score of 0.630. The Majority-Unsupervised performs better than the two
unsupervised detectors (Opiner and POME), but it is outperformed by the SentistrengthSE (Macro F1-score = 0.723).
The results indicate a non-linear relationship between the correct polarity labels and the agreement among the tools

when at least one of the tools can be correct.

3.3 RQ3; What are the misclassification categories in the complementary cases?

3.3.1 Motivation. The findings from RQ; (Section 3.1) confirm the potential of developing a hybrid sentiment detector,
RQ3 (Section 3.2) shows that a simple majority-based voting does not perform better than the individual detectors. To
better design a hybrid sentiment detector, we thus need to understand why one tool misclassifies when another tool

can offer the correct label. This can be achieved by analyzing the error categories in the complementary cases.

3.3.2  Approach. We study misclassification types in 159 units from our complementarity dataset R (Section 3.1). This
sample is statistically significant with a 99% confidence level (10 interval). Given that the majority of units are neutrals,
a purely random sample would contain mostly neutral units. We thus randomly pick equal number (i.e., 53) of units
from each polarity class. We manually label the misclassification reasons as follows. (1) We label the misclassification
in the unit to one of the seven error categories from Novielli et al. [45]. The categories are: (a) Polar facts by neutral,
(b) General error, (c) Politeness, (d) Implicit polarity, (e) Subjectivity in annotation, (f) Inability to deal with context
information, and (g) Figurative language. (2) Novielli et al. [45] observed seven error categories in four sentiment
detectors when they are all wrong on a given unit. In contrast, we aim to study the textual units of the misclassifications
where at least one tool is correct. If we cannot match the misclassification to one of the seven categories, we assign it a

new error category based on the analysis of the textual contents.

3.3.3 Results. We observed five error categories: three from [45] (Context/Pragmatics, General Error, and Politeness)
and two new: Domain-specific polarity and presence of diverse polarity in the textual units. Table 6 and Figure 1
summarize the categories and their distributions in our analysis. We discuss the categories below.

(1) Inability of classifiers to deal with pragmatics or context information. We observe that the positive/negative
polarity signals are mostly implicit or expressed through the status of specific event (e.g., the task cannot be completed
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40

Politeness General Error  Domain Specificity Diverse Polarity Pragmatism &
Context

W Senti4SD (34) mSentiCR(38) m SentistrengthSE (43) m Opiner (98) mPOME (101)

Fig. 1. Error categories in the complementary cases

or the underlying API worked). The two supervised classifiers (Senti4SD and SentiCR) and SentistrengthSE performed
better to detect such context-specific pragmatics. For example, only Senti4SD and SentiCR correctly assigned the
following unit as negative in Jira (Ortu et al. [48]), because the developer mentions the absence of certain features in
their development context, “Maurice I don’t have such option or maybe I don’t know where it is.” Only Senti4SD, SentiCR,
and SentistrengthSE correctly labeled the following unit as negative in SO Calefato et al. [5], because the tools detect
that the developer is reporting that a tool feature is not working: ‘I need to pass a regex substitution as a variable: This,
of course, doesn’t work ...” Opiner shows the most number of misclassifications followed by POME. Both tools are
rule-based. POME relies on specific linguistic patterns, while Opiner counts the polar words. While SentistrengthSE is
rule-based, it uses domain-specific contextual cues.

(2) Diverse Polarity. The tools can get confused when diverse polarized statements are made in a textual unit. For
example, all the tools except Senti4SD wrongly classified this unit as neutral, “Seeing all the information and activity, it
does look very constructive and perhaps it shouldn’t have been closed so eagerly!” The presence of diversity of polarity
in a textual unit can be confusing to the tools for two reasons: (a) The tools may consider all the polarized words to
determine polarity, while the final polarity of the unit may be decided based on a subset of those words. For example,
consider the following post which starts with criticism towards a tool, but ends with praises towards the tool, “this app
is terrible i am in a good relationship and we are happy together”. (b) The underlying design of the tool does not allow
the processing such diversity. For example, only POME misclassifies the following post, because it does not conform to

any of its linguistic patterns [31], “Hey, I'm new to this site. I think it is great! Okay, here’s the deal. I just downloaded
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Table 7. Studied features to design the hybrid classifier

Features Rationale

Polarity Labels from SE- The supervised classifiers can learn the underlying context and domain-specific
specific detectors pragmatics. The rule-based classifiers can employ domain-specific rules.

Bag of words The vectorized representation of the bag words offers contextual information

Smule Ocarina. I was wondering how they made it so you can upload a song to the cloud. I might have an app idea that
might incorporate this. How would I do this? What would I need?”

(3) Domain specific polarity. The expression of polarity can be unique to the domain of software engineering (e.g.,
the API is threadsafe.) or differ from other domains (e.g., the API is simple to use vs the movie is too simple) [32, 45, 65].
The tools in our study are designed for different SE-domains, making them suitable to complement to each other. Both
Senti4SD and SentiCR label the following unit correctly as negative, “alright its okay but it freezes all the time ”. Both
Opiner and Senti4SD algorithms correctly label the negative polarity for the unit, “worried about IE compatibility!!”.

(4) General Error. The tools also differ from each other in how they process the textual contents and thus can
misclassify a unit when the contents are not properly processed. For example, POME could not process the emoticons
in the following unit while other tools were able to, “@BoristheSpider :( :( That is really sad. :(”. Opiner wrongly labeled
the following unit as positive, because it could not properly determine the presence of negation “so I'm not happy with
it. ”. Opiner incorrectly labels the following unit as positive, ‘T also would like to see an answer to this..”. The reason
Opiner labels it as positive is due to the presence of ‘like’ in the unit, which it considered as positive. However, the
presence of ‘would like to’ makes the expression more of an intention than of an opinion.

(5) Politeness. In two datasets (Jira Ortu et al. [48] and SO Calefato et al. [5]), the tools confused over the appropriate
labeling of a unit that contained politeness. For example, Senti4SD and SentistrengthSE correctly label the following
unit as positive, while other tools label it as neutral “Thanks Arvind”.

In summary, the supervised detectors show lower error coverage across all the five categories. When the misclassifi-
cation of a unit was due to the presence of diverse polarity, Senti4SD showed lower misclassification than SentiCR.
However, when the underlying contextual information is required, SentiCR had lower misclassification rates. The
underlying design of the two supervised classifiers offers some insights into this: Senti4SD computes polarity labels
based on their presence in the selected parts of the unit, e.g., the first vs last sentiment word in a unit may carry different
weights. In contrast, SentiCR relies specifically on a preprocessed Bag of Words (BoW) produced from a unit, e.g.,

negations are detected and explicitly annotated in the bag of words.

3.4 RQ4 Can a supervised ensemble of detectors perform better than individual detectors?

3.4.1 Motivation. The findings from RQ; (Section 3.1) and RQ3 (Section 3.2) show that the SE-specific sentiment
detectors can complement each other to correct the misclassfications, but an unsupervised majority voting-based
detector fails to properly capture the complementarity cases. The analysis of misclassifications in RQ3 (Section 3.3) shows
that the failure of a tool to properly detect the underlying contextual information caused the most misclassifications.
We also see that SentiCR offered better support for such cases. Therefore, an ensemble of the individual detectors in a
supervised setting similar to SentiCR may provide more contextual information to a hybrid engine.
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3.4.2 Approach. We developed a suite of supervised sentiment detectors using the features summarized in Table 7.

These features are divided into two categories:

e Polarity labels from individual detectors: for each unit, we have five polarity labels, one from each of the five
SE-specific sentiment detectors.

e Bag of words: for each unit, we produce a bag of words by applying preprocessing steps similar to SentiCR [1],
which are as follows:
— Removal of stop words (as SentiCR, we used stopwords from NLTK and those provided by SentiCR).
- Identification and annotation of negation. For example, “This isn’t good” will be preprocessed as “This is

NOT_good”.

— Identification and expansion of contractions. For example, “let’s” will be expanded to “let us”.

- Detection of emojis. For example, ‘%-(" will be replaced by a placeholder ‘NegativeSentiment’.

For our analysis, we used the entire dataset used in RQy, i.e., all the 17,581 units. Also similar to RQ1, we used
a 10-fold cross validation. We investigated a total of nine algorithms, both ensemble and non-ensemble. From the
ensemble algorithms, we trained and tested four classifiers: (1) Random Forest (RF), (2) Gradient Boosting Classifier
(GBT), (3) Adaboost, and (4) XGBoost. Ensemble algorithms, like bagging and boosting, are designed to combine the
predictions of several base estimators. For example, an RF classifier creates multiple decision-trees based on random
samples of training data and then makes a final decision by consulting the decisions of the individual trees. Each
algorithm is widely used in machine learning. Models, like RF, are robust against overfitting and they work well with
both categorical and numerical data, which is useful in our case because, as features, we consider both vectorized
textual contents from an input unit and the sentiment polarity labels about the unit from stand-alone tools. We use the
Python Sklearn API to experiment with the models. Following the Sklearn documentation, we obtain deterministic
behavior during model fitting by setting a fixed integer to define the random state of a model. For example, we set
random_state = 45 for the Random Forest model?.

From the non-ensemble algorithms, we trained and tested five classifiers: (1) Logistic Regression (family = ‘Multi-
nomial’), (2) SVM, (3) LASSO, (4) Naive Bayes (Bernoulli), and (5) From neural network category, the Multi-layer
Perceptron (MLP). Algorithms like SVM are used to design hybrid sentiment detection tools in other domains, like
sentiment analysis in Twitter data [12]. Logistic Regression, LASSO, MLP, and Naive Bayes are used in almost all kinds
of regression and classification analysis. Naive Bayes is found to offer reasonably good performance in sentiment
detection in other domains (e.g., movie reviews) [68].

Following standard principles of machine learning, for each algorithm, we hyper tuned it on the six benchmark
datasets under different configurations and picked the configurations that offered the best performance. We use the
python scikit-learn GridSearchCV function for our hypertuning, which takes a list of configuration parameters and a
range a values for each parameter to determine the best parameter values. For each algorithm, we studied all possible
parameters. For example, we ran Random Forest algorithm by varying parameter values, such as number of decision
trees, maximum tree depth, minimum number of leafs, etc. Similarly, for GBT we also tried changing the learning rate,

and so on.

3.4.3 Results. Out of the nine supervised algorithms we trained and tested in our datasets, the Random Forest-based
classifier performed the best based on both Macro and Micro F1-scores. This finding is not surprising, given Random
Forest is by design an ensemble algorithm and it is found to be a good predictor in other SE-specific tasks (e.g., defect

Shttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Table 8. Performance comparison of the developed hybrid classifier (Sentisead) with the baselines. Performance analysis for each
polarity class is provided in Table 23 of Appendix A.

Macro Micro
F1 P R| F1 P R
Sentiseadrr_p  0.787 0816  0.759 | 0.805 0.805 0.805
Sentiseadgr_n 0774 0792 0.757 | 0.795 0.795 0.795

Performance Increase of Sentiseadgr_p (i.e., Hybrid with Bag of
Words) Over Baseline (SentiSE = SentistrengthSE)

Majority 55% 12%  9.4% | 48% 4.8% 4.8%
SentidSD 49% 62%  37% | 4.0%  4.0% 4.0%
SentiCR 41% 32%  50% | 3.2% 3.2% 3.2%
SentiSE 89% 9.4%  83% | 7.6% 1.6% 7.6%
Opiner 39.8% 42.9%  36.5% | 34.8% 34.8% 34.8%
POME 98.2% 80.9% 114.4% | 49.1% 49.1% 49.1%

Table 9. Distribution of Misclassification Error Categories by Sentiseadp on Dataset and Categories from Table 6

Category Sentiseadg SentiCR Senti4SD SentistrengthSE Opiner POME
Context (62) 20% 25% 34% 30% 64% 38%
Polarity (35) 23% 26% 20% 20% 63% 83%
Domain (23) 9% 35% 4% 30% 65% 78%
General (22) 5% 9% 5% 14% 41% 77%
Politeness (17) 24% 18% 35% 18% 76% 82%

prediction [39]). We name the best performing Random Forest (RF) model in our analysis ‘Sentiseadgr’. We ran Sentisead

on two settings:

e Sentiseadgp_p: Using all the features described in Table 7.
o Sentiseadgr—n: Without using the bag of words in Table 7. That means, this classifier only uses five feature

values for a given unit, each corresponding to a polarity label for the unit from an individual detector.

In Table 8, we compare the performance of Sentiseadgrr_p and Sentiseadgr_N against the individual sentiment de-
tectors as well as the Majority-All classifier from RQ2 (Section 3.2). The comparison shows the percentage increase

in performance in Sentisead for a given metric over a baseline. For example, Sentiseadgr_p shows a 5.5% increase in
F1 (Sentisead)pr_g—F1 (Majority-All)

F1 (Majority-All) :
Overall, Sentiseadgr—p perfoms better than Sentiseadgp— . Therefore, the incorporation of bag of words as additional

F1-score Macro over Majority-All classifier, which is computed as

features in Sentiseadgp_p improves the performance of sentiment detection in the hybrid engine. The Sentiseadrp_p
also outperforms the stand-alone sentiment detectors, which it combines. The increase in performance varies across the
tools and the metrics. For F1-score Macro, Sentiseadgp_p offers 4.1-98.2% increase in performance over the individual
detectors. For F1-score Micro, the hybrid engine offers 4-49% increase in performance over those detectors. The increase
in performance is significant over two unsupervised detectors (Opiner, POME). Acroos the supervised and unsupervised
individual detectors, Sentiseadgrp—_p offers better increase in performance to detect positive and negative polarity instead
of neutral polarities. For example, excluding POME, Sentiseadgr_p offers 4.5-54.7% increase in performance to detect
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Table 10. Features used in Sentisead+ in addition to Table 7

Features Rationale
Partial polarity The polarity label may depend more on the first/last sentence of a unit.
Polarity entropy The information entropy of polarity may reflect diverse polarity.

positive polarity (F1-score) and 7-44% increase in performance to detect negative polarity. For POME, Sentiseadrr_p
offers more than 500% increase in performance, due mainly to the fact that POME classifies more than 90% of units as
neutral. POME is designed to rely on specific linguistic rules detect polarity aspects (e.g., performance), which when
the tool found it was very accurate. However, due to its focus on such precision, it also missed correct polarity classes
where those patterns were not present.

In Table 9, we show the coverage of the misclassification categories on the datasets of Table 6 from RQs3 (Section 3.3).
Our hybrid engine Sentisead performs the best to reduce the mislassifications related to contextual information (20% in
Sentiseadgrp_pg vs 25% in SentiCR). Given that more than one third of the misclassifications are due to the failure of the
tools to detect the contextual/pragmatics in the sentiment carrying expression, this particular focus of Sentiseadgr_p is
thus encouraging. Sentiseadgp_p also offers performance boost over SentiCR while correcting errors related to ‘Domain
specificity’ (9% vs 35%). Thus, the incorporation of bag of words as features helped Sentiseadgrp_p to disentagle the
contextual information during polarity labeling. Overall, Sentiseadgrr_p shows lower coverage of the misclassifications
over the unsupervised (except for ‘Diverse Polarity’ in SentistrengthSE). However, for the two misclassfication categories
(‘Diverse Polarity’ and ‘Domain Specificity’) Sentisead still has slightly higher coverage than Senti4SD. For example, for
units misclassified due to ‘Diverse Polarity’, Senti4dSD shows 20% coverage while Sentiseadgrp_p shows 23% coverage.
The cases related to ‘Politeness’ are due mainly to the heterogeneity in the labeling of the datasets, which we discuss in

Section 5.

3.5 RQs Can more features further improve the performance of the hybrid detector?

3.5.1 Motivation. The findings from RQ4 (Section 3.4) confirm that Sentiseadrr_p, a supervised mode using Random
Forest (RF) as an ensembler of stand-alone sentiment detectors can offer improved performance over the individual
detectors. A closer look at the corrected misclassifications shows that the improvement occurred mainly on the
understanding of underlying contextual information (see Table 9). This is not surprising, given features used in
the hybrid engine were the polarity labels from individual detectors and the vectorized representation of units as
bag of words. As shown in Table 9, Sentiseadgrp_p offers improved performance across the tools, but Senti4SD still
slightly outperforms Sentiseadgr_p while classifying units with diverse polarity and domain specificity. Given that the
misclassifications due to the diverse polarity were second most in our manual analysis, it would be important to see if

Sentiseadgpr_p (denoted as Sentiseadgy hereon) can be further improved to handle those cases*.

3.5.2 Approach. In addition to the features in Table 7 (i.e., polarity labels from SE-tools + Bag of words), we investigate
two new categories of features:
e Partial Polarity. We label a unit based on the polarity information we find in the first or last clause/sentence of the

unit. We decided to use this feature based on the observations that sometimes the final polarity label of a given input

4For brevity, we will refer to Sentiseadgr-p as Sentiseadgr in the rest of the paper.
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unit depends more on the first or the last polarity expression in the unit. Similar features were also previously used
to develop Senti4SD [5].

Polarity Entropy. We compute entropy of a given unit following principles of information theory. We were motivated

to use entropy as a feature, because entropy measures were found to be useful in various software engineering
classification tasks previously, such as predict/triage software faults [20, 27]. Intuitively, entropy can inform us of the
underlying diversity of polarity/words in the input unit, which we hoped could be useful to make a better decision

on the overall polarity label of the unit.

The new features are summarized in Table 10. We explain those below.

(1) Partial Polarity. The relative position of a polarity words in a unit can be important to correct a misclassification.
For example, ‘I like this tool. But it is slow’ could convey a negative polarity even though the first sentence is positive
and the second sentence is negative. Given as input a unit, we first detect sentences using NLTK sentence detector. We
then determine two polarity labels: (a) First Polarity. We label the unit the polarity of the first sentence. (b) Last Polarity.
We label the unit the polarity of the last sentence.

(2) Polarity Entropy. If one tool is wrong but another is right, then there is some uncertainty in the detection
process. To quantify such uncertainty, we use Shannon Entropy from Information Theory [57], which was previously

used to predict/triage software faults [20, 27]. Shannon Entropy measures the information associated with a given input:

n
H(P) = = ) (p *log, pr) 1)
k=1
where py. is the probability of a data value in a given unit and Z]l?zl pr = 1. Suppose we are monitoring an input text to
categorize (e.g., polarity). The text has two words A and B. Using Equation 1, the entropy value of the text would be
0.69. However, if the next word of text is again B, the entropy value drops to 0.63 because the uncertainty level has
decreased: we see more similar contents (i.e., two Bs, one A). For each unit, we compute following metrics.

(a) Polarity pntropy: We identify all the polarity lexicons in the unit and develop a data structure of the form
{(w1, f1), ...(wn, fn) }, where each w; is a word in the unit that corresponds to a sentiment word and f; corresponds to
its occurrence frequency in the unit. We then use Equation 1 to compute the entropy. For example, with the sentence
“The API is great, but it’s slow”, if we only use the occurrence of polarity words in the sentence into Equation 1, we
have the following data values: {’great”: 1, ‘slow’: 1}. The entropy value would be 0.69.

(b) Adjective Entropy : We compute the diversity of all adjectives in a given unit. A polarity word may be missing in
our sentiment lexicons, but may still be found in the adjectives.

(c) Verb gntropy: We compute the diversity of all verbs in a unit using Equation 1 similarly as we did with adjectives.

Ko et al. [28] observed that developers use verbs to describe software problems (e.g., “This tool does not work”).

3.5.3 Results. Sentiseadgr_p, offers a very marginal increase in performance over Sentiseadgr (0.001 increase in
Macro F1-score). Therefore, the inclusion of the new features into Sentiseadgr does not seem effective to further
improve its performance over the stand alone detectors. To further understand the impact of the new features, in

Table 11, we report the performance of Sentiseadgr with the additional features in six different settings:

(1) Sentiseadgp_p+: with features bag of words + polarity labels from SE-tools + partial polarity + polarity entropy.
(2) Sentiseadgrp_pnp+: with features bag of words + polarity labels from SE-tools + polarity entropy.
(3) Sentiseadgrr_pNE+: with features bag of words + polarity labels from SE-tools + partial polarity.
(4) Sentiseadgp_ N +:with features polarity labels from SE-tools + partial polarity + polarity entropy.
Manuscript submitted to ACM
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Table 11. Performance comparison of the designed Hybrid detector (Sentisead) with added features from Table 10. Performance
analysis for each polarity class is provided in Table 24 of Appendix A.

Macro Micro

F1 P R F1 P R
Sentiseadrp_p+ 0.788 0.815 0.763 | 0.806 0.806 0.806
Sentiseadgp_gNyg+ 0.786 0.817 0.757 | 0.804 0.804 0.804
Sentiseadgp_pgnp+ 0786 0.812 0.761 | 0.804 0.804 0.804
SentiSeadpp_nN+ 0.757  0.77 0.744 | 0.779 0.779 0.779
Sentiseadgp_Nyng+ 0768 0.786 0.751 | 0.791 0.791 0.791
Sentiseadgr_ynp+ 0.756 0.769 0.744 | 0.779 0.779 0.779

Sentiseadgrp_p*: With bag of words. Sentiseadgrr_n*: No bag of words.
NP = No partial polarity. NE = No polarity entropy

Table 12. Error categories coverage by Sentisead+ variations

Category B+ BNE+ BNP+ | N+ NNE+ NNP+

Context (62) 18% 21% 18% | 26% 25% 26%
Polarity (35) 23% 26% 26% | 23% 17% 29%
Domain (23) 9% 9% 9% | 9% 9% 13%
General (22) 5% 5% 5% | 9% 9% 9%
Politeness (17) 24% 24% 24% | 24% 24% 24%

B+: With bag of words. N+: No bag of words.
NP = No partial polarity. NE = No polarity entropy

(5) Sentiseadgrp_nnp+:with features polarity labels from SE-tools + polarity entropy.
(6) Sentiseadgpp_ N NE+:With features polarity labels from SE-tools + partial polarity.

The models with bag of words perform better than those without bag of words as features. Both Sentiseadrr_pNp+
(i.e., without partial polarity) and Sentiseadgr_pNE+ (i.e., without polarity entropy) show a Marco F1-score 0.786, but
they differ from each other based on precisions and recalls. The precision is higher for Sentiseadgrr_pnEg+ between the
settings, but the recall is higher for Sentiseadrr_pnp+. Therefore, the two features while combined with bag of words
features, were able to slightly improve the overall performance than Sentiseadgp.

In Table 12, we show the distribution of error categories across the six settings. Overall, the inclusion of the new fea-
tures has reduced the coverage of errors due to contextual information from 20% (Sentiseadgr) to 18% (Sentiseadgp—p+).
There is no impact of the new features on the other four error categories. A closer look at the settings, however,
shows that the partial polarity features were successful to reduce errors related to diverse polarity. For example,
Sentiseadgr—_NNE+ shows a coverage of 17% for errors related diverse polarity. This setting is trained using only
the polarity labels from the five SE-tools and the partial polarity labels. However, those corrections were ignored in
Sentiseadpg+ tool, which shows a coverage of 23% of errors related to diverse polarity. Thus, Sentiseadgr_p+ gave more
preference over bag of words features than partial polarity features while making the final decisions on a polarity label.
For example, the following unit was correctly labeled as positive by Sentiseadrr_nnNE+ (due to first sentence being
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Table 13. Performance of stand-alone advanced pre-trained advanced language-based deep learning models across the datasets.
Performance analysis for each polarity class is provided in Table 25 of Appendix A.

Macro Micro

F1 P R F1 P R
BERT 0.793 0.793 0.792 0.81 0.81 0.81
Change Over Sentiseadgr  0.8% -2.8% 4.3% | 0.6% 0.6% 0.6%
RoBERTa 0.801 0.799 0.804 | 0.815 0.815 0.815
Change Over Sentiseadgr  1.8% -2.1% 5.9% | 12% 12% 1.2%
ALBERT 0.787 0.795 0.78 | 0.806 0.806 0.806
Change Over Sentiseadgr  0.0% -2.6% 2.8% | 0.1% 0.1% 0.1%
XLNet 0.799 0.797 0.8 | 0.814 0.814 0.814

Change Over Sentiseadgr  1.5% -2.3% 54% | 11% 1.1% 11%

positive), but incorrectly labeled as neutral by Sentiseadgr_pg+: “Looks excellent. Really sweet. ... [4 more sentences] ...+

Can you add a note on how you’ve changed how REST works high-level? Thats all for now.”

4 STUDY PHASE 2: ENSEMBLE WITH DEEP LEARNING MODELS

In a second phase, we answer three more research questions introduced in Section 1:

(6) Can Sentisead outperform the BERT-based advanced pre-trained language based models? (Section 4.1)

(7) Can a deep learning model for Sentisead outperform the BERT-based models? (Section 4.2)

(8) Can Sentisead based on an ensemble of all the individual models offer the best performance of all tools?
(Section 4.3)

4.1 RQg Can Sentiseadgr outperform the BERT-based advanced pre-trained language based models?

4.1.1 Motivation. As we explained in Section 1, we started our analysis of the feasibility of developing a hybrid tool
of SE-specific sentiment detectors before deep learning models for sentiment detection in SE were described. Recent
studies show that deep learning models, specially language-based pre-trained transformer models (PTMs) can be trained
using SE-specific data to offer performance superior to the traditional shallow learning models [3, 73].

The most recent paper on this topic is by Zhang et al. [73], who reported that models like BERT and RoBERTa can
outperform stand-alone rule-based and shallow learning models (e.g., Senti4SD, SentiCR). Therefore, we must analyze
whether such PTMs could also outperform Sentisead, i.e., our hybrid of stand-alone rule-based and shallow learning

sentiment detection tools.

4.1.2  Approach. We investigate all the four PTMs from Zhang et al. [73], i.e., BERT, RoBERTa, ALBERT, and XLNet.
For each of the studied dataset, we train and test the performance of each model using the same 10-fold cross-validation
that we used to answer RQ1 (see Section 3.1.2). Similar to Zhang et al. [73], we also fine-tune the hyperparameters for
the PTMs. Following Delvin et al. [11], we investigate with the following hyperparameters: (1) Batch size, (2) Number
of epochs, and (3) Learning rate. For all the PTMs, we find the following parameters after fine-tuning: batch size of 16, 4
epochs, and a learning rate of 27°. The values are similar to those reported by Zhang et al. [73].

Manuscript submitted to ACM



1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144

22 Gias Uddin, Yann-Gaél Guéhénuc, Foutse Khomh, and Chanchal K. Roy

Table 14. Distribution of error Categories by advanced pre-trained language-based models on dataset and categories from Table 6

Category BERT RoBERTa Albert XLNet | Sentiseadp
Context/Pragmatics (62) 16% 21% 21% 26% 20%
Diverse Polarity (35) 11% 9% 17% 17% 23%
Domain Specificity (23) 9% 9% 13% 13% 9%
General Error (22) 9% 14% 14% 9% 5%
Politeness (17) 18% 24% 24% 24% 24%

4.1.3  Results. In Table 13, we present the performance of the four stand-alone PTMs across the six benchmark datasets.
For each model, we also show how the performance of the model improved/decreased compared to Sentiseadp from
RQy (i.e., the hybrid of the five rule-based and shallow learning models based on Random Forest).

In terms of Macro F1-score, all the PTMs offer slightly better performance than Sentiseadp. The increase in Macro
F1-score in the PTMs compared to Sentiseadp is due to the increase in recall but not in precision. ROBERTa shows
the best Macro F1-score of 0.801, which outperforms Sentiseadg by 1.8%. It also shows the best recall of 0.804, which
outperforms Sentiseadg by 5.9%. It also has the best precision of 0.799 among the four PTMs, which is 2.1% less than
the Macro precision of Sentiseadpg.

A closer look at the class-based performance shows that the drop in precision is 7.1% in RoOBERTa compared to
Sentiseadp for both positive and negative polarity classes, while the increase in recall is 13.9% and 15.3% for the
positive and negative classes, respectively. Thus, with PTMs like RoBERTa, we can expect to find more instances of
polarity classes compared to Sentiseadp, but that also contributes to a loss of precision. In terms of F1-score, RoBERTa
outperforms Sentiseadp for all polarity by 0.5% (neutral), 3.1% (positive), and 4.1% (negative).

Table 14 shows the distribution of error categories by the four PTMs in the dataset and categories from Table 6.
Among the four PTMs, BERT has the lowest number of errors related to contexts/pragmatics (16%) and politeness (18%),
while RoBERTa has the lowest number of errors for two other categories (diverse polarity and domain specificity, both
9%). Both BERT and XLNet show the lowest number of errors under the general category (9%). The last column in
Table 14 shows the distribution of error categories in the same dataset by Sentiseadp (taken from Table 9).

Overall, the best performing PTM (in terms of Macro F1-score), RoOBERTa improves on Sentiseadp in this dataset in
only one of the five error categories, diverse polarity (23% in Sentiseadg vs. 9% in RoBERTa). For example, RoBERTa
corrects the following misclassification of Sentiseadg from neutral to positive, “Seeing all the information and activity,
it does look very constructive and _perhaps_ it shouldn’t have been closed so eagerly!”. RoBERTa also corrects this
misclassification of Sentiseadp from neutral to negative: “The problem is, the application is developed in Java not python”
(in Lin et al. [32] app review dataset).

Therefore, when we can afford to use GPUs that are required to develop the PTMs and when we need even slight
performance improvement like 1.8% (Macro F1-score) over a hybrid of shallow and rule-based models in Sentiseadp, we

could use the PTMs. Otherwise, Sentiseadgr might be sufficient to meet real-world needs for sentiment detection in SE.

4.2 RQ7 Can a deep learning model for Sentisead outperform the BERT-based models?

4.2.1 Motivation. As we observed in RQg, the stand-alone PTMs slightly outperform Sentiseadp, i.e., the Random
Forest-based hybrid of five rule-based and shallow learning SE-specific sentiment detectors (Opiner, POME, Senti4SD,
SentiCR, and SentistrengthSE). The PTMs offer better recall than Sentiseadpg, but suffers from lower precision. The
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1145 Table 15. Performance of Sentisead using pre-trained langange based advanced deep learning models as ensembler. Performance

1146 analysis for each polarity class is provided in Table 26 of Appendix A.

1147

1148 Macro Micro

1149 F1 P R F1 P R
1150

1151 SentiseadggRrT 0.791  0.791 0.79 | 0.807 0.807 0.807
1152 Change Over Sentiseadgr  0.5% -3.1% 4.1% | 0.2% 0.2% 0.2%
1153 Change Over BERT -03% -03% -0.3% | -0.4% -0.4% -0.4%
o SentiseadroBERTa 0.805 0.807 0.803 | 082 082 0.82
1155 Change Over Sentiseadgr  2.3% -1.1% 5.8% | 19% 19% 1.9%
1136 Change Over RoBERTa 05% 1.0% -01% | 0.6% 0.6% 0.6%
1157

e Sentisead A BERT 0779 0779 0.779 | 0.798 0.798 0.798
. Change Over Sentiseadgr -1.0% -4.5% 2.6% | -0.9% -0.9% -0.9%
1160 Change Over ALBERT -1.0%  -2.0% -0.1% | -1.0% -1.0% -1.0%
1161 Sentiseadx] Ner 0.8 0.799 0.801 | 0.815 0.815 0.815
1162 Change Over Sentiseadgr  1.7% -2.1% 55% | 12% 12% 1.2%
1163 Change Over XLNet 01% 03% 0.1% | 0.1% 0.1% 0.1%

1164
1165 . . .
> Table 16. Error Categories by Sentisead based on advanced pre-trained language-based models on dataset from Table 6

1167

1168 Category Sentiseadpprr Sentiseadr,prrTs Sentiseadarprrr Sentiseadxyer
1169 Context/Pragmatics (62) 21% 23% 33% 30%

170 Diverse Polarity (35) 17% 14% 4% 11%

nn Domain Specificity (23) 9% 4% 17% 4%

172 General Error (22) 9% 9% 14% 9%

17 Politeness (17) 12% 29% 18% 24%

1174
1175

176 current ensembler in Sentiseadp is a Random Forest, which is a shallow learning model. Therefore, we investigate

1177
s whether we could further improve the performance of Sentiseadg by introducing a PTM as ensembler.

" 422  Approach. Our goal is to replace the Random Forest algorithm in Sentiseadp by the PTMs from RQg, as follows.
1180
s  For each studied dataset, we do a 10-fold cross validation using a PTM following an approach similar to RQ; in

ns2  Section 3.1.2. Each iteration takes as input the following features for each unit: bag of words and sentiment polarity
1183 labels of the five rule-based and shallow models (i.e., OpinerPOME, Senti4SD, SentiCR, and SentistrengthSE). The target
e value is the manual label for each unit. Instead of Random Forest as ensembler, we use one of the PTM. Therefore, for

each studied datasets, we do a total of 4 X 10 = 40 runs, 10 for each of the PTMs and therefore 6 X 40 = 240 iterations. We

1185
1186
1187 call the new ensemble models Sentiseadggr, Sentiseadr,pErTq, Sentisead a1 prrT, and Sentiseadx s ne; When using
1188 BERT, RoBERTa, ALBERT, and XLNet, respectively.

1189

119  4.2.3 Results. Table 15 shows the performance of the four new PTM-based ensemblers Sentiseadr,BeRrT4, Sentiseadggrr,
1 Sentisead A1 BerT, and Sentiseadx Ne;- It also reports how their performances are different from those of Sentiseadp
1193 and the stand-alone PTMs.

1194 In terms of Macro F1-score, Sentiseadr,pgrTq is the best performer with an Fl-score of 0.805. It outperforms

1192

1195 Sentiseadp by 2.3% and the stand-alone RoBERTa model by 0.5%. The second best performer is Sentiseadx ne; With
1196 Manuscript submitted to ACM
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a Macro F1-score of 0.8, which outperforms Sentiseadg by 1.7% and the stand-alone XLNet by 0.1%. The other two
ensemblers, SentiseadggrT and Sentiseadar gerr perform worse than the corresponding stand-alone models (i.e., BERT
and ALBERT, respectively).

Similar to the stand-alone PTM, RoBERTa, the increase in F1-score of Sentiseadr,ggrT OVer Sentiseadp is due to
a higher recall. However, Sentiseadr,pgrT does have better precision than RoBERTa: the incorporation of polarity
labels from the five rule-based and shallow learning models has reduced the loss of precision from Sentiseadp from
7.1% (in RoBERTRa) to 6.2% in Sentiseadr,BERTa-

Table 16 reports the distribution of error categories per ensembler PTMs on the dataset and categories from Table 6.
The best Sentiseadr,gErTq sShows a reduction from stand-alone RoBERTa in misclassifications for two error categories
(domain specificity from 9% to 4% and general error from 14% to 9%). For the other three error categories, the performance
of SentiseadroBERT4 1s actually lower than the stand-alone RoBERTa mode. For example, for errors related to lack of
context/pragmatics, Sentiseadr,BprTq shows the error in 23% of all cases. In contrast, stand-alone RoBERTa shows
the error in 21% of all such cases. This means that the ensemble model was slightly more confused to correct such
errors compared to the stand-alone model. This confusion could arise in the ensembler from the polarity labeling of
stand-alone tools, which themselves can be confused with the exact polarity labeling of a sentence. This can happen for
different reasons like the underlying context was implicit, or it was not annotated properly during the manual labeling.
Indeed, subjectivity in annotation can be a problem with SE-specific datasets (see Novielli et al. [45, 65]). A detailed
understanding of the exact reasons of performance drop in a deep learning ensembler compared to the stand-alone
PTMs requires the analysis of the PTMs and the ensemblers based on the principles of explainable/interpretable machine
learning, which we leave as our future work. Nevertheless, it is arguable whether a performance improvement of 0.5%

over stand-alone PTM does warrant a PTM-based ensembler over a stand-alone PTM.

4.3 RQs Can Sentisead based on an ensemble of all the individual models offer the best performance?

4.3.1 Motivation. Our findings from RQg show that stand-alone PTMs, like RoBERTa, can outperform Sentiseadp
based on shallow learning. Our findings from RQ7 show that an ensemble of the five rule-based and shallow learning
models based on PTMs, like Sentiseadr,ggRrT4, can offer 0.5% increase in Macro F1-score over the stand-alone RoBERTa
model. Given the superiority of the stand-alone PTM over Sentiseadp, we want to learn whether an ensemble of all the
available stand-alone models (i.e., rule-based, shallow, and PTMs) could offer the best performance of all the available

ensemblers and stand-alone models.

4.3.2  Approach. We replicate the approach of RQ7 for each dataset as follows. We perform a 10-fold cross validation
similar to the approach in Section 3.1.2. For each unit in a dataset, we consider the following items as input features:
textual contents of the unit as vectors in word embedding, sentiment polarity labels from the five rule-based and shallow
learning models and the four PTMs. The target is the sentiment polarity label based on manual label. For the ensembler,
we use one PTM at a time. As such, similar to RQ7, for each PTM as an ensembler, we run 10 iterations per dataset. We
report the performance of the ensemblers on the test dataset. The ensembler model is named after each PTM as follows:

Sentiseadggrr+, Sentiseadr,BERTa+> Sentisead A1 BgrT+, and Sentisead o1 BERT+-

4.3.3 Results. Table 17 reports the performance of the four new PTM-based ensemblers that produce the sentiment
polarity label for a unit by taking as input the unit and the polarity labels from eight stand-alone sentiment detectors
for SE (rule-based, shallow-learning, and four PTMs). For each model, like Sentiseadggrr+, we also compare how its

Manuscript submitted to ACM
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Table 17. Performance of Sentisead using pre-trained advanced deep learning models as ensembler and stand-alone detectors.
Performance analysis for each polarity class is provided in Table 27 of Appendix A.

Macro Micro

F1 P R F1 P R
SentiseadggrT+ 0.79 0.79 0.79 | 0.807 0.807 0.807
Change Over Sentiseadgp 0.4% -32% 41% | 02% 02% 0.2%
Change Over Sentiseadggrr -0.1% -0.1% 0.0% | 0.0% 0.0% 0.0%
Change Over BERT -04% -04% -0.3% | -0.4% -0.4% -0.4%
SentiseadroBERT 4+ 08 0797 0802 | 0.814 0.814 0814
Change Over Sentiseadgr 1.7% -23% 57% | 1.1% 11% 1.1%
Change Over Sentiseadgoperre -0.6% -1.2% -0.1% | -0.7% -0.7% -0.7%
Change Over RoBERTa -01% -03% -0.2% | -0.1% -0.1% -0.1%
Sentisead ] gERT + 0.783 0784 0.782 | 0.801 0.801 0.801
Change Over Sentiseadgp -0.5% -39% 3.0% | -0.5% -0.5% -0.5%
Change Over Sentisead o1 BERT 05% 0.6% 04% | 04% 0.4% 0.4%
Change Over Albert -0.5% -14% 0.3% | -0.6% -0.6% -0.6%
Sentiseadx Ner+ 0797 0795 0.799 | 0.811 0.811 0.811
Change Over Sentiseadrp 13% -2.6% 53% | 07% 0.7% 0.7%
Change Over Sentiseadx Ner -04% -05% -0.2% | -0.5% -0.5% -0.5%
Change Over XLNet -03% -03% -0.1% | -0.4% -0.4% -0.4%

Table 18. Error Categories by Sentisead based on ensemble of all models and dataset from Table 6

Category Sentiseadggrr+ Sentiseadr,prrTa+ Sentiseadsrprrr+ Sentiseadxyne:+
Context/Pragmatics (62) 21% 26% 25% 25%

Diverse Polarity (35) 14% 14% 14% 11%

Domain Specificity (23) 9% 4% 9% 0%

General Error (22) 5% 14% 9% 14%

Politeness (17) 18% 18% 24% 24%

performance has increased/decreased against previous tools like Sentiseadp, stand-alone PTM (i.e, BERT), and the
ensembler from RQ7 (i.e., BERT-based ensembler of five rule-based and shallow learning models).

The best performing model is Sentiseadr,BerT 4+, With a Macro F1-score of 0.8. This F1-score is lower than the
F1-score of Sentiseadr,BERrT4, Which is 0.805. The inclusion of polarity labels from the PTMs has not increased the
performance of Sentiseadr,BerT e+ However, Sentiseadr,BerT e+ does show an increase of 1.7% in Macro F1-score over
Sentiseadp. Overall, among the four ensemblers in this RQ, only Sentisead 41 grr7+ shows a Macro F1-score lower than
Sentiseadp. These findings are consistent with those from RQ7 and RQg and recent results from Zhang et al. [73], which
show that deep learning models offer better performance than rule-based and shallow learning models for SE-specific
sentiment detection.

However, as shown in RQg to RQy7, the increase in performance is at most 2.3% over the shallow learning-based
ensembler (which we observed in Sentiseadr,BgRrT4)- In addition, the lack of performance improvement in PTM-based
ensembler of all stand-alone models in this RQ can serve as a guidance that a hybrid tool cannot outperform other tools

by simply adding polarity labels from all available stand-alone SE-specific sentiment detectors.
Manuscript submitted to ACM
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5 DISCUSSIONS

In this section, we discuss major themes we observed during the analysis of our study results.

5.1 The Underwhelming Roles of Polarity Entropy Metrics in Sentiment Labeling

The findings from RQs suggest that the three polarity entropy metrics were not effective to further improve the
performance of our hybrid sentiment detection engine. To determine the root cause of this, we assessed the impact
of the diversity metrics on the misclassification of the polarity labels from the three tools, Senti4SD, SentiCR and
SentistrengthSE. The three tools are the three most dominant features in Sentisead. For each tool, the response variable
is “Misclassification”, i.e., for a given unit whether the tool output is wrong or not. The explanatory variables are the
four diversity metrics above, i.e., entropy measurements using polarity, adjective, and verb. To fit and interpret the
models, we follow standard practices in the literature [61, 66]: (1) When fitting the models, we test for multicollinearity
between the explanatory variables using the Variable Inflation Factor (VIF), and remove variables with VIF scores above
the recommended maximum of 5 [10]. (2) When interpreting the models, we consider coefficient importance if they
are statistically significant (p — value < 0.05). We also estimate their effect sizes based on ANOVA type-2 analyses
(column “LR-Chisq” of Table 19). (3) We report the goodness of fit using the McFadden’s pseudo R?. In Table 19, we
show the results of regression models of each of the three tools for the inputs for which the tool was wrong but at
least one of the other two tools was right, i.e., the wrong tool could have benefited from the correct classifications from
other tools. The Polaritygntropy is statistically significant for each tool, i.e., the misclassification of each tool increases
with the increase in the diversity of polarity words. The Adjectivegntropy is significant for SentiCR and Verbgntropy is
significant for SentistrengthSE. However, the R? is only between 3.06-3.86%. That means that the entropy metrics can
only capture around 3-4% of variations in the data while correcting a tool. This low impact can become negligible in the

presence of more dominant features, e.g., bag of words.

Table 19. Regression models for the sentiment detectors on the misclassified units where at least one detector was right

Senti4SD SentiCR SentistrengthSE
Pseudo R? = 3.06% Pseudo R? = 3.86% Pseudo R? = 3.74%
Coeffs Std. Err LR Chisq | Coeffs Std.Err LR Chisq | Coeffs Std. Err LR Chisq
(Intercept) 2.66™*  0.27 -2.77F 0 0.27 -1.64™  0.22
Polarity gnrropy ~ 0.45"*  0.11 25727 | 052 0.11 36.15"* | 0.64**  0.10 75.16***
Adjective pnrropy  0.01 0.11 0.01 0.23* 0.11 4.57* 0.01 0.10 0.00
Verb Entropy 0.01 0.12 0.1 -0.17 0.2 1.50 0.22*  0.10 6.07*

Signif. codes: ***p < 0.001, **p < 0.01, *p < 0.05

5.2 Issues with Politeness in Sentiment Labeling

17 of the 153 manually analyzed misclassified units in our complementary dataset (Section 3.3) were related to the
confusions among the sentiment tools to handle politeness. While around 76% of those were corrected by Sentisead, the
the rest 24% remained misclassified across all the different settings of Sentisead and Sentisead+ (see Table 9). There
are two main reasons for this. First, the presence of politeness does not necessarily make a unit positive. Second, the
manual annotation of units carrying politeness were judged differently by different human raters in the benchmarks.

For example, the following is labeled as neutral in the Jira Ortu et al. [48] dataset, “Jacopo Thanks for diving in a pointing
Manuscript submitted to ACM
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Scott at the appropriate screens.”. However, the following is labeled as positive in the same dataset “Patch applied! Thanks.”.

This discrepancy can confuse a supervised classifier, including Sentisead.

5.3 The Problems with Contextual Inference Using Surrounding Sentences in Sentiment Detection

Among the six benchmark datasets in our study, Sentiseadp achieves 0.83-0.98 F1-score to label both positive and
negative classes for four datasets: Jira and App reviews from Lin et al. [32], SO Calefato et al. [5], and Jira Ortu et al. [48].
Sentisead shows only 0.31-0.47 F1-scores for the positive and negative classes in other two datasets: SO Lin et al. [32]
and SO Uddin et al. [65], with the worst in SO Uddin et al. [65]. Both of these use data from Stack Overflow. The SO
Uddin et al. [65] dataset is different from other benchmarks, because it is based on all the sentences from 1338 posts from
Stack Overflow. Thus, when the raters were presented those sentences, they also saw other sentences immediately after
and before the sentences. This surrounding contextual information influenced their annotation. This particular issue
was also discussed in Uddin et al. [65]. The SO Lin et al. [32] benchmark seems to have the same problem. For example,
the following sentence is rated as ‘negative’ in the dataset “T am not sure about Map implementation in HazelCast.” No
sentiment detection tool is designed to check such domain specificity and surrounding sentences as contexts during the
polarity classification. Therefore, further improvement in Sentisead for these two datasets will need the development of

algorithms to handle such domain specificity and contextual information.

5.4 Run-time Performance

In Section 1 (Introduction), we write about different use cases for Sentisead: Sentisead is useful for situations where
we do not want to pick different tools for different datasets. Instead, we simply run each stand-alone tool for a given
dataset and let Sentisead make the final decision on sentiment polarity.

An analysis can be done offline or online. For example, when analyzing millions of code reviews from a large software
system like OpenStack, we expect that the sentiment detection would be done offline and not in real-time. Nevertheless,
we were able to run all stand-alone tools within reasonable time e.g, SentiCR for any dataset for one iteration (i.e., one
of the 10-folds) took around 2 minutes (training + testing). Note that this was done on a Laptop machine with only 2
cores and 4GB RAM. During testing, for a given sentence, SentiCR [1] was able to produce a polarity label in less than a
second. Please note that like any machine learning model, the training of a tool takes the most amount of time (often
around 95%). This is true for any currently available SE-specific sentiment detection tool. With advances in computing
infrastructure, parallel processing, and high-performance computing, we can expect to further reduce such training and
testing time. Indeed, we had some performance issues with Senti4SD [5] initially, but Senti4SD was recently updated to
a new and faster version to support large-scale data. Therefore, while the training of such a tool takes the majority of
time in Sentisead, the tool can make a polarity label on a given unit at run-time in a short time (as noted above with
SentiCR example). Indeed, Sentisead can determine the polarity label of a given unit in less than a second, given it is
built on SentiCR - which as noted above is fast to produce labels. Note that, we previously analyzed large number of
OpenStack code reviews in a reasonably short time using some of the the studied tools in this paper (e.g., Senti4SD,
SentiCR) (please see Asri et al. [2]).

5.5 The Role of Features in Sentisead Accuracy Improvement

An important area of research in machine learning is the handling of overfitting of a machine learning model. Indeed, in
machine learning literature, it is a standard practice to prune the feature space of a model to improve model inference

runtime. Models like Random Forest are designed to handle overfitting efficiently by automatically pruning the decision
Manuscript submitted to ACM
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trees. In RQy4 (Section 3.4), we find that a Random Forest-based hybrid tool is the best performer in each individual
dataset. In RQs (Section 3.5), we find that by simply adding extra features (e.g., partial polarity, polarity entropy), we
could not gain notable performance improvement in the new hybrid tool in RQs (i.e., Sentiseadp+) over the the hybrid
tool from RQy (i.e, Sentiseadp). In RQg, we attempted to develop a hybrid Sentisead engine by taking polarity labels of
all 9 stand-alone sentiment detectors (5 rule-based and shallow learning and 4 BERT-based PTMs from Zhang et al. [73]).
We found that this Sentisead engine performed a bit worse than the Sentisead engine that only took polarity labels
from 5 rule-based and shallow learning sentiment detectors. These three observations offer insights that by simply

adding new features, we cannot not improve the performance of our hybrid sentiment detection tool.

5.6 Best Performers Per Dataset

When we analyzed the results of each tool, we analyzed along two dimensions: Per dataset and across all datasets. We
provide a detailed explanation of how we trained and tested each tool per dataset in Section 3.1.2. We also explain in
Section 3.1.2, how we combine the test results from each dataset to report an overall performance score of a tool across
the six datasets. Given that we studied six benchmark datasets, nine stand-alone sentiment detection tools, various
design of our hybrid tool Sentisead by answering eight research questions in the revised manuscript, it is a non-trivial
and challenging task to report the performance of each studied tool and the hybrid tool for each research question per
studied dataset. Doing so would simply make the paper too long and too hard to read. An overall performance score
across the six datasets informs us of the overall effectiveness of a tool across the six datasets. This insight is important
given that these datasets are designed for different purposes. As we noted in Section 1, the major motivation behind
designing our hybrid tool Sentisead was that it should perform better than the stand-alone sentiment detectors across
all kinds of datasets. An overall performance score tells us whether the tool does indeed outperform each stand-alone
tool across the datasets using a single metric. For any such single metric, it is not possible to offer a detailed breakdown
of the performance of a tool across each individual datasets. Nevertheless, we share the results of each tool per dataset
and per research question in our online replication package [29]. In Table 20, we report the top three tools in each

dataset of our study based in Macro F1 score.

Table 20. The three best performing tools per dataset in our study (F1 = Macro F1 score)

First Second Third
Dataset
Tool F1  Tool F1  Tool F1
JIRA Lin et al. [32] SentistrengthSE 0.98 SentiseadggrT 0.97 RoBERTa 0.97
SO Uddin et al. [65] Sentiseadx [ Ner 0.59 Sentiseadyyner+  0.59 SentiseadroperTa  0.59
Mobile App Lin et al. [32] BERT 0.72 SentiseadroBgrTa 0.68 RoOBERTa 0.62
SO Lin et al. [32] SentiseadgogrTa+ 0.78 RoOBERTa 0.77 Sentiseadxners+  0.74
SO Calefato et al. [5] SentiseadrogprTa  0.89 SentiseadxyNer 0.88 RoBERTa 0.88
JIRA Ortu et al.. [48] XLNet 0.83 SentiseadroerTa 0.82 SentiseadroBerTa+ 0.82

Around 61% (i.e., 11 out of the 18) places of the best performing tools in Table 20 are occupied by the different
ensemble combinations of Sentisead (e.g., Sentiseadr,pgrTq), While 33% of the places (i.e., 6 out of 18) are occupied by
the stand-alone PTMs, and the rest (i.e., 1 out of 18) of the spots is occupied by SentistrengthSE. Among the 61% places
occupied by Sentisead variations, all spots contain different combinations of the PTMs as the ensembler. For the one

spot (JIRA Lin et al. [32]), where SentistrengthSE is the best performer with a Macro F1-score of 0.98, the second best
Manuscript submitted to ACM
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are two tools with an F1-score of 0.97 (Sentiseadg ERT and RoBERTa). For the other five datasets, the topmost performer
is Sentisead-based in three SO-related datasets: SO Uddin et al. [65], SO Lin et al. [32], and SO Calefato et al. [5]. For the
other two datasets, stand-alone PTMs are the best performers: BERT for Mobile App Lin et al. [32] and XLNet for JIRA
Ortu et al.. [48]. The findings denote that PTMs as stand-alone tool or as an ensembler of existing tools can be the best

candidates to detect sentiments in diverse SE-specific datasets.

6 THREATS TO VALIDITY

We discuss the threats to validity of our studies following common guidelines for empirical studies [70].

Construct Validity Threats concern the relation between theory and observations. In our study, they could be
due to measurement errors. For our manual labeling of error categories, we followed the coding guide and examples
of Novielli et al. [44]. This is not first time we did the manual labeling of such error categories. In our previously
published paper [65], we did similar exercise on a different dataset. Nevertheless, similar to Novieli et al. [44], we found
three error categories: Contextual information, Politeness, and General Errors. In addition, we found two new error
categories: Domain-specificity and presence of diverse polarity. We provide examples of each category in Section 3
(RQ3). In addition, we share the manually labeled dataset in our online appendix [29].

Internal validity warrants the presence of systematic error (e.g., bias) in the study. This can happen due to the
reporting of a performance metric that may not be standard or the due to the error in the computation of the standard
metric. We mitigated the first bias by reporting standard metrics used in the literature. For example, we compute both
Macro and Micro scores, following standard reporting practices in sentiment analysis for software engineering. We
mitigated the second concern by confirming the computation of the metrics against the same metrics that are presently
computed in widely used open source libraries (e.g., scikit-learn [55]). In addition, we also report the details of how
each metric parameters are computed (e.g., true positives, false positives, etc.).

External validity concerns the generalizability of the results presented in this paper, which are based on six
publicly-available sentiment benchmarks. Together, these benchmarks consist of more than 17K units (sentences, posts,
etc.), each manually annotated for polarity by multiple coders. Therefore, our evaluation corpus is bigger than any
previous research on sentiment detection for software engineering.

Reliability concerns the possibility of replicating this evaluation. We provide the necessary details in an online

appendix [29].

7 RELATED WORK

Sentiment analysis in SE research has focused on two main areas: studying sentiments SE repositories/scenarios

(Section 7.1) and developing tools to improve sentiment detection in SE (Section 7.2).

7.1 Studying Sentiments SE Repositories/Scenarios

A significant number of studies are conducted to analyze the prevalence and impact of sentiments in SE repositories and
development scenarios, such as IT tickets [7], collaborative distributed team communications [17], twitter feeds [16],
commit logs [58], security-related discussions in GitHub [54], API reviews [63-65], and code reviews [2]. Studies also
combined sentiment analysis with other techniques to improve domain-specific classification, such as to classify app
reviews [35, 52].

In parallel, a number of research efforts analyze emotions in SE repositories. While sentiment analysis focuses on

polarity (positive, negative, neutral), emotion analysis focuses finer grained expressions such as anger, love, etc. Emotion
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analysis is used to determine team cohesions, such as the impact of bullies in an SE team [49], the relation of VAD
(Valence, Arousal, Dominance) scores [69] with productivity and burn-out in SE teams [38], and the usage of expressed
emotions to prioritize improvements or raise team awareness [13, 19]. Overall, analysis of sentiments and emotions is
an increasingly popular field in SE [41, 46]

Contrary to the above work, in this paper, we focus on the development of a sentiment tool for SE.

7.2 Development of Sentiment Detection Tools in SE

SE-specific sentiment tools are needed, because off-the-shelf sentiment detection tools from other domains are not very
accurate [25, 26]. Subsequently, a number of sentiment and emotion detectors and benchmarks were developed for
SE [1, 5, 6, 9, 22-24, 31, 36, 40, 50, 65]. Largely, sentiment detection efforts for SE can be divided into three categories:
rule-based, shallow learning-based, and deep learning-based.

We started to build our Hybrid tool, Sentisead, by combining the polarity labels of five SE-specific rule-based and
shallow learning sentiment detection tools (Opiner [65], POME [31], SentiCR [1], Senti4SD [5], and SentistrengthSE [22]).
SentistrengthSE [22] was studied by Lin et al. [32] along with other tools. Recently, Novielli et al. [45] showed that
the two supervised detectors (Senti4SD [5] and SentiCR [1]) performed better once re-trained for a domain. Thus, we
retrained those for each of our six benchmarks. In a subsequent study, Novielli et al. [42] found that unsupervised
sentiment tools for SE, such as SentistrengthSE work better than supervised tools when applied in a cross-platform
setting. Maipradit et al. [36] reported superior performance using n-grams in shallow learning models, like SVM, in
multiple datasets. However, it is not clear which value of n in the n-grams provided the best result.

Recently, several deep learning models to detect sentiment in SE artifacts were described in the literature [3, 4, 9, 73].
In 2019, Chen et al. [9] proposed SentiEmoji, an emoji-powered sentiment detection tools for SE data. SentiEmoji uses
posts containing emotional emojis from Tweets and GitHub posts as new data to automatically produce new sentiment
benchmark dataset. SentiEmoji combines the dataset with existing SE sentiment benchmark dataset and proposes a
representation learning approach to train/test sentiments in the dataset. The approach offered superior performance
than shallow learning tools like Senti4SD.

In 2020, several papers reported language-based pre-trained transformer models (PTMs) [3, 73]. Biswas et al. [3]
showed that the use of PTMs, like BERT, can offer superior performance to other deep learning models, like RNN,
which they studied before [3]. At the same time, Zhang et al. [73] investigated four PTMs: BERT, ALBERT, RoBERTa,
XLNet. They found that the PTMs outperformed state-of-the-art shallow learning and rule based SE-specific sentiment
detectors across multiple datasets. The findings of Zhang et al. [73] and Biswas et al. [3] motivated our inclusion of the
PTMs into our hybrid tool.

Unlike our paper, none of the above studies investigate the feasibility of combining the tools. Our study, for the first
time in SE, shows that a hybrid of the stand-alone SE-specific sentiment detection tools can be developed and that such

a tool can indeed outperform each of those stand-alone SE-specific sentiment tool.

8 CONCLUSIONS

Sentiment detection is important to understand and support diverse scenarios in software engineering and software-
engineering research, yet studies from Lin et al. [32] and Jongeling et al. [26] showed that currently available sentiment
detection tools for software engineering may not accurately detect polarity in software textual contents.

To determine whether and how the existing SE-specific sentiment tools could be combined to increase their perfor-

mance, we reported the results of an empirical study that explores the feasibility of creating a hybrid sentiment detection
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tool. We started with five stand-alone rule-based and shallow learning sentiment detectors for SE. We reported that the
stand-alone tools can complement each other to offer better performance, but a majority voting-based unsupervised
classifier fails to increase performance. We found that a simple supervised combination of polarity labels from individual
tools and bag of words as features could increase the performance (F1-scores) of stand-alone tools by 4% to more than
100%. We named the developed supervised hybrid tool Sentisead. Therefore, Sentisead can offer better performance
than stand-alone detection tool, but it was not more than 4% against the best performing stand-alone tool (Senti4SD).

Our study was motivated by the negative results reported by Lin et al. [32] in 2018 and then the positive results
reported by Lin et al. [31] in 2019 based on a newly developed tool. We wanted to understand whether we could
further improve the performance of the stand-alone sentiment detectors (which were publicly available at the time
of our analysis). Instead of creating a new stand-alone sentiment detection tool for software engineering, we wanted
to determine whether we could leverage the strengths of each individual SE-specific individual tool. Therefore, we
studied the feasibility of developing an ensemble of those stand-alone tools. With a comparison of the performance
of SentistrengthSE reported in Lin et al. [32] and Sentisead, we found that Sentisead offers better performance in the
three datasets summarized in Table 21. Note that the performance of SentistrengthSE on Jira Lin et al. [32] dataset was
reported as 0.91 by Lin et al. [32], but we observed it to be 0.97 as shown in in Table 20 (Section 5.6).

Positive Polarity Negative Polarity

Dataset Lin [32] Sentisead ‘ Lin [32] Sentisead

SO 0.26 0.35 0.27 031
App 0.78 0.89 0.45 0.83
Jira 0.91 0.95 0.82 0.98

Table 21. SentiseadgrF vs. SentistrengthSE performance reported by Lin et al. [32]

The recent promising results in SE-specific sentiment detection with language-based pre-trained transformer models
(PTMs, e.g., BERT), as reported in several works, e.g., Zhang et al.[73], has motivated the second phase of our study,
where we compared Sentisead with four stand-alone PTMs (BERT, RoBERTa, ALBERT, and XLNet). We found that a
stand-alone RoBERTa outperforms Sentisead by 1.8% (in terms of Macro F1-score). When we replaced the ensembler in
Sentisead from a Random Forest to RoOBERTa, we observed a performance increase of 2.3% over the Random Forest-based
Sentisead (i.e., Sentiseadrr). However, when we checked the performance per dataset, the findings were inconclusive
against the stand-alone PTMs, i.e., Sentisead-based various ensemble marginally outperformed the stand-alone PTMs in
several cases but were outperformed by those PTMs in other cases. In particular, we found in Section 4 that PTMs like
RoBERTa performed considerably well as stand-alone sentiment detectors. Therefore, when such marginal improvment
via Sentisead is not warranted, a stand-alone PTM might suffice for sentiment detection in SE datasets.

As noted in Section 3.3, out of the five misclassification categories, we observed that three categories were also
previously observed and reported by Novielli et al. [45]. While Novielli et al. [45] observed the error categories in
units where all tools were wrong, we observed the error categories for units where at least one of the tools is correct.
The purpose of our study to derive the misclassification categories was twofold: first, we needed to know the specific
reasons for misclassification in one tool where another tool could offer the correct result. Second, we wanted to use
knowledge gained from the error categories to develop our hybrid tool, Sentisead.

Around 50% of all misclassifications were due to the inability of the wrong tool to understand the underlying contexts,

while the correct tool understood the context. Based on this insight, we hypothesized that if we could combine the
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polarity labels of all tools (where the correct tool is also included) with the bag of words of the unit that would serve as
contexts, we could offer better results in our hybrid tool, Sentisead. Indeed, Sentisead corrects the contexts-based error
for 80% of the cases (i.e., it was wrong in only 20% of the 62 units where at least one stand-alone tool is wrong), which
is more than any of the stand-alone tools. Table 9 offers a qualitative breakdown of how Sentisead offered improvement
over each stand-alone tool based on the five error categories.

Sentisead infrastructure could be leveraged to add the polarity labels of any newly introduced SE-specific stand-alone
sentiment detection tool. We envision that this flexibility of Sentisead will allow the co-creation of two new-breeds of
efforts in software engineering research: (1) More efforts to create new SE-specific stand-alone sentiment detection
tool focusing on diverse SE datasets, and (2) Studying (a) the incorporation of diverse complementary SE-specific
stand-alone sentiment detection tools. (b) The effectiveness of diverse features, such as fine-grained emotions from
various tools into Sentistead (or its extension).

As we noted in Section 1, recent advances in deep learning-based SE-specific sentiment detection shows more
promising results than those observed by Lin et al. [32]. While within the limited space of this paper, we attempted to
offer a comprehensive analysis by investigating the feasibility of developing a hybrid tool based on rule-based, shallow
and deep learning stand-alone classifiers, we leave following extensions to Sentisead for future work:

(1) SentiEmoji [9], a tool developed by Chen et al. shows that we can use emoji-powered data from Twitter and
Facebook to further improve sentiment classification in SE. SentiEmoji [9] also shows that an embedding based on
the emoji information and the textual contents can be more useful. Sentisead could leverage such emoji-powered
information as features besides word-embedding or bag of words.

(2) Deep learning models, like PTMs, are found to offer good performance even with low amount of data due to their
design as pre-trained models. However, deep learning models also benefit from more data. A problem with SE-specific
sentiment detection is the diversity of datasets. With emoji-powered labels like those used by SentiEmoji [9], we may be
able to get more data with automatic polarity labels, which then can help with domain-specific nuances more. Therefore,
Sentisead could benefit from such large-scale data, especially for PTMs like a RoBERTa as an ensembler (see RQg).

We conclude that our empirical study with Sentisead offers valuable insights to the field of SE-specific sentiment
detection research with empirical insights, actionable results, and a hybrid tool Sentisead that shows marginal to

promising performance over stand-alone SE-specific sentiment detection tools.
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1821 Table 23. Performance comparison of the developed hybrid classifier (Sentisead) with the baselines. Extension of Table 8
1822

1823 ‘ Positive Negative Neutral

1824

s | F1 P R | F1 P R| F1 P R

1826 Sentiseadrr_p 0.764 0.832 0.706 0.738  0.827 0.666 | 0.843 0.790 0.905

1827 Sentiseadgrr_ N 0.759 0.797 0.724 0.72  0.777 0.671 | 0.837 0.801 0.877

e Performance Increase of Sentiseadp (i.e., Hybrid with Bag of Words)

Over Baseline (SentiSE = SentistrengthSE)

1829

1830

1851 Majority 6.0%  0.8% 103% | 144% -3.7%  291% | 2.9% 7.6% -2.2%
1839 Senti4SD 45%  7.6%  2.0% 70% 10.6% 41% | 2.6% 0.9%  4.6%
133 SentiCR 49%  3.6%  5.8% 74%  29%  112% | 1.6% 3.0%  0.2%
L34 SentiSE 61% 10.6%  23% | 153% 124%  17.7% | 6.0% 53% 6.8%
1635 Opiner 54.7%  78.2%  347% | 44.1% 433% = 44.8% | 247% 18.3% 32.3%
1836 POME 501.6% 113.9% 828.9% | 1035.4% 99.3% 1802.9% | 20.9% 43.6% -4.7%

1837

1838 Table 24. Performance comparison of the designed Hybrid detector (Sentisead) with added features from Table 10. Extension of

) Table 11

1839

1840

1841 ‘ Positive Negative Neutral

1o | F1 P R| F1 P R| F1 P R
1843

1844 Sentiseadpp_p+ 0.767 0.832 0.712 0.74 0.818 0.675 | 0.844 0.794 0.901
1845 Sentiseadgp_gNg+ | 0.761 0.831 0.702 | 0.738 0.832 0.663 | 0.843 0.788 0.906
1846 Sentiseadgr_gnp+ | 0.765 0.829 0.711 | 0.737 0.813 0.674 | 0.843 0.793 0.899
1847 SentiSeadrp_N+ 0.747 0.777 0.719 | 0.698 0.741 0.66 | 0.822 0.793 0.854
1848 Sentiseadgr_nynE+ | 0.755 0.791 0.722 | 0.708 0.772 0.653 | 0.834 0.796 0.876
1849 Sentiseadgr_nynp+ | 0.746  0.773 0.721 | 0.698 0.741 0.66 | 0.821 0.793 0.852

1850
Sentiseadgrp_p*: With bag of words. Sentiseadgr_n*: No bag of words.

NP = No partial polarity. NE = No polarity entropy

1851

1852

1853
Table 25. Performance of stand-alone advanced pre-trained advanced language-based deep learning models across the datasets.

1834 Extension of Table 13

1855

1856

1857 ‘ Positive Negative Neutral

1658 | F1 P R| F1 P R| F1 P R
1859

L8560 BERT 0.772 0.768 0.775 | 0.759 0.767 0.752 | 0.847 0.845 0.848
. Change Over Sentiseadgr | 1.0% -7.7% 9.8% | 2.8% -7.3% 129% | 0.5% 7.0% -6.3%
1862 RoBERTa 0.788 0.773 0.804 | 0.768 0.768 0.768 | 0.847 0.855 0.839
1863 Change Over Sentiseadgr | 3.1% -7.1% 13.9% | 4.1% -7.1% 153% | 0.5% 82% -7.3%
1804 ALBERT 0.767 0.792 0.743 | 0.747 0.764 0.731 | 0.846 0.828 0.865
1863 Change Over Sentiseadpp | 0.4%  -4.8%  52% | 1.2% -7.6% 9.8% | 0.4% 4.8% -4.4%
1866

1867 XLNet 0.779 0.749 0.812 | 0.767 0.786 0.749 | 0.848 0.857 0.84
1568 Change Over Sentiseadgr | 2.0% -10.0% 15.0% | 3.9% -5.0% 125% | 0.6% 85% -7.2%

1869
1870
1871
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1873 Table 26. Performance of Sentisead using pre-trained langange based advanced deep learning models as ensembler. Extension of

1574 Table 15

1875

1876 ‘ Positive Negative Neutral

1::; | F1 P R| F1 p R| F1 p R
1879 SentiseadggrT 0.77 0771 0768 | 0.76  0.761 0.759 | 0.843 0.842 0.844
1880 Change Over Sentiseadgr | 0.8% -7.3% 8.8% | 3.0% -8.0% 14.0% | 0.0% 6.6% -6.7%
1881 Change Over BERT -03% 0.4% -09% | 01% -0.8% 0.9% | -0.5% -0.4% -0.5%
1882 SentiseadroBERT 4 0.787 078 0.794 | 0.774  0.792 0.757 | 0.853 0.849 0.857
1883 Change Over Sentiseadgr | 3.0% -6.2% 12.5% | 4.9% -4.2% 13.7% | 12% 7.5% -5.3%
1884 Change Over RoBERTa -0.1% 09% -12% | 0.8%  31% -14% | 07% -07% 2.1%
1885

856 Sentisead 1 BERT 0.764 0.769  0.76 | 0.735  0.731 0.738 | 0.839 0.838  0.84
1887 Change Over Sentiseadgr | 0.0% -7.6% 7.6% | -0.4% -11.6% 10.8% | -0.5% 6.1% -7.2%
- Change Over ALBERT -0.4% -29% 2.3% | -1.6% -43% 1.0% | -0.8% 12% -2.9%
1889 Sentiseadx Net 0.785 0.774 0.796 | 0.767  0.772 0.763 | 0.848 0.852 0.844
1890 Change Over Sentiseadrr | 2.7% -7.0% 12.7% | 3.9% -6.7% 14.6% | 0.6% 7.8% -6.7%
1891 Change Over XLNet 0.8% 33% -2.0% | 0.0% -1.8% 19% | 0.0% -0.6% 0.5%

1892
1893 Table 27. Performance of Sentisead using pre-trained advanced deep learning models as ensembler and stand-alone detectors.
1894 Extension of Table 17

1895

1896 ‘ Positive Negative Neutral

1897

50 | F1 P R| F1 P R| F1 P R
1899 Sentiseadggrr+ 0.769 0.766 0.771 | 0.757 076 0.755 | 0.844 0.844 0.844
1900 Change Over Sentiseadgp 0.7% -79% 92% | 2.6% -8.1% 134% | 01% 6.8% -6.7%
1901 Change Over Sentiseadggrt -0.1% -0.6% 0.4% | -0.4% -0.1% -05% | 0.1% 0.2% 0.0%
1902 Change Over BERT -0.4% -03% -0.5% | -0.3% -0.9% 04% | -04% -0.1% -0.5%
j:ij SentiseadgoBERTa* 0.783 0758 0.809 | 0.768 0.776 0761 | 0.847 0.857 0.837
o0 Change Over Sentiseadgp 2.5% -89% 14.6% | 4.1% -62% 143% | 0.5% 85% -7.5%
o Change Over Sentiseadpopgrra | -0.5% -2.8% 1.9% | -0.8% -2.0% 0.5% | -0.7% 0.9% -2.3%
1007 Change Over RoBERTa -0.6% -19% 0.6% | 0.0% 1.0% -0.9% | 0.0% 02% -0.2%
1908 Sentisead z; BprT+ 0.766 0.763 0.768 | 0.744 0.752 0.736 | 0.84 0.838 0.843
1909 Change Over Sentiseadgp 03% -83% 88% | 08% -9.1% 10.5% | -0.4% 6.1% -6.9%
1910 Change Over Sentisead o] BERT 03% -08% 11% | 1.2% 29% -03% | 01% 0.0% 0.4%
1911 Change Over Albert -0.1% -3.7% 3.4% | -04% -1.6% 0.7% | -0.7% 12% -2.5%
1912 Sentiseadx [ Nes+ 0.777 0.752 0.803 | 0.768 0.781 0.756 | 0.845 0.852 0.837
1913 Change Over SentiseadgF 17% -9.6% 13.7% | 4.1% -5.6% 13.5% | 0.2% 7.8% -7.5%
191 Change Over Sentiseadx Ner -1.0% -28% 09% | 0.1% 1.2% -0.9% | -0.4% 0.0% -0.8%
1913 Change Over XLNet -03% 04% -1.1%| 01% -0.6% 0.9% | -0.4% -0.6% -0.4%

1916

1917
1918
1919
1920
1921
1922
1923

1924 Manuscript submitted to ACM
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