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Abstract—Feature identification is a technique to identify the source code constructs activated when exercising one of the features of

a program. We propose new statistical analyses of static and dynamic data to accurately identify features in large multithreaded object-

oriented programs. We draw inspiration from epidemiology to improve previous approaches to feature identification and develop an

epidemiological metaphor. We build our metaphor on our previous approach to feature identification, in which we use processor

emulation, knowledge-based filtering, probabilistic ranking, and metamodeling. We carry out three case studies to assess the

usefulness of our metaphor, using the “save a bookmark” feature of Web browsers as an illustration. In the first case study, we

compare our approach with three previous approaches (a naive approach, a concept analysis-based approach, and our previous

probabilistic approach) in identifying the feature in MOZILLA, a large, real-life, multithreaded object-oriented program. In the second

case study, we compare the implementation of the feature in the FIREFOX and MOZILLA Web browsers. In the third case study, we

identify the same feature in two more Web browsers, Chimera (in C) and ICEBrowser (in Java), and another feature in JHOTDRAW and

XFIG, to highlight the generalizability of our metaphor.

Index Terms—Program understanding, dynamic analysis, static analysis, feature identification, epidemiology, FIREFOX and MOZILLA

Web browsers.
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1 INTRODUCTION

MAINTENANCE of legacy software involves costly and
tedious activities to identify and to understand data

structures, functions, methods, objects, classes, and, more
generally, any high-level abstraction required by maintai-
ners. Source code browsing is the most common activity
performed during maintenance because obsolete or missing
documentation forces maintainers to rely on source code
only. Unfortunately, source code browsing becomes very
time- and resource-consuming when the size and complex-
ity of programs increase.

An alternative to source code browsing is automatic or
semiautomatic design recovery. Central to this is the
recovery of “higher-level abstractions beyond those ob-
tained by examining a program itself” [1]. We propose an
approach to recovering higher-level abstractions through
identification and comparison of program features [2], [3].
For example, in a Web browser, accessing a page from the
bookmarks corresponds to a feature; adding a Uniform
Resource Locator (URL) to the bookmarks is another. Our
approach extends our previous work [4] and significantly
improves the accuracy of previous approaches.

We assume that the source code of the program being
maintained is available and that a compiled version can be
executed under different scenarios. We use an epidemiolo-
gical metaphor to analyze data collected dynamically when
exercising a feature under different scenarios to build
microarchitectures—subsets of the program architecture

[5]—from static and dynamic data, thus relating variables,
structures, classes, functions, and methods to features and
scenarios. We then use these microarchitectures to highlight
differences among features. By using our approach to build
and to compare microarchitectures, maintainers can locate
precisely the source code constructs responsible for a
feature and highlight the differences among features.

Our approach to feature identification relies on a process
and a set of supporting tools. The process builds on our
previous work [4] using processor emulation, knowledge-
based filtering, probabilistic ranking, and model transfor-
mations. It shows improved accuracy in identifying features
through the use of statistical analyses inspired by epide-
miology. We draw a parallel between events observed in
execution traces and diseases in a population of individuals.
Scenarios are the equivalent of environmental conditions
under which certain events occur. As epidemiologists, we
try to determine whether a disease (event) is more frequent
under certain environmental conditions (scenarios). Events
that are more frequent for scenarios in which a feature of
interest is exercised are more likely to relate to this feature.
The epidemiological analysis at the heart of our process is a
major extension of relevance indices from previous work
[4], [6]. It improves the accuracy of the feature identification
process when there is disorder due to multithreading and
imprecision during the collection in dynamic data.

We evaluate our approach through the analysis of large
multithreaded object-oriented programs: the FIREFOX and
MOZILLA Web browsers. We show, through direct compar-
ison with previous results [4], that the epidemiological
analysis overcomes the limitations of existing approaches
and, combined with probabilistic ranking, narrows the size
of microarchitectures dramatically. We also apply our
approach to FIREFOX and compare an identified feature
with that of MOZILLA to show the insights gained through
feature comparisons. Finally, we use our approach on two C
and two Java programs to discuss the generalizability of the
epidemiological analysis.
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The main contributions of this work are:

. A metaphor between feature identification and
epidemiology (Section 2.2).

. An exhaustive experimental comparison of our
approach with previous work (Section 3.1).

. An experimental study of the differences between
FIREFOX and MOZILLA (Section 3.2).

. A discussion and illustration of the generalizability
of our metaphor (Section 3.3).

Section 2 describes our process and tools for feature
identification and comparison, detailing data collection
(Section 2.1), an analogy between feature identification
and epidemiology (Section 2.2), and the modeling of
features as microarchitectures and their comparisons (Sec-
tion 2.3). Section 3 presents an experimental comparison
using MOZILLA of our approach with other approaches
based on grep, concept analysis, and probabilistic ranking
as well as an experimental study of the architectural and
behavioral differences between FIREFOX and MOZILLA. It
also sketches the generalizability of our approach to other
paradigms and programming languages, illustrated with
four programs in C and in Java. Section 4 discusses the
metaphor of epidemiology. Section 5 summarizes previous
work and its limitations, and Section 6 outlines future work.

2 FEATURE IDENTIFICATION

We borrow the concept of feature from previous work [3],
[6]. A feature is defined as a requirement of a program that a
user can exercise and which produces an observable
behavior. This includes functional requirements, e.g., the
“save bookmark” feature of a Web browser, and observable
nonfunctional requirements, e.g., a security algorithm
verifying a user’s identity. A feature is described in terms
appropriate to the context of the program and is weakly
defined intentionally to accommodate any foreseeable
situation. Feature identification is defined as the activity of
identifying the source code constructs implementing a
given feature. The source code constructs may be scattered
throughout the source code and/or entangled among
constructs implementing other features so they are difficult
to identify manually. We want to provide maintainers with
the source code constructs associated with a feature of
interest. We define a microarchitecture as the subset of a
program architecture—i.e., variables, structures, classes,
functions, and methods—that implements a given feature
concretely by contributing to the realization of the feature.
Maintainers use microarchitectures and their differences to
quickly understand the source code constructs activated or
not when exercising a particular feature of a program under
different scenarios.

Our feature identification and comparison process uses
both static and dynamic data collected from a program
source code and its executions. A scenario provides the
conditions under which a feature is exercised. First, we
collect dynamic data from different scenarios as traces, lists
of events composed of variable accesses, object instantia-
tions, function and method calls. We then use an epide-
miological metaphor to classify the events in traces as
relevant or not to a feature of interest. Also, we rank the
relevant events to associate top-ranked events with a
feature. Finally, we use feature-relevant events to build
microarchitectures highlighting the source code constructs
that implement the feature.

Fig. 1 summarizes the process of feature identification
and comparison in our approach, using the IDEFØ [7]
graphical language. The following sections detail each step
of the process and associated tools in three parts: data
collection (program model creation, trace collection, and
knowledge-based filtering), data analysis (epidemiological
metaphor and relevance index), and data modeling (feature
model creation and comparison). Several tools were devel-
oped and integrated to support the process. The authors
reused their tools as well as existing open-source tools.

2.1 Data Collection

There are three activities in the initial data collection:
1) program model creation, 2) trace collection, and 3) knowl-
edge-based filtering.

2.1.1 Program Model Creation

We use static analysis to build a model of the architecture of
a program from its source code. Such a model is an instance
of a dedicated metamodel, which offers all the constituents
needed to describe the structure of object-oriented pro-
grams: variables, functions, classes, interfaces, fields,
methods, parameters, and relationships (such as specializa-
tion, association, and aggregation).

A static analyzer parses C++ source code, both headers
and implementation files, resolves and binds types, and
generates a model of the program architecture expressed in
the AOL intermediate representation (ABSTRACT OBJECT

LANGUAGE format [8]). Parsers for several programming
languages, such as C++, Java, and IDL, exist to create AOL
representations.

We manipulate AOL representations using the PADL
metamodel. This metamodel provides a set of constituents
to describe the structure of object-oriented programs and a
set of parsers to build models of programs from code
sources in various languages. Parsers can be easily added
through the Builder design pattern. We added a parser for
AOL files using the JAVACUP parser generator.

2.1.2 Trace Collection

Trace collection depends on executions of feature-relevant
and irrelevant scenarios. Scenario executions are modeled
as traces. Traces are modeled as sequences of intervals [9],
which are sequences of events. The definition of an event is
blurred intentionally as in [9] and [3] to accommodate
different levels of granularity. An event may correspond to
the instantiation of an object, a method call, or the execution
of a code fragment.

We consider two families of scenarios: those that exercise
a feature of interest and those that do not. We exercise each
scenario to collect traces. Depending on the scenario, the
studied feature, and the locations of the intervals during the
scenario, we mark intervals as relevant or irrelevant to the
feature. Relevant events should always be present in
feature-relevant intervals. Thus, without disorder or im-
precision, set operations would suffice to classify events as
relevant or irrelevant.

However, precise location of an event in time or
identification of an event marking the exact beginning or
end of feature-relevant intervals may be very difficult or
simply not possible to achieve when collecting dynamic
data on multithreaded programs. Indeed, existing tools to
collect dynamic data, namely profilers and debuggers, must
use either the Marking Instant in Time strategy (MIT, e.g.,
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collecting events every 2 milliseconds), the Marking Event
strategy (ME, e.g., collecting events related to method calls
only) or a hybrid MIT and ME strategy (such as VTUNE,
OPROFILE, or GPROF). These strategies can be used to mark
events as feature relevant, but are dependent on the
scheduler of the operating system—on the order of
execution of the processor threads. Thus, regardless of the
chosen strategy, events may be collected in different orders
in successive, seemingly identical executions. Moreover,
tools often use event sampling to reduce the amount of
dynamically collected data, the size of the traces. Thus,
feature-relevant events may be tangled with irrelevant
events because of disorder in multithreading, and relevant
events may be lost because of imprecisions during the
collection of dynamic data.

We use processor emulation to improve the order and the
precision of data collection. VALGRIND [10] is an open-
source framework for debugging and profiling x86-Linux
programs. VALGRIND simulates an x86 processor and
allows the development of specialized plugins for the
dynamic analysis of memory management or multithread
bugs. The collected data are precise because VALGRIND

emulates the processor at the cost of a reduction in
performance of the program under analysis. We perform
data collection with CALLGRIND, an extension to VAL-

GRIND. CALLGRIND and KCACHEGRIND, by Josef Weiden-
dorfer, use the runtime instrumentation of VALGRIND for
cache simulation and call-graph generation. Cache simula-
tion and call-graph generation allow for the profiling of
shared libraries and dynamically opened plug-ins. The data

generated by CALLGRIND can be loaded in KCACHEGRIND
for browsing and analysis.

Other approaches also exist to generate dynamic data.
Statistical profiling, such as JPROF [11], which uses an MIT
strategy, is a suitable choice when accuracy is not essential
and overhead must be kept low. Statistical profilers do not
collect traces but, rather, time spent in functions and
methods along with callees and callers. Such data can be
used to recover partial trace information. Another widely
used approach is source code instrumentation using the ME
strategy. However, in modern multilanguage programs,
this approach requires a variety of tools not always readily
available. Further difficulties are encountered with threads
because a thread-safe instrumentation requires source code
transformations more complex than method entry and exit
instrumentations. Debuggers can alleviate the burden of
source code instrumentation, but do not help with threads
because threads are often implemented as lightweight
processes and it is often impossible to attach a debugger
on a running thread or spawn a debugger for each thread.

Processor emulation collects data in a more orderly and
precise manner than statistical profiling and debuggers do.
Furthermore, VALGRIND implements a POSIX thread layer,
so threads are no longer an issue. To the best of our
knowledge, VALGRIND thread implementation is incom-
plete and programs may misbehave. In our experiments,
however, we did not observe any misbehavior, except an
expected substantial performance overhead and increased
noise due to the greater precision. We call noise any event
that a posteriori knowledge reveals as irrelevant to a feature
of interest. The lack of a priori knowledge limits the ability
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to filter irrelevant events. Noise is common with modern
multithreaded processors, event-driven multithreaded pro-
grams, and graphical interfaces, so we use knowledge-
based and statistical filtering to reduce it.

2.1.3 Knowledge-Based Filtering

We are not interested in all classes of events collected in
traces. For example, graphical events generated by the
mouse or actions of reading or writing from or to an
external database or configuration files may be considered
noise with respect to a feature of interest. We remove events
obviously irrelevant to some scenarios of interest from the
dynamically-collected data and, thus, reduce noise.

We define a family of filters based on application
knowledge, which helps to reduce the quantity of dynamic
data. For example, if a program uses middleware such as
DCOM or CORBA or external components such as
databases, the related data can be removed if not directly
relevant to the feature.

Furthermore, if an event has already been classified as
feature relevant or irrelevant, then it can be removed from
the dynamic data. Thus, as knowledge increases and more
events are classified, maintainers use this knowledge to
narrow the feature through a feedback loop, which reduces
the effort to precisely identify the feature.

Thus, knowledge filtering reduces the sets of events. We
use an epidemiological metaphor to classify remaining
events as relevant or irrelevant to a feature of interest and a
relevance index to rank these events.

2.2 Data Analysis

The three activities in data analysis consist of classifying
events as relevant or irrelevant to a feature of interest,
ranking relevant events, gathering most relevant events,
and associating these with a feature.

2.2.1 Epidemiological Metaphor

Epidemiologists study the prevalence of a disease, which is
the percentage of individuals infected in a population at
risk. The prevalence is calculated as the ratio of the number
of individuals infected with the disease (instances of the
disease) over the total number of individuals at a given
time. The prevalence of a disease varies across time,
populations, and environmental conditions. Epidemiolo-
gists are interested in verifying if different environmental
conditions lead to a statistically significant difference in
prevalence.

Different environmental conditions promote different
diseases, e.g., the exposure to certain chemical substances
may lead to carcinogenesis, while a diet based on vegetables
seems to provide protection. For a population and a disease,
the ratio of prevalences highlights different environmental
conditions. Like epidemiologists, we want to compute the
ratio of prevalences of events in different traces to identify
feature-relevant events with respect to a given scenario.

We draw a parallel between the prevalence of a disease
in a population and the prevalence of events relevant to a
feature of interest in a trace. Table 1 summarizes the
mapping between the concepts in epidemiology and those
in feature identification. A scenario defines the environ-
mental conditions in which a feature is studied. A feature of
interest in a given scenario corresponds to a disease under
some environmental conditions. Such a feature is character-
ized dynamically by its events and statically by its
microarchitecture, as the “typical” symptoms of a disease
may have different manifestations in different individuals.

A trace is a population, i.e., a set of events that may be
relevant or irrelevant to the feature under study, in which
events are similar to sick individuals. Our metaphor
assumes that any event belongs to a feature—as expected
in a program, which corresponds to all individuals in a
population having some sickness. A microarchitecture
gathers source code constructs activated by the feature in
the given scenario, similar to the symptoms common to all
individuals suffering from a particular disease under given
environmental conditions. It links execution events related
to a feature of interest in a given scenario.

The essential difference between epidemiology and
feature identification is that in the latter, we cannot
distinguish feature-relevant and feature-irrelevant events
with one unique trace alone. We need multiple traces from
different scenarios and exercising different features to
identify feature-relevant events. Feature identification cor-
responds to an extreme case in which epidemiologists
encounter a new species and, therefore, lack the immediate
ability to distinguish sick from healthy individuals. Conse-
quently, epidemiologists must categorize individuals ac-
cording to common distinguishing characteristics and
subject individuals in each category to different environ-
mental conditions in order to study their characteristics and
identify sick individuals and their diseases.

Let F0 (F , respectively) be a set of scenarios (not)
exercising a feature of interest. We classify events as
relevant or irrelevant with respect to the many possible
different features intentionally or accidentally exercised in
the sets of scenarios F0 and F . Thus, we suppose that F0
and F are chosen carefully: F0 exercises one and only one
feature of interest and F exercises any feature but the
feature of interest. (The choice of F0 and F is beyond the
scope of this work; we exemplify the importance of this
choice in the case studies in Part 3.) Exercising scenarios in
F0 produces a class CI0 , a set of intervals I0i containing
events relevant to the feature. Scenarios in F produce CI , a
class of intervals I j containing events irrelevant to the
feature. Intervals I0i (I j, respectively) are marked as
relevant (irrelevant, respectively) during trace collection;
however, they may contain irrelevant (relevant, respec-
tively) events due to noise.

We regard an event ek as an instance of a disease because
the appearance of ek in an interval I0i or I j depends on the
environmental condition in the region of the trace corre-
sponding to the particular interval. As in epidemiology, we
want to compute the ratio of prevalences of event ek
between I0i and I j to test if an event ek is statistically more
frequent in intervals I0i than in intervals I j. We reformulate
our test on the frequencies of events ek in classes CI0 and CI :
If NCI0 ðekÞ (NCI ðekÞ, respectively) is the number of times an
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event ek appears in CI0 (in CI ) and NCI0 (NCI ) is the overall
number of events in CI0 (in CI ), then the frequency of ek in
CI0 is

fCI0 ðekÞ ¼
NCI ðekÞ
NCI0

;

its frequency in CI is

fCI ðekÞ ¼
NCI ðekÞ
NCI

;

and the null hypothesis H0 states that the frequencies
fCI0 ðekÞ and fCI ðekÞ are equal. In other words, ek belongs to
CI0 or CI with the same frequency. However, we observe
that very often several scenario executions are available.
Thus, we reformulate the hypothesis testing in terms of the
intervals in CI0 and CI to better exploit the data available in
these intervals.

We test the null hypothesis by testing ek proportions in
the samples corresponding to the intervals I0i 2 CI0 and to
I j 2 CI . Intuitively, the more often we reject H0, the more
likely ek contributes to the realization of a feature of interest.
If we denote with m ¼ jCI0 j and n ¼ jCI j the cardinalities of
the two classes, then for each event ek, we perform m� n
proportion tests. Ideally, for any pair of intervals I0i and I j,
we would reject the null hypothesis H0 that ek frequency is
equal in the two intervals.

We perform tests on pairs of intervals I0i and I j, not on
the classes CI0 and CI , for greater accuracy. For example,
Fig. 2 shows a set of three traces, divided into three intervals
in CI0 and four intervals in CI . In CI0 , the relevant event ek
appears three times, while in CI it appears twice. We could
say that ek appears two times out of three in CI0 with respect
to CI and we would conclude that ek is irrelevant. However,
ek appears in every interval I0i 2 CI0 , while it appears only
in two intervals I j 2 CI over four when comparing pairs of
intervals. Thus, we reject H0 nine times out of 15, with
m� n ¼ 3� 5 ¼ 15, and classify ek as relevant.

Proportion testing [12] assumes that the two samples are
independent. We build I0i and I j from the same traces,
which could prevent independence. However, we observe
that the environmental conditions leading to intervals I0i
and I j are different because they belong either to different
scenarios or to a different part of the trace of a same
scenario. Moreover, in the absence of noise, the condition
when exercising a scenario in F0 does not hold for sets I j
(similarly, the condition for a scenario in F does not hold
for sets I0i). Thus, we consider classes CI0 and CI
independent.

For a given pair of intervals I0i and I j, we compute the
frequency of an event ek in an interval I (either I0i or I j) as

fðekÞ ¼
NI ðekÞ
NI

;

where NI ðekÞ is the number of times ek appears in I and NI
is the overall number of events in I . The frequency

indicates the importance of an event with respect to an

interval. It is a measure of the prevalence of this event with

respect to the interval. For a selected significance level �, we

determine the critical region through a two-sample propor-

tion test by requiring that the test statistic z be greater than

the critical value z� in a single-tailed test [12]. Clearly, not

all tests for every pair of intervals I0i and I j and event ek
reject H0. We support our expectation that the frequency of

ek is higher in interval I0i by carrying out a two-step process.
First, we define a function �

��ðek; I0i; I jÞ ¼
1 if H0 is rejected
0 otherwise;

�

which, for a given significance level �, returns 1 if and only

if the null hypothesis is rejected. We count the number of

successes in the m� n tests with

S�ðekÞ ¼
Xm
i¼1

Xn
j¼1

��ðek; I0i; I jÞ:

The closer S�ðekÞ is to m� n, the higher the likelihood that

ek contributes to the feature.
Second, we decide if ek is relevant to a feature of interest

using a simple voter v�ðS�ðekÞÞ:

v�ðS�ðekÞÞ ¼
1 if S�ðekÞ � �
0 otherwise:

�
ð1Þ

For values of � close to m� n, the voter selects only events

that are likely to be relevant to the feature of interest. Values

� and � control the size of the set of events classified as

relevant. The smaller the � (e.g., 1.00 percent) and the

higher the � (e.g., m� n� 1), the smaller the set of relevant

events.
Using the epidemiological metaphor, we classify all

events in CI0 and CI as relevant or irrelevant. We use a
relevance index to rank and associate the most relevant
events with a feature of interest.

2.2.2 Probabilistic Ranking

In our previous work [4], we introduce a relevance index
that is a renormalization of Wilde’s equation [9] where events
are reweighted by the sizes of the classes to make them
directly comparable. We summarize this relevance index for
completeness.

Wilde proposes the relevance index pcðekÞ, with

pcðekÞ ¼
NCI0 ðekÞ

NCI0 ðekÞ þNCI ðekÞ
; ð2Þ

where NCI0 ðekÞ is the number of times ek appears while
executing scenarios in F0 (i.e., counting events contained in
class CI0 ) and NCI ðekÞ is the number of times the same event
is encountered while executing F scenarios (i.e., counting
events contained in class CI ). Clearly, pc ranges between 0
and 1. It is 1, or very close to 1, for any feature-relevant
event and 0 for irrelevant events.
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We modify (2) to weigh the sizes of the different intervals
and build from the previous equations the relevance index

rðeiÞ ¼
fCI0 ðeiÞ

fCI0 ðeiÞ þ fCI ðeiÞ
: ð3Þ

We inject into (3) the events classified as relevant by the
voter v�ðS�ðekÞÞ in (1) and, then, rank these events with
respect to the overall number of possibly relevant or
irrelevant events in CI0 and CI . Since the number of relevant
events might be too large to build the microarchitecture
associated to the feature of interest and to be of any help to
maintainers, we filter ranked relevant events and keep only
those with a higher relevance.

2.2.3 Filtering Relevant Events

We use (4) and a positive threshold t to reduce the set of
feature-relevant events:

E0t ¼ feijrðeiÞ � tg: ð4Þ

The size of E0t depends on the threshold t. A threshold of
100 percent means that we keep events with 100 percent of
relevance with respect to the epidemiological metaphor and
the relevance index. Equation (4) limits the number of
events that maintainers must consider as relevant to a
feature of interest. We use this subset of ranked relevant
events to build a microarchitecture representing the feature
of interest, which can be displayed against the program
architecture and compared to other microarchitectures to
help maintainers precisely locate responsibilities and
differences.

2.3 Data Modeling and Feature Comparison

The last two activities in the feature identification and
comparison process use the subset of filtered relevant
events to build and compare models of features in order to
highlight architectural and behavioral differences in fea-
tures and their implementation.

2.3.1 Feature Model Creation

We use the program architectural model and the events in
E0t to create new models of the program that include only
the variables, classes, functions, and methods activated
when exercising some scenarios. Such models represent
“slices” of the program and are microarchitectures high-
lighting the constituents that implement a feature.

We create these microarchitectures by cloning the
program architectural model and by removing from this
model, by means of model transformations, all variables,
classes, functions, and methods that are not explicitly
(directly or indirectly) called when exercising a feature.

We can potentially create an infinite number of micro-
architectures through the execution of different features of
the program for different scenarios. We can also create
microarchitectures of various widths: A microarchitecture
may include only the variables, classes, functions, and
methods exercised, or it may also include those that are
related, directly or indirectly. Thus, a microarchitecture
may be small or expanded, as desired, up to the point
where it is equal to the complete program architecture.

PADL offers facilities to clone and visit models using the
Prototype and Visitor design patterns. We use these facilities
to build a Visitor dedicated to the construction of micro-
architectures representing features from a program archi-
tectural model and from subset E0t.

2.3.2 Feature Comparison

We compare and highlight differences among microarchi-
tectures so that maintainers can understand and compare
the behavior of different features or of the same feature with
different scenarios or across different versions. We can use
set intersection to compare microarchitectures because
these are built using sets of filtered ranked-relevant events,
in which disorder and imprecision have been dealt with by
processor emulation and the epidemiological metaphor.

We use model transformation techniques to highlight
differences among microarchitectures. From a given “ori-
gin” microarchitecture, we compute the set of model
transformations required to transform it into another
“destination” microarchitecture. We use this set of trans-
formations to add to the “origin” microarchitecture vari-
ables, classes, functions, and methods missing with respect
to the “destination” microarchitecture and to distinguish in
the “origin” microarchitecture variables, classes, functions,
and methods not included in the “destination” microarch-
itecture. The modifications in the “origin” microarchitecture
are described using specific entities of the metamodel to
highlight differences between microarchitectures visually.

Since microarchitectures are also models of the PADL
metamodel, we develop a Visitor to compare microarchi-
tectures among themselves. Feature identification and
comparison are independent of the order in which we store
variables, classes, functions, and methods.

3 CASE STUDIES

The goal of our feature identification and comparison
process is to assist program understanding tasks in large
multithreaded object-oriented programs by identifying the
microarchitectures implementing some features of interest
and by highlighting the variables, classes, functions, and
methods activated when exercising a feature. We use the
following three case studies to assess the usefulness of our
process:

1. We mimic the program understanding task of
identifying the microarchitecture implementing the
feature “save a bookmark” of MOZILLA [13]. We
compare our approach with those presented in
previous works.

2. We compare the implementation of the previous
feature “save a bookmark” in FIREFOX [14] and in
MOZILLA to assess the similarities and the differ-
ences between features of these related programs.

3. We reproduce the previous case studies with two
Web browsers in C and in Java: CHIMERA [15] and
ICEBROWSER [16], to support the generalizability
of our process and of the epidemiological meta-
phor. We perform other feature identification tasks
with two graphical editors, JHOTDRAW [17] in
Java and XFIG [18] in C, to further strengthen the
generalizability.

We did not have prior knowledge of the implementa-
tions of the programs used in the three case studies. In each
case study, we restrict feature identification to classes,
functions, and methods because of limitations in the
technical capabilities of CALLGRIND. Events collected
through CALLGRIND are function and methods calls, from
which we infer exercised classes using the program
architectural model.
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3.1 Case Study 1

In this first case study, we compare our process of feature
identification with previous works by Eisenbarth et al. [3],
and add a comparison of the accuracy to our previous
approach [4] and Wilde’s [9].

3.1.1 Setup

MOZILLA is an open-source Web browser ported on almost
all software and hardware platforms. It is sufficiently large
and mature to represent a real-world program. Its size
ranges in the millions of lines of code (MLOC). It is
developed mostly in C++, with C code accounting for only a
small fraction of the program. We do not include in our
study Java, IDL, XML, HTML, and configuration language
and support. MOZILLA version 1.5.1 includes more than
14,000 source files for a size of up to 4.40 MLOC
decomposing into about 3,060 subdirectories.

Table 2 gives an overview of the size of the Web
browser. Reported figures are orders of magnitude rather
than absolute values. Indeed, several factors influence these
figures, such as reverse engineering tools, parsing techni-
ques [19], and certain programming language features. In
our case studies, we choose conservative reverse-
engineering techniques. We apply strict reverse-engineer-
ing rules such that we categorize as classes only entities
declared as such according to the C++ syntax. C structures
and templates cannot be expressed as AOL entities because
AOL does not provide dedicated representations of
structures or templates. We map structures and templates
to AOL classes annotated with specific comments. We also
consider templates mixed with structures as outside of the
boundary of the reverse-engineered models and do not
recover their attributes, methods, and file locations.

3.1.2 Objective and Hypothesis

We hypothesize that the number of classes in the micro-
architecture reported using the new process is smaller than
the same number in microarchitectures identified with
previous approaches, using the same traces.

One key feature of Web browsers is the ability to store
URLs. We are interested in feature F: the variables, classes,
functions, and methods activated when a URL is saved. We
seek to identify the microarchitecture implementing feature
F in MOZILLA. We consider two families of scenarios:

. F , which includes 10 scenarios similar to: Users visit
an URL. For example, users open a Web browser,

click on a previously bookmarked URL, wait for the
page to load, and close the Web browser.

. F0, which includes one scenario where: Users, once
the page is loaded, save the URL. For example, users
perform the appropriate actions, via mouse and
graphic objects interactions, to save the bookmark.

Sequences of actions between F0 and F are equal except
for the bookmarking action in F0. Thus, intuitively, all
variables, classes, functions, and methods activated in F are
present in F0, but not vice-versa; the difference corresponds
to feature F. We build and compare two microarchitectures:
�AF0 , which corresponds to the scenario in F0, and �AF ,
which corresponds to the scenarios in F , to identify events
relevant to feature F.

We assess our hypothesis by comparing the sizes of the
microarchitectures implementing feature F when identified
first using a naive approach based on the usual grep string-
matching tool, then using a concept analysis-based techni-
que from the literature [3], and finally using our previous
relevance index [4].

3.1.3 Results with a Naive Approach

Naive maintainers would attempt to perform the under-
standing task by searching files with tools supporting
strings and regular expressions matching, such as the Unix
utility grep. For example, they would search for files
containing the term add or synonyms such as store and save.
Several combinations in conjunction or disjunction with
synonyms and abbreviations to the term bookmark are
possible (e.g., url, uri—Universal Resource Identification,
bookm, link, ref). Data in Table 3 shows that only a
conjunction of terms reduces the number of files to be
inspected to identify the feature responsible for saving a
bookmark. However, these matches are string-based at the
file level. It is impossible to automatically distinguish a
meaningful match from unwanted matches.

3.1.4 Results with Concept Analysis

Table 4 reports typical sizes of CI0 and CI in number of
events as collected with VALGRIND. The focus of the
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program understanding task is to identify classes and
methods which characterize feature F, which are part of the
36,105,209 CI0 method calls. We create a formal context C ¼
ðO;A;RÞ for F0 and F following the approach presented in
[3]. We consider CI0 and CI for F0 and F as four
subscenarios and A, the set of attributes, contains four
symbols to represent these subscenarios. O, the set of
objects, contains all distinct methods activated when
exercising F0 and F . There are about 30,000 distinct
methods present in CI0 and CI . R is a binary relation; a
pair ðo; aÞ is in R if the method m 2 O is called when the
subscenario s 2 A is performed. The resulting lattice
contains 11 concepts (excluding top and bottom); concepts
range from a minimum of 13,325 methods to a maximum of
26,613. We identify manually, in the lattice, concepts
corresponding to the I0i and I j intervals of F0 and F . We
compute set difference between these concepts only and
retain 1,038 candidate methods to feature F. Concept
analysis is a powerful tool, but results need a manual and
tedious inspection to focus feature identification. It narrows
features better than a naive approach, but suffers from the
problem of set difference.

3.1.5 Results with Probabilistic Ranking

In a previous work [4], we used knowledge-based filtering
and relevance index, as reviewed in Section 2.1. First, we
use events in the CI0 and CI classes for F0 and F (reported
in Table 4) to define a knowledge-based filter and thus
reduce noise. Table 5 reports the data in Table 4 with
filtered method calls. Second, we use this data to create a
ranked list of methods according to (2) and (3). Both

equations highlight 274 relevant events, i.e., methods that
are particular to F0, with E�1. These methods belong to about
80 different classes. Classes and methods counted in Table 7
form a microarchitecture implementing feature F and
program comprehension is limited to this. Unlike the naive
approach, probabilistic ranking makes it possible to classify
classes and methods contributing to a microarchitecture
implementing a feature. The 274 methods belong to the set
of 1,038 methods identified by concept analysis.

3.1.6 Results with Epidemiological Metaphor

We use the epidemiological metaphor to classify events as
relevant or irrelevant to feature F before ranking relevant
events with the relevance index exemplified in the previous
subsection.

With a significance level � ¼ 0:01 and a threshold � ¼
10 for the number of rejected tests, the voter in (1)
classifies 310 methods as relevant to feature F, with t
equals 50 percent. These 310 relevant methods should be
compared with the 2,796 methods from our (3) and with
the 515 methods from Wilde’s (2).

We rank these 310 methods with the relevance index in
(3) and identify 272 methods with an index of 100.00 per-
cent. Table 6 shows the sizes of E�t when ranking methods
with different threshold values. The use of the epidemio-
logical metaphor dramatically reduces the set of relevant
events from 0.73 percent when t ¼ 100% with respect to (2)
and (3) to 40 percent when t ¼ 50% with respect to (2) and
to 88.95 percent when t ¼ 50% with respect to (3). Fig. 3
shows the variation of the number of methods classified as
relevant with the epidemiological metaphor in function of �
and �, when exercising the one scenario in F0 and the
scenarios in F . The number of relevant events decreases as
� closes in on m� n (1� 10). This number also decreases as
we reduce the size � of the critical region.
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The microarchitecture �AF0 associated with feature F,
when exercising F0, contains 66 classes defining the
272 methods with t ¼ 100%. The microarchitecture �AF
created when exercising F contains 352 classes. The
comparison of the two microarchitectures reveals that
�AF0 contains 44 classes not present in �AF , while �AF
contains 330 classes absent from �AF0 , as reported in Table 7
ð352� 330þ 44 ¼ 66Þ. Maintainers do not need to consider
the 330 absent classes because they do not play a role in
feature F.

A method-level comparison reveals that 127 methods in
�AF are not called in �AF0 and that there are 58 methods
called in �AF0 with respect to �AF . A deeper analysis shows
that 20 classes are exercised differently. Thus, maintainers
would manually analyze either the 44 classes in �A0F (and
not in �AF ) or the 20 classes exercised differently.

3.1.7 Conclusion

The use of the epidemiological metaphor dramatically
decreases the number of methods in comparison to
previous works and thus the size of the microarchitecture
implementing feature F to be analyzed by maintainers. In
the next case study, we show that our approach is also
useful in comparing the implementation of feature F, called
FMozilla, in FIREFOX, a different, but related, Web browser.

3.2 Case Study 2

The second case study consists of comparing the micro-
architecture associated with feature F in the FIREFOX and
MOZILLA Web browsers.

3.2.1 Setup

FIREFOX is the next generation of Web browser built by
the MOZILLA foundation based on its experience with
MOZILLA. It is ported on almost all known software and
hardware platforms and is also large enough to represent
real-world programs. FIREFOX’s size ranges in the millions
of lines of code (MLOC). It is also mostly developed in
C++. The considered version, 1.0.7, includes more than
10,000 source files for a size of up to 3.75 MLOC
decomposing in about 3,000 subdirectories. Table 8 gives
an overview of the size of the Web browser. The
restrictions regarding the technique used to reverse-
engineer MOZILLA also apply to FIREFOX.

3.2.2 Objective and Hypothesis

We assess the usefulness of our approach when comparing
feature F in the Web browsers FIREFOX and MOZILLA. We

hypothesize that our approach allows for identifying the
classes involved in feature F in both Web browsers.

Tables 2 and 8 summarize data on the two Web browsers
but do not report the differences between the two Web
browsers. FIREFOX contains 1,173 classes that are not
present in MOZILLA, which in turn contains 1,758 that do
not appear in FIREFOX. The differences between the Web
browsers are actually even greater because we compute
these using string matching on class names and do not
include class and method semantics. In addition, differ-
ences are also likely to be greater between the Web
browsers as FIREFOX continues to be actively developed
by its community while MOZILLA is in maintenance.

For this case study, we apply the families of scenarios F0
and F , from the previous case study, to the FIREFOX Web
browser. We obtain a feature FFirefox which we compare to
the feature FMozilla identified in the previous case study. We
expect many differences between features FFirefox and
FMozilla, because of the many differences between the two
Web browsers.

3.2.3 Results

Feature FFirefox includes 227 methods for 83 classes. Feature
FMozilla includes 310 methods for 87 classes. Among these
classes and methods, 264 methods (and 67 classes) are
present when exercising MOZILLA but not FIREFOX and
208 methods (and 63 classes) vice-versa. Fig. 5 shows some
of the differences between features FFirefox and FMozilla. Some
classes exist in FIREFOX but not in MOZILLA, while some
exist in both. In addition, Web browsers perform different
method calls.

We perform a deeper analysis of the differences between
features FFirefox and FMozilla. Fig. 6 shows a summary of the
classes and methods involved in saving a bookmark in
FIREFOX and in MOZILLA and their relationships. The same
class nsBookmarksService is the main actor in both
features, but it has been refactored in FIREFOX to reduce the
length of the call chain to save a bookmark (three method calls
versus one). In MOZILLA, AddBookmarkImmediately()
calls CreateBookmarkInContainer(), which calls
CreateBookmark(), while in FIREFOX there is a unique
call to CreateBookmark(). Thus, it seems that the
developers of FIREFOX grouped the feature F into one
method.

A further manual comparison of the classes nsBook-

marksService in the two Web browsers shows that all
methods in this class for MOZILLA still exist in FIREFOX,
even though they are no longer used. The nsIBookmarks-
Service IDL interface even specifies that some available
method skeleton should be removed. Developers state in
file nsIBookmarksService.idl of directory browser/

components/bookmarks/public, line 113, “xxxpch: to
be removed.” immediately before the IDL declaration of
method signature addBookmarkImmediately(). A
comment in line 1305 in file nsBookmarksService.cpp

further states that: “xxxpch: useless caller of AddBookmark-
Immediately...” just before the method skeleton AddBook-

markImmediately. We conclude that the implementa-
tions of feature F in FIREFOX and MOZILLA are similar, but
that in FIREFOX, developers have performed some unfin-
ished refactorings.

3.2.4 Conclusion

Our approach allows for the identification and comparison
of the microarchitectures implementing the feature F in
FIREFOX and MOZILLA and, thus, helps maintainers to
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understand the architecture and behavior of the two
programs with respect to each other. With our approach
to feature identification, maintainers can gain much insight
into the implementation of FIREFOX.

3.3 Case Study 3

The third case study concerns the generalization of our
approach. We developed our process to identify features
in large, multithreaded C++ programs. The process and
the metaphor, however, also apply to other paradigms
and object-oriented programming languages. We briefly
present four examples, using both the previous feature F
and a new feature, to illustrate the generalizability of our
approach to C and Java programs. The new feature G
concerns the “draw circle” capability of the graphic
programs JHOTDRAW and XFIG.

3.3.1 Feature F and C

CHIMERA [15] is a Web browser dating back to the early
1990s. Written by John Kilburg and others, it is an
X/ATHENA Web client for UNIX-based workstations. It is
entirely developed in C. Its 2.0a19 version contains about
38 thousands of lines of code (KLOC), organized in 75 C
files and 38 header files. Its compiled executable contains
413 functions. Despite its minimalist approach, CHIMERA

implements the core features found in full-fledged Web
browsers, including feature F.

We replicate the task of identifying feature F in CHIMERA

to support the generalizability of our approach. We use the
following scenarios: “open and close CHIMERA,” “access a
link through the bookmarks,” and “save a bookmark.” We
exercise the feature-relevant scenario “save a bookmark”
once, while we exercise the other scenarios twice.

Of the 413 functions in CHIMERA compiled executable,
our approach retains 54, of which 12 are ranked as relevant
to feature F at 100 percent. The semantics of the names of
the functions draws attention to three functions immedi-
ately: BMDAddMark(), BookmarkAdd(), and BMWrite().
Caller-callee relationships show a chain of function calls in
which BMDAddMark() calls BookmarkAdd(), which, in
turn, relies on BMWrite(). Another existing function,
BMCreate() is not part of the functions contributing to
feature F in CHIMERA because it also participates in the
“access a link through the bookmarks” feature and is thus
filtered out. Our approach therefore precisely identifies the
functions implementing feature F in a C program.

3.3.2 Feature F and Java

ICEBROWSER [16] is a Web browser produced by the
company Icesoft. It is entirely written in Java and divides
into three reference implementations using either AWT, an
extended version of AWT, or SWING as graphic libraries.
The considered version 6.1.2 of the enhanced AWT
reference implementation, like CHIMERA, provides all the
features found in Web browsers such as MOZILLA. In
particular, it provides a “save a bookmark” feature. This
version contains 381 classes, 168 interfaces, 3195 fields, and
6,777 methods (excluding standard Java libraries) for about
57,000 KLOC, when including proprietary libraries.

Again, we replicate the task of identifying feature F in
ICEBROWSER. We use the following scenarios: “open and
close ICEBROWSER,” “access a link through the book-
marks,” and “save a bookmark.” We exercise the feature-
relevant scenario “save a bookmark” once, while we
exercise the other scenarios twice.

Without any knowledge-based filtering, our approach
retains 111 methods, one order of magnitude less than the
number of methods in the implementation, out of which 50
are ranked with a relevance index of 100 percent, belonging
to nine different classes. Among the nine classes, four belong
to the implementation of the Web browser per se, while the
other five belong to the standard Java class libraries (for
example, class java.util.List). The four classes in the
implementation declare 12 methods among the 50 ranked
100 percent, of which eight implement feature F directly: the
constructors Bookmark() and BookmarksDialog() and
the methods actionPerformed(), finished(),
init(), restoreBookmarks(), saveBookmarks(),
and updateChanges(), of the class BookmarksDialog.
Therefore, our approach is also useful with small-size Java
programs to identify the classes and methods implementing
a feature of interest.

3.3.3 Feature G in C

XFIG [18] is a menu-driven graphic tool to draw and
manipulate graphical objects interactively, under the
X Window system. It is written entirely in C. The 3.2.4 ver-
sion of XFIG contains about 90 KLOC, divided into 109 C
files and 83 header files. Static code analysis reports
1,937 functions, of which 1,911 are linked into the executable
binary.

We apply our approach to identify the functions
implementing feature G “draw a circle.” We execute the
following two feature-relevant scenarios. In the first scenar-
io, we draw a circle, save a file, and exit. In the second
scenario, we reproduce the previous scenario but draw two
circles. Feature irrelevant scenarios are “open and close
XFIG” and “open XFIG, draw a rectangle, save, and exit.”

When applying our approach and its epidemiological
metaphor, 20 functions are retained, out of which 18 are
ranked as 100 percent relevant. The semantics of the function
names and a study of the execution traces using a debugger
support that the following seven identified functions imple-
ment feature G: add_ellipse(), circle_ellipse _by-
radius_drawing_selected(), create_circleby-

rad(), create_ellipse(), draw_ellipse(), init_
circlebyradius_drawing(), and write_ellipse().
Thus, we show that we can apply our approach successfully
to another paradigm, program application, and feature.

3.3.4 Feature G in Java

As in XFIG, JHOTDRAW is a graphical tool with an
advanced user interface to draw and manipulate graphical
objects. It is written in Java and its 5.1 version contains
136 classes, 19 interfaces, 362 fields, and 1,380 methods for a
total of 4,582 KLOC (excluding standard Java class
libraries).

As with XFIG, we apply our approach to identify the
classes and methods implementing feature G when exercis-
ing the scenario “draw a circle” and the feature irrelevant
scenarios “open and close JHOTDRAW,” “draw a rectan-
gle,” and “animate some text.”

Of the 1,380 methods, we identify 14 methods as
participating in feature G, among which we rank 12 as
being 100 percent relevant to the feature. These 12 methods
belong to the five classes AttributeFigure, Figur-

eAttributs, EllipseFigure, AbstractFigure, and
ColorMap. A closer study of the implementations of class
EllipseFigure (subclass of AttributeFigure, sub-
class of AbstractFigure) and of its two ranked methods
drawBackground() and drawFrame() concretely high-
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lights their role in the implementation of feature G. Our
approach thus dramatically reduces the search for the
method implementing feature G.

3.3.5 Conclusion

Although CHIMERA, ICEBROWSER, JHOTDRAW, and XFIG
are smaller programs than FIREFOX and MOZILLA, Case
Study 3 still supports the generalizability of our approach
and of the epidemiological metaphor. This shows that our
approach can be applied to other object-oriented program-
ming languages as well as to procedural paradigms to
substantially narrow the number of classes, methods, and
functions to be inspected by maintainers.

4 DISCUSSION

The actual number of different classes in C++ programs
depends on how templates are counted. Since we consider
nsCOMPtr<nsIRollupListener> as consisting of two
classes, nsCOMPtr and nsIRollupListener, we count
class nsCOMPtr twice.

The use of the epidemiological metaphor and of the
relevance index limits the impact of the precision of the
tools collecting the data dynamically: A less precise tool
leads to a greater number of variables, classes, functions,
and methods, but this number is compensated by our
approach.

The number of classes and methods that a maintainer
must inspect is further substantially reduced if the inspec-
tion process is driven by the semantics conveyed by the
names of classes, functions, and methods, as exemplified in
the case studies. For example, if we apply a strategy similar
to the naive approach to events relevant to feature F, the
number of classes to be inspected is narrowed dramatically.
Only one class with modified behavior is highlighted, class
nsBookmarksService, belonging to F0, as well as the
methods AddBookmarkImmediately(), CreateBook-

mark(), CreateBookmarkInContainer(), Insert

Resource(), and getFolderViaHint().
The complexity of this approach depends upon the size

of sets I0i and I j and the number of these sets in classes CI0
and CI . In real cases, only a few sets I0i are collected and,
typically, more intervals I j are available. Thus, building the
reduced set of relevant events is linear in the number of I j
intervals. Equations 2 and 3 compute in linear time with the
size of the data and, thus, scalability is not an issue.

We reuse the traces collected in our previous work [4] to
build the microarchitectures �AF0 and �AF . However, the
specifications of �AF , access a bookmark stored in the
bookmark list, are larger than necessary. We observe that
events related to accessing a URL by typing it directly in
the URL top-bar are not strictly related to the micro-
architecture �AF . We add one realization of the scenario
“accessing a URL by typing” to the scenarios used to build
microarchitecture �AF and obtain a microarchitecture with a
size of 69 classes, to be compared to the previous 352 classes.

Equation (3), which ranks relevant events, may be
reinterpreted more closely to the epidemiological metaphor.
As epidemiologists, we may be more interested in the
prevalence of a given disease in a subpopulation that
already manifests a certain class of problems than we are in
the complete at-risk population. This corresponds, for
example, to studying the prevalence of lung cancer in the
population of people affected by any type of cancer.

In this case, we would consider the conditional frequen-
cies computed in relation to relevant events, not the

frequencies in relation to the overall classes CI0 and CI .
Thus, we do not alter the number of relevant events in
Table 6 ranked 100 percent but, rather, we better differ-
entiate events not ranked 100 percent relevant. For example,
if we use the same threshold 50 percent in Table 6, we retain
278 events, to be compared to the 310 previously ranked
relevant events.

Figs. 4 and 6 show the user interface of the PTIDEJ [20]
tool suite, which highlights differences between a micro-
architecture built from a scenario in F and the micro-
architecture built from the scenario in F0. The epidemiolo-
gical metaphor allows maintainers to identify differences
between features accurately and rapidly. We hypothesize
that the effort required to build mental models and
abstractions or to verify conjectures on the feature F is
alleviated by the accuracy of the microarchitectures
representing feature F, built with the epidemiological
metaphor.

More theoretical work is required to prove the general-
izability of our approach to different programs, program-
ming languages, and paradigms. The three case studies
presented in Part 3 (using programs CHIMERA, FIREFOX,
ICEBROWSER, JHOTDRAW, MOZILLA, and XFIG) support,
but do not prove, the generality of our approach and the
epidemiological metaphor. A proof would require defining
traces abstractly as well as characterizing the disorder and
imprecision caused by the different strategies of trace
collection. This is beyond the scope of this study.

5 RELATED WORK

Our research relates to static and dynamic program
analysis, feature analysis, and metamodeling and model
transformation techniques. The following sections describe
related work in each category and compare it to our
approach.

5.1 Static and Dynamic Analysis

Program instrumentation via source-to-source translation is
a common technique used to collect dynamic data. For
example, the work of Ernst et al. focuses on dynamic
techniques for discovering invariants in traces [21]. A
program is instrumented via the DAIKON front-end by
source-to-source translation. For each instrumentation
point, the values of all the variables in the scope are saved.
DAIKON does not offer a front-end for C++ and does not
provide enough data on method calls and variable accesses
for method-level feature analysis.

Ball and Larus [22] introduce techniques for program
profiling and trace collection at the intraprocedural level, in
particular, an efficient intraprocedural path numbering
algorithm that collects detailed data at the procedural level.
Melski and Reps [23] address interprocedural path profiling
by modifying the Ball-Larus algorithm for context-sensitive
interprocedural profiling. These approaches based on path
numbering may be prohibitive given the theoretically
exponential number of interprocedural paths and the
impossibility of representing such paths with limited-length
machine words. To the best of our knowledge, no empirical
data has been reported on the performance (time and space)
of these approaches.

Harrold et al. [24] present an empirical analysis of
relationships among program spectra, i.e., distributions of
program execution paths, and program behavior. They
experiment with seven small C programs to analyze the
correlation between programs, faulty programs, inputs, and
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Fig. 4. Example of the visualization of FMozilla.

Fig. 5. Excerpt of the comparison of features FFirefox and FMozilla.



program spectra. They conclude that the comparison of
program spectra can be used to highlight fault root causes
in programs. However, their tools for computing the spectra
of programs work for C and Java only and it is still unclear
whether program spectra can be efficiently computed on
large software.

Jeffery and Auguston [25] present the UFO dynamic
analysis framework, which combines a language and a
monitor architecture to simplify building new dynamic
analysis tools. UFO offers a precise behavioral model, a
declarative monitor language, dynamic analyses both at
runtime and postmortem, and automatic instrumentation
through the use of a virtual machine for the Icon and
Unicon programming languages. UFO also works on a
subset of C. The main limitations of the UFO framework in
the context of our work is the lack of support for C++ and
possible performance issues.

Finally, Ernst [26] discusses synergies and dualities
between static and dynamic analyses. Reiss and Renieris
[27], [28], [29] present an approach to encode dynamic data
and explore program traces. They also propose languages for
dynamic instrumentation. The problem of handling large
amounts of data when performing dynamic analysis is
discussed in several works, such as that by Hamou-Lhadj
and Lethbridge [30], [31], where the authors present an
algorithm for identifying patterns in traces of procedure calls.

Studies on open-source programs are becoming increas-
ingly popular because of the importance and of the quality
of these kinds of programs. Recently, Gyimóthy et al. [32]
studied several versions of MOZILLA to validate object-
oriented metrics for fault prediction. Koru and Tian [33]
also related high-change modules and modules with high-
est measurement values on MOZILLA and OPENOFFICE.
However, we have not found any work that combines
dynamic and static analyses of large multithreaded C++
programs.

5.2 Feature Identification

Although, researchers have proposed many feature identi-
fication approaches, none of these approaches can be
applied directly to multithreaded programs.

In their pioneering work, Wilde et al. [6], [9] present an
approach to identifying features by analyzing execution
traces. They use two sets of test cases to build two execution
traces, one where a feature is exercised and another where
the feature is not. They compare execution traces to identify
the feature associated with the feature in the program. They
only use dynamic data from program executions to identify

features; they do not perform static analysis of the program.
We use a knowledge-based filtering technique for dynamic
data and an epidemiological metaphor to classify relevant
and irrelevant events for a feature of interest.

Chen and Rajlich [34] developed an approach to identify
features using Abstract System Dependencies Graphs
(ASDG). In C, an ASDG models functions and global
variables as well as function calls and data flow in a
program source code. Maintainers identify features using
the ASDG following a precise manual process. In contrast to
Wilde et al.’s work, Chen and Rajlich use only static data to
identify features and a manual process. We believe that any
manual identification process is prohibitive for large multi-
threaded object-oriented programs.

Eisenbarth et al. [3], [35] combine previous approaches
by using both static and dynamic data to identify features.
First, the authors perform a dynamic analysis of a program
using profiling techniques to identify features, similar to
Wilde et al.’s work. They then apply concept analysis
techniques to link features together and guide a static
analysis that narrows the scope of identified features. They
apply their approach to two C programs. However, feature
identification is actually performed by means of set
operations on concepts, which impedes the identification
in the case of multithreading, where relevant and irrelevant
events are entangled in traces.

Salah and Mancoridis [36] use both static and dynamic
data to identify features in Java programs. They go beyond
feature identification by creating feature-interaction views,
which highlight dependencies among features. They define
four types of views: object-interaction, class-interaction,
feature-interaction, and feature-implementation. Each view
abstracts preceding views to present only the most relevant
data to maintainers. Feature-interaction and feature-imple-
mentation views highlight relationships among views. This
work was recently extended to allow feature identification
and evolution analysis in MOZILLA [37]. However, main-
tainers cannot use these views to identify or highlight
differences among features from different scenarios.

Eisenberg et al. [38] introduce an approach to feature
identification using test cases. First, they partition test cases
in feature-specific subsets manually and use them to
generate traces. Then, they collect traces and rank methods
using heuristic criteria. They develop a tool for the Java
programming language and apply this to three different
programs. They do not discuss multithreaded programs.

Greevy et al. [39] study the evolution of object-oriented
software entities from a feature point of view. They analyze
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statically and dynamically (i.e., feature traces) multiple
versions of a program to obtain data on the evolution of
class roles. They classify, over time, class roles as feature
specific, not belonging to any features, infrastructural, and
group feature.

Feature identification is similar to dynamic program
slicing [40], in that both techniques seek to identify source
code constructs responsible for a certain program behavior.
While feature identification uses dynamic events to identify
a microarchitecture implementing a feature of interest
through its user-observable behavior, dynamic program
slicing uses static analyzes (such as dynamic dependence
graphs) to identify the program statements affecting the
value of a variable for given program inputs.

5.3 Metamodeling and Model Transformations

Metamodeling techniques are often used to model program
source code (for example, Pagel and Winter [41], Sunyé et
al. [42]). We concur with Thomas that “[e]very model needs
a metamodel” [43].

A metamodel defines a language to create models in
some universe of discourse. Models issued from a meta-
model can be visualized, compared, and modified at
runtime programmatically, using operations defined in
the metamodel. Model transformations are thus defined
more precisely and easily when a metamodel is present.
Model transformations are available, for example, in the
UMLAUT [42] tool, and are central to the Model-Driven
Architecture approach [44], [45].

5.4 Comparison to Previous Work and Criteria

Our work builds on and extends previous work, in
particular [3], [6], [36]. Like other authors, we consider the
problem of feature identification using static and dynamic
data and we use probabilistic ranking; however, to the best
of our knowledge, no previous work has obtained results as
good as ours for similar feature identification tasks on large,
multithreaded, object-oriented programs.

In this paper, we draw on our previous work [4] and
substantially extend it to improve accuracy through the use
of the epidemiological metaphor and statistical analyses.

Table 9 shows a comparison of our approach with
related work on static and dynamic analysis and feature
identification. In addition to the greater accuracy obtained
through the epidemiological metaphor, as illustrated by the
case studies in Part 3, our approach substantially improves
upon previous works through the identification, modeling,

and comparison, in large, multithreaded C++ programs, of
method-level features, using both dynamic and static data
with a scalable epidemiological metaphor, supplemented
by knowledge-based filtering and a relevance index.

6 CONCLUSION

We proposed an approach, inspired by epidemiology, to
feature identification and comparison, using consolidated
tools and techniques such as parsing, processor emulation,
and reverse-engineering techniques, to integrate static and
dynamic data to support program understanding of large,
multithreaded, object-oriented programs. We compared the
accuracy of our approach in identifying variables, classes,
functions, and methods supporting the “save a bookmark”
feature of the MOZILLA Web browser, with a naive grep-
based approach and an approach relying on concept
analysis. Accuracy was also evaluated by using our
approach in identifying features of CHIMERA, FIREFOX,
ICEBROWSER, JHOTDRAW, and XFIG.

Our approach reduces the quantity of data to process
and thus does not have scalability issues. It produces a
ranked list of events participating in a feature and it allows
the study of feature evolution. Extracted microarchitectures
are valuable means to document programs and to support
maintenance and program understanding tasks.

Future work will characterize the influence of noise and
uncertainty when collecting data, study increased width of
microarchitectures, define results of features comparisons
precisely, and study alternative means, such as layered
views, to improve features inspections. We also plan to
measure the performances of people when using our
approach to perform various program understanding tasks,
study the influence of increased widths, and apply our
approach to locate defects.
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