
DeMIMA: A Multilayered Approach
for Design Pattern Identification

Yann-Gaël Guéhéneuc, Member, IEEE, and Giuliano Antoniol, Member, IEEE

Abstract—Design patterns are important in object-oriented programming because they offer design motifs, elegant solutions to

recurrent design problems, which improve the quality of software systems. Design motifs facilitate system maintenance by helping

maintainers to understand design and implementation. However, after implementation, design motifs are spread throughout the source

code and are thus not directly available to maintainers. We present DeMIMA, an approach to semiautomatically identify

microarchitectures that are similar to design motifs in source code and to ensure the traceability of these microarchitectures between

implementation and design. DeMIMA consists of three layers: two layers to recover an abstract model of the source code, including

binary class relationships, and a third layer to identify design patterns in the abstract model. We apply DeMIMA to five open-source

systems and, on average, we observe 34 percent precision for the 12 design motifs considered. Through the use of explanation-based

constraint programming, DeMIMA ensures 100 percent recall on the five systems. We also apply DeMIMA on 33 industrial

components.

Index Terms—Maintenance traceability, design patterns, interclass relationships.

Ç

1 INTRODUCTION

MAINTAINERS must be aware of design choices in order to
modify an object-oriented software system appropri-

ately. Design choices include all decisions made by
developers when designing and implementing the system:
the structures of classes and the relationships among them.
However, design choices are often scattered in the source
code of systems after implementation because, with avail-
able object-oriented programming languages, they do not
transcribe directly into source code; developers must write
several lines of code using constructs of the languages to
implement their choices. Moreover, documentation is often
obsolete, if it even exists, and these choices are thus lost.

However, design choices are often implemented with
recurring patterns, “a form or model proposed for imita-
tion” [1], to facilitate writing and understanding the source
code. Idioms and design patterns are two types of patterns;
architectural patterns and micropatterns are others. Idioms
are low-level patterns specific to some programming
languages and to the implementation of particular char-
acteristics of classes or their relationships. They are
intraclass patterns describing typical implementation of,
for example, relationships, object containment, and collec-
tion traversal. Design patterns [2] are recurring interclass
patterns that define solutions to common design problems
in the organization of classes. They are “tactics” that
generate the structure and behavior of classes and their

relationships [3]. They influence the design of modules and
classes but not the overall architecture. They are defined in
terms of classes and relationships; thus their implementa-
tion uses idioms.

We use the term motif to express the solution of a pattern
as “a reliable sample of traits, acts, tendencies, or other
observable characteristics” [1]. We distinguish between
patterns and motifs because patterns often encompass
information that is not readily available for their identifica-
tion. For example, the Composite design pattern [2, p.163]
also includes information about its intent, motivation,
applicability, and consequences, which are not observable
characteristics. Only its structure, its participants, and their
collaborations are observable in the source code. Thus,
strictly speaking, we cannot use the terms design pattern
“identification,” “detection,” or “instantiation” but rather
the instantiation and identification of microarchitectures
similar to some motifs; thus, we use the term “design motif
identification” for the process traditionally called design
pattern identification.

We define the term microarchitectures as concrete
manifestations of some motifs in the implementation of a
system. A microarchitecture is composed of classes, methods,
fields, and relationships having structure and organization
similar to one or more motifs. A microarchitecture can be
similar to more than one motif because only developers may
decide intent, motivation, and consequences.

Developers usually search for some kinds of patterns in
order to understand a system [4]; by recognizing concrete
manifestations of these patterns, they deduce, from their
experience, the design choices underlying the presence of
motifs in the source code. During maintenance and evolution,
maintainers would greatly benefit from knowing the design
choices made during implementation, see, for example, [5].

To support design pattern identification and program
comprehension, we combine and extend our previous work
[6], [7], [8] in a new multilayered approach named the Design
Motif Identification Multilayered Approach (DeMIMA).
DeMIMA makes it possible to recover two kinds of design

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008 667

. Y.G. Guéhéneuc is with the Département d’Informatique et Recherche
Opérationnelle, Université de Montréal, C.P. 6128, succ. Centre Ville,
Montréal, Québec, H3C 3J7, Canada. E-mail: guehene@iro.umontreal.ca.

. G. Antoniol is with the Département d’Informatique, �Ecole Polytechnique
de Montréal, C.P. 6079, succ. Centre Ville, Montréal, Québec, H3C 3A7,
Canada. E-mail: antoniol@ieee.org.

Manuscript received 18 Apr. 2007; revised 1 Apr. 2008; accepted 29 May
2008; published online 27 June 2008.
Recommended for acceptance by R. Taylor.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-04-0133.
Digital Object Identifier no. 10.1109/TSE.2008.48.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

choices from source code: idioms pertaining to the relation-
ships among classes and design motifs characterizing the
organization of the classes. DeMIMA is extensible and
scalable; it ensures traceability between motifs and source
code by first identifying idioms related to binary class
relationships to obtain an idiomatic model of the source code
and then using this model to identify design motifs and
generate a design model of the system. On average, we
observe 34 percent precision for the 12 design motifs
considered and the five open-source systems on which we
apply our approach. DeMIMA ensures 100 percent recall on
the five systems. We also apply DeMIMA on industrial
system source code and designs.

The remainder of the paper is organized as follows: In
Section 2, we give an overview of the approach and justify
its rationale. In Section 3, we summarize related work and
present essential characteristics of the identification steps.
In Sections 4.2 and 4.3, we describe our approach and
discuss its characteristics. In Section 6, we apply the
approach on a testbed of open source and industrial
systems. In Section 7, we summarize our work and discuss
future challenges.

2 DESIGN MOTIF IDENTIFICATION

2.1 Context

We have broken down the comprehension process that
maintainers use to identify recurring motifs in the source
code into three tasks.

1. Identifying a microarchitecture �A similar to some
motifs from a set of known patterns SDP . Main-
tainers analyze a system source code S, either
manually or using tools, and identify subsets of the
source code that are similar to known motifs.

2. Contextualizing �A to keep a unique motif from SDP
using semantic data extrinsic to S. Maintainers
choose in SDP the pattern DP whose corresponding
motif DM is embodied by �A. Contextualization
depends on the system domain and on the main-
tainers’ experience and understanding of the system.

3. Comprehending S. Maintainers deduce from DP ,
whose motif DM was manifested by �A during the
implementation of S, the design choice behind �A,
including the intent and motivation of the devel-
opers and the consequences on the overall system
design.

Because subtasks 2 and 3 depend on the maintainers’
experience and the system domain, they are difficult to
automate. In contrast, task 1, which is tedious and error
prone [9], [10] is a good candidate for automation.

2.2 Problem

Design motifs are described with UML-like class and
sequence diagrams,1 which represent different aspects of
software systems [11]. Class diagrams are global models of
systems, representing their entities and the relationships
among entities, while sequence diagrams specify local
interactions in entities and sequences of method calls
among entities.

In the rest of this paper, we only consider class
diagrams because they are most frequently used to

describe design motifs [12]. Also, class diagrams are often
produced early in the development cycle and are the sole
reliable documentation because they can be reverse
engineered with reasonable accuracy. We will use other
information in future work.

DeMIMA assists maintainers in task 1 by providing a
three-step identification process of a design motif DM in
the source code S of a system based on UML-like class
diagram models:

1. Model the source codeS as a modelMS using a subset
of the language used to describe models of motifs and
including all of the constituents corresponding to
constructs of S, as explained in Section 4.1.

2. Enrich model MS with idioms that reveal binary
class relationships to obtain a modelMI , which uses
the same language used to describe models of
motifs, as detailed in Section 4.2.

3. Enrich the model MI through the following three
substeps, as shown in Section 4.3:

a. Build a model MDM of a motif DM as a class
diagram with the formalism used to describeMI .

b. Identify microarchitectures similar to MDM in
MI . A microarchitecture �A might be either a
complete form if its entities and their relation-
ships match one to one the entities and relation-
ships inMDM or an approximate form if they do
not, e.g., if a suggested relationship between two
entities does not exist.

c. Instantiate a model MD based on MI and
enriched with models M�A of the identified
microarchitectures.

Any approach to design motif identification should
maintain a traceability link between the different layers
from source code up to the identified microarchitectures:

S Ð
1
MS Ð

2
MI Ð

3
MD � fM�Ag

� �
; ð1Þ

whereÐ
x

describes the xth layer to produce the next model.

Example. In the rest of this paper, we use the simple
example taken from [6] and shown in Fig. 1 to illustrate
the different steps performed by DeMIMA. The example
uses two classes, C1 and C2, linked by an aggregation
relationship. The aggregation relationship exists through
the field C2 c2 and the void operation1() method
body.

We want to identify in this source code any micro-
architecture similar to the design motif represented by
the UML-like class diagram in Fig. 2a. Thus, we need to
first recover a model MS of the system, then refine this
model intoMI , which includes the aggregation relation-
ship, and, finally, model and match the motif MDM

against MI to create a model MD, which includes the
result of the matching, M�A, as shown in Fig. 2.

2.3 Our Solution

In DeMIMA, we characterize the constituents of class
diagrams and propose algorithms to identify these consti-
tuents in source code. Basically, class diagrams consist of
classes, fields, methods, interfaces, inheritance, and im-
plementation relationships. We concur with Dave Thomas
that “Every model needs a metamodel” [13]. Thus, we
define a metamodel, Pattern and Abstract-level Description

668 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

1. Design motifs notation borrows from OMT class diagrams, OBJECTORY

interaction diagrams, and the BOOCH method [2].

Language (PADL), to express these constituents. New
constituents may be added to PADL using inheritance to
enrich the descriptions of systems. The methods of the
constituents define the semantics of models obtained from
the metamodel. Our objective in defining PADL is to have a
simple and extensible language to describe and reason
about abstractions pertinent to our problem, namely, MS ,
MI , MD, MDM , and M�A.

DeMIMA reuses the definitions in [6] of the use, creation,
association, aggregation, and composition relationships to
formalize these relationships with four language-indepen-
dent properties: exclusivity, message receiver type, lifetime,
and multiplicity. DeMIMA distinguishes use, association,
aggregation, and composition relationships because such
relationships exist in most notations to model systems, for
example, in UML, and because design motifs are defined
using these relationships. Thus, it is able to identify these
relationships in MS and represent these in MI .

The language to describe design motifs is the same as
that used to describe models of systems. DeMIMA uses
explanation-based constraint programming and constraint
relaxation to identify microarchitectures, complete or
approximate, similar to the modeled design motifs, without
explicitly enumerating all possible variants to produce a
model MD.

DeMIMA ensures the traceability of design motifs
between implementation and design because it uses the
same language to describeMS ,MI , andMD (by construc-
tion, each layer is a refinement of the previous layer) and
because it explicitly records, in the more abstract constitu-
ents, the set of lower-level constituents that led to their
existence. Thus, a constituent of MS (respectively, of MI

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 669

Fig. 1. Source code of the running example.

Fig. 2. Models of the motif and of the source code for the running example. (a) The bottom part shows the UML-like diagram of a simple motif; this

part, together with the upper part, representsMDM . (b) UML-like diagram ofMS . (c) UML-like diagram ofMI (some instantiation links are omitted).

(d) UML-like diagram of MD (some instantiation links are omitted).

and MD ð�M�AÞ) can be traced back to the source code
constructs in S (respectively, to the constituents inMS and
MI) from which it originates.

3 RELATED WORK

We classify the related work according to the recovered
models because obtaining and abstracting the data needed
to identify design motifs is problematic. We conclude with a
summary of essential characteristics of any identification
approach for design motifs.

3.1 Related Work on MS

Building a model of the source code is the first step of any
static analysis. The objective of this step is to obtain a model
of the source code that can be manipulated programmati-
cally. This step can be performed using a readily available
parser technology such as JAVACC or COLUMBUS [14].

3.2 Related Work on MI

Several authors proposed approaches to extract binary class
relationships, which is an important concern when building
models of source code. Indeed, these relationships are not
explicit constructs of mainstream object-oriented program-
ming languages, such as C++, Java, or Smalltalk, and they
lack precise definitions.

Jahnke et al. [15] and Niere et al. [16] introduced generic
fuzzy reasoning nets (GFRN) to recover association rela-
tionships among entities in the context of the Fujaba project.
They proposed a set of clichés from source code. Source
code clichés used together with GFRN allow identifying
associations relationships while managing variations of
implementation. Although their work is promising, the use
of GFRN is complex and they consider association relation-
ships only, not aggregation and composition relationships.
More recently, Niere et al. [17] introduced an approach
based on fuzzy beliefs able to recover association and
aggregation relationships in large software systems while
handling impreciseness.

Jackson and Waingold [18] developed WOMBLE, a tool
for the lightweight extraction of object models from Java
bytecodes. They described an object model as a graph
wherein nodes are entities and links are binary class
relationships. Relationships considered in WOMBLE are
inheritance, association, and aggregation. WOMBLE in-
cludes heuristics to infer the target entities of association
and aggregation relationships. This work is a source of
inspiration even though it did not consider composition
relationships.

In general, previous work was limited by the lack of
commonly agreed upon definitions for binary class relation-
ships. Moreover, to the best of our knowledge, no
definitions of the association, aggregation, and composition
relationships existed, describing how these relationships
must be implemented in source code. For example, [19],
[20], [21], [22] proposed definitions of these relationships,
but there were no hints on their concrete implementation.
Thus, the first step toward design motif identification is to
define the association, aggregation, and composition rela-
tionships and to obtain models of systems that integrate
these relationships. A complete survey of the subject is
available in [6].

3.3 Related Work onMD (IncludingMDM andM�A)

Several authors proposed approaches to identify micro-
architectures similar to design motifs. In general, these
approaches rely on a design motif library; thus they are
similar to the program understanding and architectural
recovery approaches based on clichés matching and plan
recognition. The main problems of these approaches as
identified by Wills’ precursor work [23] and put forward
recently by Niere et al. [24] is that a design motif may
appear in several different forms due to variants. Wills
classifies the main sources of variants as syntactic variation,
implementation variation, delocalization, organization var-
iation, redundancy, unrecognizable code, and function
sharing. Syntactic variation is mostly with regard to the
syntactic level clichés. Cliché recognizers traditionally
embody the knowledge of all of the different forms that a
certain cliché can assume. This is not the case in our
approach, where the use of explanation-based constraint
programming accounts for syntactic variants. Implementa-
tion variation is related to the fact that a given concept may
be implemented in different ways: An aggregation may be
implemented with a list or a set or any other user-defined
type. We define such relationships using language-inde-
pendent properties to avoid this problem. Another example
concerns the depth of the inheritance tree between a
superclass and a derived class participating in a motif
(see, for example, the Composite design motif). Again, the
use of explanation-based constraint programming deals
with such variants. The other problems highlighted by
Wills—delocalization, redundancy, unrecognizable code,
and function sharing—do not concern our approach.

Rich and Waters [4] proposed the use of constraint
programming to recognize plans in Cobol source code.
Cobol systems are modeled by their abstract syntax trees. A
plan is modeled as nodes of the abstract syntax tree and
constraints among nodes (control and data-flow, function
calls. . .). The identification of a plan in source code is
converted to a constraint satisfaction problem in which
nodes of the plan are variables, constraints among nodes are
constraints among variables, and the source code abstract
syntax tree is the domain of the variables. This work is the
first account of the use of constraint programming for plan
identification. However, it does not apply to design motif
identification because plans are low level and it does not
identify approximate forms of the plans. Nevertheless, we
draw from this work two important characteristics of
design motif identification: the need for explanations and
for approximations [4, pp. 83 and 181].

Other approaches to design motif identification used
clichés recognition algorithms such as unification, see the
precursor work by Krämer and Prechelt [25]. An example is
the SOUL environment [5], a logic programming environ-
ment based on Smalltalk that directly manipulates Smalltalk
constructs through predicates. The SOUL environment
allows direct representation of the abstract syntax tree of
the Smalltalk source code managed by the underlying
environment as logic facts. Using these facts, it is possible to
build a library of predicates and to identify entities whose
structures and organizations correspond to design motifs.
However, the use of logic programming requires the
definitions of predicates for all possible variants, i.e., all
expected variations of implementation. The definition of all
variants of implementation is cumbersome. Also, the use of
logic programming does not explain the presence or
absence of microarchitectures similar to design motifs.

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Other authors introduced the use of queries to identify
entities whose structure and organization are similar to
design motifs [26], [27]. In particular, Keller et al. [27]
introduced the SPOOL environment for reverse engineer-
ing, which allows manual, semiautomated, or automated
identification of abstract design components using queries
on source code models. A query is manually associated
with an abstract design component and applied to a source
code model. The main limitation of this work is the need to
develop and associate queries with abstract design compo-
nents manually and with each possible variant of their
implementation.

Generic fuzzy reasoning nets have also been applied to
the identification of design motifs [24], [28]. A design motif
is described as a generic fuzzy reasoning net representing
rules to identify microarchitectures similar to its implanta-
tion in source code. However, this approach has not been
pursued or implemented despite its promises. Moreover, it
is difficult to express design motifs as generic fuzzy
reasoning nets and to modify them.

Graphs and graph-transformation techniques also have
been used to describe and identify design motifs in system
source code [29], [30]. A design motif is described as a
graph whose nodes represent entities and whose edges
represent relationships among entities. The identification of
microarchitectures corresponds to a graph isomorphism:
the identification of a subgraph similar to a given graph in a
graph, which is a difficult problem [31]. Pettersson and
Löwe [32] proposed transforming graphs of systems into
planar graphs to improve performance with interesting
results. An approach based on similarity scoring has also
been proposed [33] which provides an efficient means to
compute the similarity between the graph of a design motif
and the graph of a system to identify classes potentially
playing a role in the design motif. Although efficient, these
approaches are not interactive, do not explain their results,
and only allow a limited set of approximations.

Finally, several authors proposed dedicated syntactic
analyses to identify design motifs in source code, for
example, [34], [35], [36], [37]. These analyses are efficient in
time, recall, and precision but are specialized to particular
design motifs. We propose a more general solution that uses
standard algorithms, as offered by constraint programming.
Some authors, such as Heuzeroth et al. [38], combined static
and dynamic analyses to improve the precision of the
identification but faced the problem of the choice of the
methods to instrument and of the scenarios to execute.

3.4 Summary of the Characteristics of DeMIMA

From our study of the related work, DeMIMA must possess
the following characteristics:

. Models of source code must differentiate among use,
association, aggregation, and composition relation-
ships so that design motif models are as close as
possible to their usual descriptions in [2].

. A given model of a design motif must serve to
identify both complete and approximate forms of
microarchitectures similar to the design motif with-
out explicitly enumerating all variants.

. The algorithms must be semiautomatic or automatic
and must explain the identified microarchitectures
so that maintainers can direct their search to easily
distinguish possible false positives.

Contributions of DeMIMA are the following: For the first
time, as suggested in previous work, an approach brings a
solution to the identification of microarchitectures similar to
design motifs using commonly agreed-upon definitions of
the unidirectional binary class relationships, unique repre-
sentations of design motifs, and semiautomated and/or
automated algorithms explaining identified microarchitec-
tures. Thus, it complies with the characteristics of the
identification of microarchitectures similar to design motifs.
In particular, explanation-based constraint programming
explains identified microarchitectures for maintainers to
direct their search and discriminate among possible false
positives easily. Explanation and constraint relaxation lead
to interactive or automatic algorithms while naturally
tackling the problem of variants identified by Wills [23].

4 MULTILAYERED APPROACH

DeMIMA relies on a multilayered approach, detailed in the
following sections.

4.1 First Layer: Source Code Model MS

The first layer consists of an infrastructure, e.g., parsers, to
obtain models MS of the source code of systems. MS is
expressed using the language defined by the metamodel
shown in Fig. 3 (Part 1 exclusively) and inspired by UML. It
includes all of the constituents found directly in any Java
object-oriented system: class, interface, member class and
interface, method, field, inheritance and implementation
relationships, and rules controlling their interactions. The
constituents describe the structure of systems and a subset
of their behavior. The main constituents in the metamodel
and their relationships are the following:

. Class Entity to describe entities of a system. An entity
might be a Class or an Interface.

. Class Element, to describe elements of entities. An
element might be a Method or a Field.

A model of a system is an instance of class Program-

Model. It contains a set of entities, each of which contains a
set of elements.

We have implemented the first layer to cope with any
number of parsers for various programming languages
(e.g., C++ and Java) and produce an instance of Program-
Model representative of the parsed source code:

S Ð
1
MS: ð2Þ

Example. Fig. 2b shows a UML-like diagram of the model
MS of the source code illustrated in Fig. 1, as well as the
instantiation links between the objects in MS and their
classes reported in Part 1 of Fig. 3.

4.2 Second Layer: Idiom-Level Model MI

The second layer describes systems at a higher level of
abstraction than their source code by making explicit certain
programming idioms. Idioms reveal particular characteris-
tics of classes or their relationships. For example, a class
could be stereotyped as a UML Data Type according to
certain idioms used in its implementation [39]. Thus, in
general, idioms can implement other characteristics of
classes than binary class relationships. Nevertheless, in
the rest of this paper, we only study binary class relation-
ships as they are relevant to design motif identification; the

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 671

terms idioms and binary class relationships are therefore
interchangeable.

This layer provides models MI of systems in which
binary class relationships are reified as first-class entities.
We focus on the use, association, aggregation, and
composition unidirectional binary class relationships as
commonly advocated in UML-like notations because these
relationships are used to describe design patterns [2].
Parts 1 and 2 (exclusively) in Fig. 3 present the language
to describe idiom-level models.

4.2.1 Informal Definitions

An extensive survey of the literature related to the
relationships in different domains such as database, soft-
ware engineering, or reverse engineering can be found in
[6]. Table 1 summarizes the definitions of the relationships
used in DeMIMA from the existing links among instances.
Association, aggregation, and composition are relationships
among instances of classes. Relationships involving classes
(not instances) are modeled as use relationships.

Let A and B be two classes. Association and aggregation
relationships allow multiple instances of A and B to take
part in the relationship. The composition relationship
allows multiple instances of B to be in a relationship with
one instance of A at a time. In an aggregation relationship,
instances of A access instances of B through a field as a
particular type of message receiver. In a composition
relationship, instances of B are exclusive to their corre-
sponding instances of A and instances of A and B have
related lifetimes.

4.2.2 Definitions of the Properties

The definitions of the binary class relationships use four
language-independent properties. We present here only
information needed to explain the subsequent formal

definitions; more details and examples of each property
are available elsewhere [6].

An instance of class B involved at a given time in a
relationship with an instance of class A may also participate
in another relationship at the same time. We name BB the set
ftrue; falseg. We define the exclusivity property EX as

EX : Class� Class! BB:

Instances of class A involved in a relationship send

messages to instances of class B. We name any the set of all

possible message receivers:

any ¼ ffield; array field; collection field;

parameter; array parameter; collection parameter;

local variable; local array; local collectiong:

We distinguish three types of message receivers: fields,
parameters, and local variables. Also, we distinguish
“simple” message receivers from arrays and collections
because they imply different sets of programming idioms
for their declarations and uses and thus different identifica-
tion strategies. The set any of receivers is language
independent and its elements correspond to concepts
available in object-oriented programming languages, such
as C++, Java, and Smalltalk. We define the receiver type
property RT 2 as

RT : Class� Class! any:

The lifetime property LT constrains the lifetime of all
instances of class B with respect to the lifetime of all
instances of class A. It relates to the difference between the

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 3. Metamodel to describe the source code of systems.

2. The RT property was formerly named “invocation site” IS in [6] but is
renamed to avoid confusion with the location of a method invocation.

times of destruction LTd of two instances of classes A and B

[21]. The time is in any convenient unit such as seconds or

CPU ticks:3

LTd : Instance! IN:

In programming languages with garbage collection, LTd
matches the moment where an instance is ready to be

collected for garbage. We infer from LTd a relation between

the lifetimes of all instances of two classes A and B. We

name k the set f�;þg:

LT : Class� Class! k:

The multiplicity property MU specifies the number of

instances of class B allowed in a relationship. We express

this property as4

MU : Class� Class! IN [fþ1g:

The four properties are orthogonal, but the exclusivity

and multiplicity properties are closely related. For example,

in the Country-Language relationship, we have the

following:

. The multiplicity property states the number of
instances of class Language that each instance of
class Country possesses:

MUðCountry; LanguageÞ ¼ ½1;þ1�:

(For example, Canada possesses two official lan-

guages, English and French, and several spoken

languages, Inuktitut, Punjabi, Portuguese, and so on.)
. The exclusivity property states that an instance of

class Language is shared among instances of class
Country and of other classes:

EXðCountry; LanguageÞ ¼ false:

(French is spoken in Canada, in France,)

Example. The values of the four properties are reported and

commented on in Table 2 for the source code of the

running example in Fig. 1.

4.2.3 Formalizations of the Relationships

Using EX, LT , MU , and RT , formalizations of the

relationships are expressed as three conjunctions, respec-

tively, AS, association, AG, aggregation, and CO, composi-

tion. The formalizations of the relationships are important

because they are the basis of the identification algorithms

needed to abstract MS into MI .
An association between classes A and B characterizes the

ability of an instance of A to send a message to an instance

of B. Nothing prevents other relationships from linking

classes A and B. We define ASðA; BÞ as

ASðA; BÞ ¼
RT ðA; BÞ ¼ anyð Þ ^ RT ðB; AÞ ¼ ;ð Þ:

An aggregation exists between classes A and B when the

definition of A, the whole, contains instances of B, its part.

The whole must define a field (“simple,” array, or

collection) of the type of its part. Instances of the whole

send messages to instances of its part. We formalize

AGðA; BÞ as

AGðA; BÞ ¼�
RT ðA; BÞ � ffield; array field;

collection fieldg
�
^

RT ðB; AÞ ¼ ;ð Þ ^
MUðA; BÞ ¼ ½1;þ1�ð Þ ^ MUðB; AÞ ¼ ½0;þ1�ð Þ:

A composition is an aggregation with a constraint

between the lifetimes of the whole and its part and a

constraint on the ownership of the part by the whole.

Instances of the whole own the instances of its part.

Instances of the part might be instantiated before the whole

is instantiated, but they must not belong to any other whole.

They are exclusive to the instance of the whole. The

definition of the composition relationship allows only an

association between part and whole to ensure the lifetime

and ownership properties between whole and part. We

define COðA; BÞ as

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 673

TABLE 1
Definitions and Applicability of the Unidirectional Relationships in Our Model

3. IN represents the set of all natural numbers.
4. We need þ1 to denote multiplicities with no limit in the numbers of

instances in the relationships.

COðA; BÞ ¼
EXðA; BÞ ¼ trueð Þ ^ EXðB; Að Þ ¼ falseÞ ^�

RT ðA; BÞ � ffield; array field;

collection fieldg
�
^

RT ðB; AÞ ¼ ;ð Þ ^
LT ðA; BÞ ¼ þð Þ ^ LT ðB; AÞ ¼ �ð Þ ^

MUðA; BÞ ¼ ½1;þ1�ð Þ ^ MUðB; AÞ ¼ ½1; 1�ð Þ:

Example. According to the values of the properties detailed
in Table 2 for the running example and to the
formalizations of the relationships ASðC1; C2Þ ¼ false,
AGðC1; C2Þ ¼ true, COðC1; C2Þ ¼ false. No relationships
are identified between C2 and C1.

4.2.4 Discussions

The formalizations of the relationships consist of two
fundamental parts: a static part corresponding to the MU
and RT properties and a dynamic part corresponding to the
EX and LT properties. Association and aggregation are
inherently static, so their static parts are important for their
detection. A composition is an aggregation with additional
constraints on the behavior of composed instances; thus, its
dynamic parts are important for its distinction from an
aggregation and its detection.

Minimality of the properties and common usage of the
relationships supported by our formalizations are ex-
plained in [6].

4.2.5 Creation of the Model

With the formalizations of the relationships, we define
algorithms to identify in models MS association, aggrega-
tion, and composition relationships to produce modelsMI .
These algorithms depend only on the properties which isolate
the formalizations of the relationships from any coding
conventions, similar to the concept of subpatterns in [24].

Identification of association relationships requires col-
lecting the value of the RT property. Identification of
aggregation relationships requires inferring the values of
the RT and MU properties. Identification of composition
relationships requires collecting the value of the RT and
MU properties and of the EX and LT properties. DeMIMA
computes the RT and MU properties using static analyses
and can infer values of the EX and LT properties using
dynamic analyses.

Any algorithm recovering aggregation relationships
needs to deal with a the difficulty that arises when message
receivers are untyped collections [18], collection field,
collection parameter, local collection, because
they are typed with the class hierarchy root Object.
Algorithms have been proposed to deal with this difficulty,
for example, [18]. Drawing inspiration from these algorithms,
DeMIMA implements the detection of aggregation relation-
ships with static analyses and heuristics expressing common
programming idioms, i.e., a collection is generally accessed
through specific accessors to infer the type of stored instances.
It assumes that these kinds of collections are homogeneous,
i.e., containing instances with a common superclass different
from Object. It is possible to determine their types by using
well-known Java programming idioms such as pairs of
add()-remove() accessors. DeMIMA also recognizes user-
defined collections in addition to collections from the
standard Java class libraries such as Map, List, and Set

and their implementations. Recently, systems to convert
programs to use generics have been proposed that could
potentially solve the difficulty with untyped collections [40].

Detection of the values of the MU property also uses
message receivers. For example, we assign value [0, 1] to the
MU property if the message receiver is field, parameter,
or local variable and value ½0;þ1� if the receiver is
array field, array parameter, local array, col-
lection field, collection parameter, or local

collection.
The dynamic part—the EX and LT properties—of the

composition relationship is difficult to detect due to the
well-known limitations of dynamic analyses. We use a
trace-analysis technique presented in [7] to compute, for
each aggregation relationship, values of the exclusivity and
lifetime properties and, if the values match, to convert it
into a composition relationship. The results depend on the
scenario executed; we assume the existence of unit tests and
execute all available tests to infer values for the EX and LT
properties. A low coverage by the unit tests would lead to a
number of false negatives, i.e., candidate composition
relationships missed by our algorithms. Missed composi-
tions relationships impact DeMIMA by decreasing the
number of complete occurrences of any design motifs
including such relationships in their representations. How-
ever, thanks to the use of explanation-based constraint
programming, DeMIMA would identify and report approx-
imate occurrences corresponding to these motifs in which

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE 2
Values of the Four Properties Instantiated for the Running Example

composition relationships would be replaced by aggrega-
tion relationships and, thus, its recall would not be
impacted.

4.2.6 MI Construction in Summary

We formalized the definitions of the use, association,
aggregation, and composition relationships and developed
algorithms based on dynamic and static analyses to build a
modelMI of a system from its source code modelMS , thus
creating the traceability link:

MS Ð
2
MI :

Example. Fig. 2c shows how the UML-like model MS is
enriched into a model MI by adding an aggregation
relationship between C1 and C2, instance of the
Aggregation relationship class.

4.3 Third Layer: Design-Level Model, MD ð� M�AÞ
In the third layer, we first describe a modelMDM of a design
motif with the same language used forMI . Then, DeMIMA
looks for microarchitecturesM�A similar to the design motif
DM in a model MI of a system. To identify microarchitec-
tures similar toMDM , it transformsMDM into a constraints
system. It then solves the constraint satisfaction problem
using explanation-based constraint programming [8]. The
solutions of the constraint satisfaction problem represent
microarchitectures similar toMDM inMI .

4.3.1 Modeling of Design Motifs

Parts 1, 2, and 3 in Fig. 3 show the language used to describe
design motifs as first-class entities that can be manipulated
programmatically. A design motif is represented by an
instance of the class DesignMotifModel and is composed
of Participants, each having different Elements.

Example. Fig. 2a shows the UML-like diagram of the model
MDM of the motif that we want to identify as well as
instantiation links with some of the classes in Fig. 3.

4.3.2 Transformation of Design Motifs

With DeMIMA, the identification of microarchitectures
similar to a design motif translates into a constraint
satisfaction problem, which we list as follows:

. Variables correspond to the participants of the
design motif model, MDM .

. Domains of the variables correspond to the entities
of MI in which to identify microarchitectures.

. Constraints among variables correspond to the
relationships among the participants of MDM .

The transformation of a design motif into a constraint
system requires dedicated constraints that represent relation-
ships among participants. For example, constraint Strict
Inheritance, in the case of Java-like single inheritance, creates
a partial order on the set of entities and is satisfied for any
couple ðv1; v2Þ if the domainD1 of v1 represents a set of entities
inheriting from the entities in the domain D2 of v2.

We proceed in a similar fashion for all relationships and
define the following constraints:

. Inheritance constraint. The domains of two variables
may contain the same entities, in contrast to strict
inheritance.

. Strict transitive inheritance constraint. The domains of
two variables contain entities that belong to the same
branch of the inheritance tree.

. Transitive inheritance constraint. The domains of two
variables contain entities that belong to the same
branch of the inheritance tree or that are identical.

. Use constraint. The entities in the domain of variable v1

use the entities in the domain of variable v2.
. Ignorance constraint. This constraint explicitly states

that two entities must not have any relationship.
. Association constraint. Association relationships link

the entities in the domain of v1 with the entities in
the domain of v2.

. Aggregation constraint. Aggregation relationships link
the entities in the domain of v1 with the entities in
the domain of v2.

. Composition constraint. Composition relationships
link the entities in the domain of v1 with the entities
in the domain of v2.

. Creation constraint. Entities in the domain of v1

instantiate (at least once) entities in the domain of v2.

We add standard (in)equality constraints to these
constraints which ensure that different entities play
different roles. We associate a weight with each constraint,
an integer value p 2 f1; 2; 3 . . . ; 100g, which indicates the
relative importance of the constraints with one another or
an order among constraints.

Example. The model MDM of the motif of the running
example transforms into a constraint system with
two variables vZ1 and vZ2 corresponding to the
classes Z1 and Z2 and the composition constraint
compositionðvZ1; vZ2; 100Þ.

4.3.3 Resolution of the Constraint System

DeMIMA uses explanation-based constraint programming
[8], [41] as a technique to solve constraint satisfaction
problems translated from the identification of microarchi-
tectures similar to design motifs. Explanation-based con-
straint programming justifies solutions, and lack thereof, of
a constraint satisfaction problem by remembering con-
straints that can or cannot be satisfied. Explanation-based
constraint programming is an extension of constraint
programming in which the solver justifies its behavior at
each step of the resolution process.

We implemented an explanation-based constraint reso-
lution system dedicated to design motif identification
reusing the JPALM [42] explanation-based constraint
library. This extension includes a generic algorithm for the
resolution of constraint satisfaction problems with explana-
tions and a backtrack algorithm to manage contradiction.

Example. In the running example, no solution of the
constraint system is found and, thus, no microarchitec-
ture is identified and reported.

4.3.4 Relaxation of the Constraint System

Constraint relaxation consists of replacing the constraints
that led to a contradiction with semantically weaker
constraints.

As shown in Table 1 and from the formalizations of the
binary class relationships, an order exists among the use,
association, aggregation, and composition relationships.
The properties of the use relationship are less constraining
than those of the association relationship, which in turn are

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 675

less constraining than those of the aggregation relationship.
Finally, the properties of the aggregation relationship are
less constraining than those of the composition relationship.
Inheritance-related constraints are also ordered from the
most constraining to the least: strict inheritance, inheritance,
strict transitive inheritance, and transitive inheritance.

We take advantage of these orders; for example, if a
composition relationship between two entities prevents
microarchitectures from being found, then this constraint
can be replaced by an aggregation relationship between the
same two entities. The microarchitectures found are
semantically similar to the design motif model to the extent
of the semantic similarity between the relationships.
Problem relaxation is a special case of constraint relaxation
in which no semantically weaker constraint is added to the
constraint system.

DeMIMA enables experts to relax constraints and
problems interactively as a guide in the identification of
microarchitectures similar to a design motif. Relaxation is
important because entities or relationships among entities
in a model may differ from the expected entities and their
relationships as defined in a design motif model. First, the
solver searches for microarchitectures identical to a design
motif model and provides maintainers with explanations of
contradiction. A maintainer chooses one or more constraints
which she believes are not essential to the design motif
model and removes them from the constraint system
dynamically, replacing them with semantically weaker
constraints; the solver then searches for approximate
microarchitectures. This process goes on until the main-
tainer decides that too many constraints have been relaxed
and the microarchitectures are becoming too distant from
the design motif model. Weights associated with each
constraint are used to score a microarchitecture to help
maintainers in choosing which constraints to relax. The
score of a microarchitecture is

score ¼
X

p2fp1;...;png
p

0
@

1
A�

X
p2fpj;...;pkg

p=100

0
@

1
A;

where fp1; . . . ; png is the set of weights of all constraints and
fpi; . . . ; pjg is the set of weights of the relaxed constraints. If
all constraints from the design motif model are satisfied,
then score ¼ 100 else score < 100.

The solver may be automated to compute all combina-
tions of constraint relaxations. The set of all possible
microarchitectures (complete and approximate) is identical
manually or automatically. This set only depends on the
design motif and system models. The difference between
automated and manual constraint relaxation is that main-
tainers may choose to relax constraints in a different order
than that suggested by the design motif model and thus
may direct the search more quickly toward useful micro-
architectures.

Example. The composition constraint would be relaxed into
an aggregation constraint aggregationðvZ1; vZ2; 100Þ ac-
cording to Table 1. A solution to this constraint system
exists with vZ1 ¼ C1 and vZ1 ¼ C2.

4.3.5 MD Construction in Summary

DeMIMA solves constraint satisfaction problems represent-
ing the identification of microarchitectures similar to MDM

inMI . Parts 1, 2, and 4 in Fig. 3 show the language used to

describe models MD and the set of models fM�Ag of
microarchitectures similar to design motifs:

. The MicroArchitecture class describes micro-
architectures similar to design motifs models. A
microarchitecture model aggregates a set of entities
which play a role in the microarchitecture. It also
records the score of the solution and the set of
relaxed constraints.

. An instance of class ProgramModel may contain
instances of class MicroArchitecture.

Thus, DeMIMA can build models M�A of microarchi-
tectures identified as similar to MDM models in MI and
ensure the traceability between their constituents:

MI Ð
3
MDð� M�AÞ:

Example. The model MI is enriched by the microarchitec-
ture corresponding to the found approximate solution
into a model MD shown in Fig. 2d.

5 TOOLING

We implement DeMIMA on top of the PTIDEJ framework.
The main programming language for the tools is Java. We
use Prolog for the computation of the EX and LT
properties and JPALM to implement the constraint solver
to benefit from existing libraries. We present here only the
components of the PTIDEJ framework relevant to DeMIMA:

1. PADL provides the language needed to describes
models MS , MI , and MD of systems. Its imple-
mentation is general enough to cope with different
programming languages, such as C++ and Java.

2. The PADL CLASSFILE CREATOR parser analyzes the
Java class files associated with a system to produce a
model MS of the system.

3. RELATIONSHIP STATIC ANALYSER computes values
of the RT and MU properties and infers use,
association, and aggregation relationships among
entities of MS to refine MS into MI .

4. CAFFEINE performs dynamic analyses of a system to
compute values for the EX and LT properties.
Results are integrated within MI to refine aggrega-
tion relationships into composition relationships if
required.

5. PTIDEJ UI allows the visualization and refinement of
MS , MI , and MD. It displays the models as UML-
like class diagrams with a Sugiyama-based layout
algorithm. It is also responsible to convert a chosen
design motifMDM into a constraint system andMI

into a domain for its variables.
6. Finally, the constraint solver PTIDEJ SOLVER is

applied on the generated constraint satisfaction
problem to solve the problem either interactively
or automatically. The constraint solver produces
microarchitectures M�A similar to the design motif
to create MD.

6 EXPERIMENTATION

We apply DeMIMA to identify microarchitectures similar to
several design motifs in both public domain and industrial
systems. We analyze public domain systems because their

676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

source code can be easily obtained and results can be
compared with those of other researchers. We also analyze
industrial systems for which we have both code and design.
We used industrial systems because, to the best of our
knowledge, no public domain system has both code and
design available.

6.1 Subjects of the Experiment

We choose five well-known open source systems for our
experiments, summarized in Table 3. JHOTDRAW [43] is a
two-dimensional graphics framework for structured draw-
ing editors. It includes several examples of editors, in
particular a simple one to draw and color rectangles, circles,
and texts. JREFACTORY is a tool that can perform several
different refactorings on Java source files. It has been
integrated in various IDE, including Sun’s NetBeans. JUNIT

is a unit-test framework developed to ease the implementa-
tion and running of unit tests for Java systems. MAPPERXML,
a presentation framework for Web applications, is based on
the Model-View Controller architectural pattern. Finally,
QUICKUML is an object-oriented design tool that supports
the design of a core set of UML models. The sizes of the
open source systems range from about 2, 000 lines of code
(LOC5) to about 36,000 LOC with a number of classes from
about 200 to 500.

We also analyze 33 components from four complete
industrial systems in the area of telecommunications
developed by Sodalia, a medium-size company (about
250 programmers) Trento, Italy. Initially, it was a joint
venture between Bell Atlantic and Telecom Italia; nowa-
days, Sodalia is an IT Telecom company belonging to
Telecom Italia Group, the sector leader in Italy. Although
the software engineering environment, tools, middleware,
and general corporate culture can be considered uniform
across projects, it is difficult to control all factors—espe-
cially the human factors. The 33 components were thus
selected as representatives of the corporate system domain,
the corporate skill, and the teams. Our analyses are
performed at the component level, rather than the system
level, because that is the level at which the design is
generally documented and developers work. All compo-
nents were documented with OMT class diagrams and
developed by teams using C++ and the CORBA platform
for distributed computing.

The design class diagram and the final code were
available for each component. The class diagrams were
produced during the stage of detailed design. Classes
almost always have a constructor (with void argument) and
a destructor. Nested inner classes were not represented.
Many, but not all, methods have their parameters specified
in full detail. A few classes are completely unspecified (no
attributes or methods). Thus, design class diagrams
represent a mixture of high level and detailed design,
perhaps closer to high-level design.

Component sizes range from a few hundred to about
50,000 lines of code, for a total of about 350 KLOC. The
mean system size measured in LOC is 9,983 (standard
deviation 11,578 LOC); design documents contain a fairly
spread number of classes with a maximum of 113 and a
minimum of 1 (mean value 17, standard deviation 20).
Design documents have quite different levels of details; for
example, the mean number of specified methods is 98;
however, the method standard deviation is 95, i.e., there are
designs specifying no methods. Table 4 presents detailed
data on the 33 components.

6.2 Objects of the Experiments

In the following experiments, we use a set of well-known
design patterns [2], identical to those used by Tsantalis
et al., which includes Adapter, Command, Composite,
Decorator, Factory Method, Observer, Prototype, Singleton,
State, Strategy, Template Method, and Visitor. Contrary to
Tsantalis et al., we distinguish between Composite and
Decorator; however, we merge State and Strategy because
their structures are identical. This choice is consistent with
what previous authors did in the absence of semantic or
behavioral data.

We only use the “canonical” representations of the
design motifs because DeMIMA takes care of relaxations to
find similar microarchitectures. In an interactive environ-
ment, a maintainer would direct the search by choosing the
order of the relaxations. In the following experiments, we
mimic the decision of the maintainer by limiting the
number of relaxations to one per type of constraint (binary
class relationships or inheritance relationships) and by
imposing the next constraint depending on the design
motif. For example, we permit an aggregation to be relaxed
into an association but not into a use relationship. In the
case of inheritance relationships, there are two possibilities,
relax a strict inheritance constraint into an inheritance
constraint or into a strict transitive inheritance constraint.
Out of the 13 design motifs studied, it is our opinion that
relaxing strict inheritance into inheritance makes sense only
for the Abstract Factory and Observer motifs, while relaxing
into a strict transitive inheritance is more suitable for the
others. In the following, we report the number of micro-
architectures identified as similar to each design motif
according to the relaxations mentioned above. Microarch-
itectures are validated manually using the approach
described in Section 6.3.

6.3 Performance, Accuracy, and Threat to Validity

For the purpose of design motif identification, with the
present level of efficiency of Java environments (exploiting
JIT compile technology), DeMIMA time execution and
memory requirements are not an issue and, even for the
largest systems in our subjects, the identification process
requires resources that are compatible with the program
comprehension process introduced in Section 2.

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 677

TABLE 3
Public Domain Systems Features

From left to right: the name of the system, the total LOC, numbers of
classes, methods, uses, associations, aggregations, and inheritances.

5. LOC is measured as the number of nonblank, noncomment lines
including preprocessor directives.

All computations are performed on a AMD Athlon 64-bit
processor running Microsoft Windows XP. We allocate a
maximum of 800 megabytes of memory to the Java virtual
machine. Computations take an average of 50 minutes to
identify all of the microarchitectures similar to one given
design motif in one given system.

We assess DeMIMA as an information retrieval system
for which the most commonly used measures of accuracy
are recall and precision [44]. Recall is the ratio of relevant
documents retrieved for a given query over the number

of relevant documents for that query in all of the given
documents. Precision is the ratio of the number of
relevant documents retrieved over the number of re-
trieved documents.

Although the number of relevant documents in all of the
given documents (i.e., design motifs present in a given
system) is not known a priori, we only need to assess the
number of relevant documents retrieved for a given query
(i.e., number of identified microarchitecture really imple-
menting a given design motif) because we identify both
complete and approximate microarchitectures. However,
precision and recall depend on the accuracy of the static
and dynamic analyses producing MS and MI . Through
relaxations, we ensure that we do not miss design motifs
due to misclassifications of binary class relationships.
However, more microarchitectures are identified: The
approach ensures 100 percent recall for the five systems at
the cost of a lower precision. The desired trade-off between
precision and recall mostly depends on the maintainers’
objectives: For the program comprehension task, we believe
that perfect recall might be preferable because the main-
tainers do not want to miss any actual microarchitectures.

Three programs in our subjects were also studied in
previous work [33]. Although, in theory, given a common
problem and a benchmark, comparison should be feasible, it
was not possible with this previous work due to the
imprecision of the published data. To our surprise, we
discovered errors in the results.6 For example, in
JHOTDRAW v5.1, the authors did not identify the Observer
design motif, where classes Figure and FigureChange-

Listener in package CH.ifa.draw.framework play the
roles of Subject and Observer, respectively. Still, in JHOT-

DRAW v5.1, they report CommandButton and Command in
package CH.ifa.draw.util as Context and State/Strat-
egy, respectively, in a State or Strategy design motif, while
the CommandButton class merely implements a Command-
enabled button, encapsulating a given and unique Command,
as confirmed by its documentation. Thus, we rely on other
available results manually validated by independent soft-
ware engineers of two different teams at two different
research institutions [45], [46] and assembled for convenience
in the publicly available P-MART database [47].

For the industrial components, the validation of the
microarchitectures identified in the source code was
performed manually, starting from the results of the
identification process and assessing which of the micro-
architectures implemented a design motif. A team of five
independent software engineers performed the validation.
Each time a doubt on a microarchitecture arose, they
considered the design-pattern book [2] as the reference in
deciding by consensus whether or not that microarchitec-
ture implemented the design motif.

The average precisions by system vary mostly because of
the design choices made in each system. JHOTDRAW is
famous for the use of design patterns made by its authors.
Thus, it is not surprising to have a higher precision than for
the other systems because its design contains either
microarchitectures that are very similar to design motifs
or microarchitectures that are very dissimilar to design
motifs. In the other systems, authors may have accidentally
implemented some design motifs, thus producing designs

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE 4
Industrial Component Features

From left to right: the NAME of the component (component identifier),
the total number of LOC, numbers of classes, methods, associations,
aggregations, and inheritances.

6. Tsantalis et al. [33] kindly provide their results at java.uom.gr/ nikos/
pattern-detection.html, last accessed on the 21 Feb. 2007.

where several microarchitectures are similar to design
motifs yet do not implement their intents and motivations.

As described above and shown in Tables 3 and 4, our
subjects are comprised of systems from different domains,
complexities, and sizes. Thus, results reported below
support the feasibility of DeMIMA and its ability to identify
design motifs based on structural properties captured by
AS, AG, and CO relationships and the set of defined
constraints. Results are encouraging; future work will
include studying generalization to other object-oriented
programming languages, domains, and design motifs.

Internal validity is defined as the ability to detect a
cause-effect relationship between independent and depen-
dent variables. DeMIMA obviously detects design motifs
and thus highlights microarchitectures to help program
comprehension and documentation of reverse-engineered
design choices; however, the extent to which these micro-
architectures correspond to the intention or motivation of
the developers has not been assessed and will be studied in
future work.

6.4 A Step-by-Step Identification of Composite in
JHOTDRAW

We perform a step-by-step identification of the Composite
design motif in JHOTDRAW to illustrate the use of
DeMIMA.

The top-left part of Fig. 4 shows a subset of the system
design as presented in its documentation. We apply
DeMIMA to build a model MI of JHOTDRAW from its
source code. Fig. 4 compares the recovered design-level
model of the system and its documented design. The
recovered model presents essentially the same data as the
documented architecture. Some relationships among classes
and interfaces differ because the authors of the documenta-
tion summarized the main classes and interfaces of the
framework and reported against these entities some
relationships existing only among their subclasses. For
example, the instantiation relationship between interfaces
Figure and Handle only exists between class Standard-
DrawingView (which implements Figure) and class
NullHandle (which implements Handle). Thus, with

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 679

Fig. 4. Comparison of JHOTDRAW documented and recoveredMD model. The list and box show one selected M�A similar to Composite.

DeMIMA, we obtain a modelMI of a system source code S

and ensure the traceability between MI and S:

S ÐMS ÐMI :

The Composite design motif [2, p. 163] defines three

participants, Component, Composite, and Leaf, and three

relationships among them, an inheritance between Compo-

nent and Composite and between Component and Leaf and

a composition between Composite and Component. It

translates into the following constraint system: three

variables, component, composite, and leaf, and three

constraints:

. Two inheritance constraints between variables leaf
and component, composite and component:
inheritance(component, composite, 100)

and inheritance(component, leaf, 100).
. A composition constraint between variables compo-

site and component: composition(compo-

site, component, 100).

DeMIMA solves the constraint satisfaction problem

defined by the constraint system from the Composite design

motif using as domain the JHOTDRAW idiom-level model.

During the process, the composition constraint is relaxed

because only aggregation relationships are present in the

modelMI of JHOTDRAW; the inheritance constraints are also

relaxed because an intermediate class, AbstractFigure,

exists in the framework. Then, the identified microarchitec-

tures are integrated in a design-level model. The bottom part

of Fig. 4 shows the design-level model MD of JHOTDRAW

and, together with the top-right list, highlights a microarch-

itecture similar to the Composite design motif.

Thus, with DeMIMA, we obtain modelsM�A similar to a
design motif model MDM in a model MD. DeMIMA also
ensures the traceability between M�A, MD, and S:

S ÐMS ÐMI ÐMD � fM�Ag
� �

:

Models M�A of microarchitectures similar to the
Composite design motif help maintainers in understanding
the design of the JHOTDRAW system by explaining the roles
of the highlighted classes, which solve the problem of
composing “objects into tree structures to represent part-
whole hierarchies” and “let clients treat individual objects
and compositions of objects uniformly,” as defined by the
Composite design pattern. Maintainers are guided by the
identification in their comprehension of the system. Thus,
DeMIMA may ease Task 3 of comprehending the system, as
presented in Section 2.

6.5 Open Source Systems Case Studies

Table 5 gives the number of microarchitectures identified for
each system in the public domain for each design motif.
Columns labeled with I report detected motifs, with
T microarchitectures manually classified as true motifs and
with P the corresponding precision. It can be observed that
the most frequently found design motifs are the Abstract
Factory and Factory Method because they use characteristics
at the core of object-oriented programming. The last row of
Table 5 gives the precision of the design motif identification.
Precision is computed over all motifs by summing the
numbers of each column and then computing T=I, assuming
a precision of 100 percent when I ¼ T ¼ 0.

In some cases, DeMIMA does not identify any micro-
architecture similar to some design motifs. The reason is
twofold: First, we only allow one approximation for each
type of relationship; thus, it is possible that we do not

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE 5
Results of Design Motif Identification in Public-Domain Systems

identify a highly approximated form of the motif. However,
this approximated form would very unlikely implement the
motif and, thus, we do not affect the recall. Second, the
systems are known for not containing such a design motif.
For example, there is no Visitor in JHOTDRAW v5.1; two
were implemented in later versions.

The average precisions by design motif vary because of
the number of constraints and approximations. The more
constraints and the fewer allowed relaxations, the higher
the precision because DeMIMA does not report micro-
architecture too far from the design motif of interest. For
example, the Proxy design motif requires a method to
return an instance of the declaring class, which is a strong
constraint with respect to the five systems under study. In
contrast, the Factory Method design pattern has low
precision because many microarchitectures have structure
similar to the structure of this design motif. The identifica-
tion algorithms would require dynamic and semantic data
to automatically distinguish true from false positives.

6.6 Industrial Systems Case Studies

With respect to the industrial systems, both design and code
are analyzed. Design information has been recovered from
the corporate database using the CASE2AOL TRANSLATOR

[46] that we developed for StP/OMT. Tables 6 and 7 report
the identified motifs in the source code and in the design,
respectively. The tables do not include components where
no microarchitecture was identified. A zero value means
that no microarchitecture was identified for the correspond-
ing design motif, while “-” means that the motif could not
be searched for lack of available data.

Several observations can be made based on Tables 6 and
7. First, design motifs were not retrieved in several
components, either in the design or in code: Design patterns
seem seldom used.

Second, obtained results confirm results reported in
previous work [46]. Due to a company takeover, lack of
detailed documentation, and programmer turnover, only
design patterns verified in previous work are verified, with
a resulting precision of 100 percent. A full evaluation
pertaining to the entire set of identified microarchitectures
is unfortunately not feasible for the above reasons.
Furthermore, for confidentiality reasons, we cannot dis-
tribute design or code and thus cannot report true positives
and precisions computed by independent experts. There-
fore, we only report the number of identified microarchi-
tectures, not the precision and recall.

Third, a comparison of the microarchitectures identified
in the design and those identified in source code shows that
there is no intersection between these two sets: It would
seem that different design motifs have been used in the
design and in the implementation of the components. This
fact can be partially explained by three reasons: First, when
working with design, we do not have dynamic data so we
cannot find composition relationships. Second, source code
often includes a collection of classes reused from libraries or
COTS that are not modeled in the design. Finally, our
design documents are inconsistent with the source code:
After code modifications, they were not properly updated
to reflect the changes; hence the gap between design and
code is relevant.

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 681

TABLE 6
Results of Design Motif Identification

in the Source Code of Industrial Components

TABLE 7
Results of Design Motif Identification

in the Design of Industrial Components

6.7 Discussion

Explanation-based constraint programming can assign
entities to all the roles in a design motif, including, for
example, the Client role or the Leaf role. Also, the identified
microarchitectures contain more information than previous
approaches such as [33] and [46]. In contrast with previous
work, DeMIMA distinguishes microarchitectures similar to
the Adapter and the Command design motifs because the
constraint system locates entities playing the roles of Client
and Invoker, which differentiate the two structural motifs.

The Singleton design motif must hold a single piece of
information, its own unique instance. Nevertheless, in
JREFACTORY, DeMIMA identified a microarchitecture
similar to the Singleton but mapping unique instances of
the Singleton with given objects. This variant of the
Singleton is akin to the Identity Map described by Fowler
in [48]. This accounts for the difference in the reported
numbers between our work and the work by Tsantalis et al.

7 CONCLUSIONS

Microarchitectures similar to design motifs may help
maintainers understand systems and ease their tasks. We
introduced DeMIMA, a multilayered approach for design
motif identification that defines

. simple class diagram constituents to build a model
MS of a system source code S,

. idiom-level constituents, in particular use, associa-
tion, aggregation, and composition relationships to
build a model MI from MS , and

. microarchitectures similar to design motifs to en-
hance MS into MD with models M�A of the
microarchitectures.

In the second layer, DeMIMA depends on a set of
definitions for unidirectional binary class relationships that
we proposed and formalized. The formalizations define the
relationships in terms of four language-independent prop-
erties that are derivable from static and dynamic analyses of
systems: exclusivity, type of message receiver, lifetime, and
multiplicity. DeMIMA keeps track of data and links to
identify and ensure the traceability of these relationships.

In the third layer, DeMIMA uses explanation-based
constraint programming to identify microarchitectures
similar to design motifs. This technique makes it possible
to identify microarchitectures similar to a model of a design
motif without having to describe all possible variants
explicitly.

We illustrated DeMIMA with the identification of
microarchitectures similar to the Composite design pattern
in the JHOTDRAW framework. We showed that the
identified microarchitectures indeed highlight entities im-
plementing the motif as documented by the authors of the
system. We also applied DeMIMA on both open source and
industrial systems and discussed its precision and recall.

In future work, we plan to improve our analyses of
source code and integrate other sources of data such as
sequence diagrams to enhance precision and identify
behavioral and creational design motifs. We will also study
object lifetime dependencies. We also plan to study the
relation between identified microarchitectures and the
concrete intent and motivation of software engineers.
Finally, we would like to further assess the use of
approximations in an automatic environment.

ACKNOWLEDGMENTS

The authors thank Hervé Albin-Amiot for his work on the

precursor of the PADL metamodel and Narendra Jussien

for his help with explanation-based constraint program-

ming. Giuliano Antoniol was partially supported by

NSERC, Canada, research chair in software change and

evolution. Yann-Gaël Guéhéneuc was partially supported

by Object Technology International, Inc., an IBM Eclipse

Fellowship Grant, and an NSERC Discovery Grant.

REFERENCES

[1] Merriam-Webster, Merriam-Webster Online Dictionary, www.mer-
riam-webster.com/, Mar. 2003.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns—Elements of Reusable Object-Oriented Software, first ed.
Addison-Wesley, 1994.

[3] K. Beck and R.E. Johnson, “Patterns Generate Architectures,” Proc.
Eighth European Conf. for Object-Oriented Programming, M. Tokoro
and R. Pareschi, eds., pp. 139-149, http://citeseer.nj.nec.com/
27318.html, July 1994.

[4] C. Rich and R.C. Waters, The Programmer’s Apprentice, first ed.
ACM Press Frontier Series and Addison-Wesley, Jan. 1990.

[5] R. Wuyts, “Declarative Reasoning About the Structure of Object-
Oriented Systems,” Proc. 26th Conf. Technology of Object-Oriented
Languages and Systems, J. Gil, ed., pp. 112-124, http://www.iam.
unibe.ch/~wuyts/publications.html, Aug. 1998.

[6] Y.-G. Guéhéneuc and H. Albin-Amiot, “Recovering Binary Class
Relationships: Putting Icing on the UML Cake,” Proc. 19th Conf.
Object-Oriented Programming, Systems, Languages, and Applications,
D.C. Schmidt, ed., pp. 301-314, http://www.iro.umontreal.ca/
ptidej/Publications/Documents/OOPSLA04.doc.pdf, Oct. 2004.

[7] Y.-G. Guéhéneuc, R. Douence, and N. Jussien, “No Java without
Caffeine—A Tool for Dynamic Analysis of Java Programs,” Proc.
17th Conf. Automated Software Eng., W. Emmerich and D. Wile,
eds., pp. 117-126, http://www.iro.umontreal.ca/~ptidej/
Publications/Documents/ASE02.doc.pdf, Sept. 2002.

[8] Y.-G. Guéhéneuc and N. Jussien, “Using Explanations for Design-
Patterns Identification,” Proc. First IJCAI Workshop Modeling and
Solving Problems with Constraints, C. Bessière, ed., pp. 57-64,
http://www.iro.umontreal.ca/ptidej/Publications/Documents/
IJCAI01MSPC.doc.pdf, Aug. 2001.

[9] J. Bansiya, “Automating Design-Pattern Identification,” Dr.
Dobb’s J., http://www.ddj.com/articles/1998/9806/9806a/
9806a.htm?topic=patterns, June 1998.

[10] T. Richner and S. Ducasse, “Recovering High-Level Views of
Object-Oriented Applications from Static and Dynamic Informa-
tion,” Proc. Seventh Int’l Conf. Software Maintenance, H. Yang and
L. White, eds., pp. 13-22, http://www.computer.org/
proceedings/icsm/0016/00160013abs.htm, Aug. 1999.

[11] D. Jackson and M.C. Rinard, “Software Analysis: A Roadmap,”
Proc. 22nd Int’l Conf. Software Eng., Future of Software Eng. Track,
M. Jazayeri and A. Wolf, eds., pp. 133-145, http://sdg.lcs.mit.
edu/%20dnj/talks/roadmap/, June 2000.

[12] P. Tonella and A. Potrich, “Reverse Engineering of the UML Class
Diagram from C++ Code in Presence of Weakly Typed Contain-
ers,” Proc. Int’l Conf. Software Maintenance, G. Canfora and
A.A.A.-V. Maryhauser, eds., pp. 376-385, http://www.computer.
org/proceedings/icsm/1189/11890376abs.htm, Nov. 2001.

[13] D. Thomas, “Reflective Software Engineering—From MOPS to
AOSD,” J. Object Technology, vol. 1, no. 4, pp. 17-26, http://
www.jot.fm/jot/issues/issue_2002_09/column1/index.html,
Sept. 2002.

[14] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical Validation of
Object Oriented Metrics on Open Source Software for Fault
Prediction,” IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897-910,
http://csdl2.computer.org/dl/trans/ts/2005/10/e0897.pdf, Oct.
2005.

[15] J.H. Jahnke, W. Schäfer, and A. Zündorf, “Generic Fuzzy
Reasoning Nets as a Basis for Reverse Engineering Relational
Database Applications,” Proc. Sixth European Software Eng. Conf.,
M. Jazayeri, ed., pp. 193-210, http://www.uni-paderborn.de/cs/
varlet/docs.html, Sept. 1997.

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

[16] J. Niere, J.P. Wadsack, and A. Zündorf, “Recovering UML
Diagrams from Java Code Using Patterns,” Proc. Second Workshop
Soft Computing Applied to Software Eng., J.H. Jahnke and C. Ryan,
eds., pp. 89-97, http://trese.cs.utwente.nl/scase/scase-2/
Proceedings.pdf, Feb. 2001.

[17] J. Niere, J.P. Wadsack, and L. Wendehals, “Handling Large Search
Space in Pattern-Based Reverse Engineering,” Proc. 11th Int’l
Workshop Program Comprehension, K. Wong and R. Koschke, eds.,
pp. 274-280, http://portal.acm.org/citation.cfm?id=857020, May
2003.

[18] D. Jackson and A. Waingold, “Lightweight Extraction of Object
Models from Bytecode,” Proc. 21st Int’l Conf. Software Eng.,
D. Garlan and J. Kramer, eds., pp. 194-202, http://sdg.lcs.mit.
edu/ dnj/, May 1999.

[19] Object Management Group, UML v1.5 Specification, http://
www.omg.org/cgi-bin/doc?formal/03-03-01, Mar. 2003.

[20] J. Noble and J. Grundy, “Explicit Relationships in Object-Oriented
Development,” Proc. 18th Conf. Technology of Object-Oriented
Languages and Systems, B. Meyer, ed., pp. 211-226, http://
citeseer.nj.nec.com/noble95explicit.html, Nov. 1995.

[21] F. Civello, “Roles for Composite Objects in Object-Oriented
Analysis and Design,” Proc. Eighth Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications, A. Paepcke, ed.,
pp. 376-393, http://www.it.bton.ac.uk/staff/frc/papers/
aboops93.html, Sept. 1993.

[22] S. Ducasse, M. Blay-Fornarino, and A.-M. Pinna-Dery, “A
Reflective Model for First Class Dependencies,” Proc. 10th Conf.
Object-Oriented Programming, Systems, Languages, and Applications,
F. Manola, ed., pp. 265-280, http://www.iam.unibe.ch/
~ducasse/WebPages/Publications.html, Oct. 1995.

[23] L. Wills, “Automated Program Recognition by Graph Parsing,”
PhD dissertation, Massachusetts Inst. of Technology, 1992.

[24] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, and J. Welsh,
“Towards Pattern-Based Design Recovery,” Proc. 24th Int’l Conf.
Software Eng., M. Young and J. Magee, eds., pp. 338-348, http://
portal.acm.org/citation.cfm?id=581382, May 2002.

[25] C. Krämer and L. Prechelt, “Design Recovery by Automated
Search for Structural Design Patterns in Object-Oriented Soft-
ware,” Proc. Third Working Conf. Reverse Eng., L.M. Wills and
I. Baxter, eds., pp. 208-215, http://www.computer.org/
proceedings/wcre/7674/76740208abs.htm, Nov. 1996.

[26] B. Kullbach and A. Winter, “Querying as an Enabling Technology
in Software Reengineering,” Proc. Third Conf. Software Maintenance
and Reengineering, P. Nesi and C. Verhoef, eds., pp. 42-50, http://
www.computer.org/proceedings/csmr/0090/00900042abs.htm,
Mar. 1999.

[27] R.K. Keller, R. Schauer, S. Robitaille, and P. Pagé“Pattern-Based
Reverse-Engineering of Design Components,” Proc. 21st Int’l
Conf. Software Eng., D. Garlan and J. Kramer, eds., pp. 226-235,
http://www.iro.umontreal.ca/~schauer/Private/Publications/
icse1999/icse1999.html, May 1999.

[28] J.H. Jahnke and A. Zündorf, “Rewriting Poor Design Patterns by
Good Design Patterns,” Proc. First ESEC/FSE Workshop Object-
Oriented Reengineering, S. Demeyer and H.C. Gall, eds., http://
www.iam.unibe.ch/~famoos/ESEC97/, Distributed Systems
Group, Technical Univ. of Vienna, UV-1841-97-10, Sept. 1997.

[29] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design Pattern
Recovery in Object-Oriented Software,” Proc. Sixth Int’l Workshop
Program Comprehension, S. Tilley and G. Visaggio, eds., pp. 153-
160, http://citeseer.nj.nec.com/antoniol98design.html, June 1998.

[30] J. Seemann and J.W. von Gudenberg, “Pattern-Based Design
Recovery of Java Software,” Proc. Fifth Int’l Symp. Foundations of
Software Eng., B. Scherlis, ed., pp. 10-16, http://www.informatik.
uni-trier.de/~ley/db/indices/a-tree/s/Seemann:Jochen.html,
Nov. 1998.

[31] D. Eppstein, “Subgraph Isomorphism in Planar Graphs and
Related Problems,” Proc. Sixth Ann. Symp. Discrete Algorithms,
K. Clarkson, ed., pp. 632-640, www.ics.uci.edu/~eppstein/pubs/
Epp-TR-94-25.pdf, Jan. 1995.

[32] N. Pettersson and W. Löwe, “Efficient and Accurate Software
Pattern Detection,” Proc. 13th Asia Pacific Software Eng. Conf.,
P. Jalote, ed., pp. 317-326, http://ieeexplore.ieee.org/xpls/
abs_all.jsp?isnumber=4137387&arnumber=4137433&count=
65&index=43, Dec. 2006.

[33] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis,
“Design Pattern Detection Using Similarity Scoring,” IEEE Trans.
Software Eng., vol. 32, no. 11, Nov. 2006.

[34] K. Brown, “Design Reverse-Engineering and Automated Design
Pattern Detection in Smalltalk,” Technical Report TR-96-07, Dept.
of Computer Science, Univ. of Illinois at Urbana-Champaign,
http://citeseer.nj.nec.com/context/734211/0, July 1996.

[35] G. Hedin, “Language Support for Design Patterns Using Attribute
Extension,” Proc. First ECOOP Workshop Language Support for
Design Patterns and Frameworks), J. Bosch and S. Mitchell, eds.,
Springer, pp. 137-140, http://www.cs.lth.se/Research/ProgEnv/
LSDF.html, June 1997.

[36] H. Albin-Amiot and Y.-G. Guéhéneuc, “Meta-Modeling Design
Patterns: Application to Pattern Detection and Code Synthesis,”
Proc. First ECOOP Workshop Automating Object-Oriented Software
Development Methods, P. van den Broek, P. Hruby, M. Saeki,
G. Sunyé, and B. Tekinerdogan, eds., http://www.iro.umontreal.
ca/~ptidej/Publications/Documents/ECOOP01AOOSDM.
doc.pdf, Centre for Telematics and Information Technology, Univ.
of Twente, tR-CTIT-01-35, Oct. 2001.

[37] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An
Approach for Reverse Engineering of Design Patterns,” Software
and System Modeling, vol. 4, no. 1, pp. 55-70, http://www.springer
link.com/content/0dn4pmqh5uhnbk69/, Feb. 2005.

[38] D. Heuzeroth, T. Holl, and W. Löwe, “Combining Static and
Dynamic Analyses to Detect Interaction Patterns,” Proc. Sixth
World Conf. Integrated Design and Process Technology, H. Ehrig,
B.J. Krämer, and A. Ertas, eds., http://www.info.uni-karlsruhe.
de/publications.php/bib=281, June 2002.

[39] Y.-G. Guéhéneuc“A Systematic Study of UML Class Diagram
Constituents for Their Abstract and Precise Recovery,” Proc.
11th Asia-Pacific Software Eng. Conf., D.-H. Bae and W.C. Chu,
eds., pp. 265-274, http://www.iro.umontreal.ca/~ptidej/
Publications/Documents/APSEC04.doc.pdf, Nov.-Dec. 2004.

[40] A. Donovan, A. Kiezun, M.S. Tschantz, and M.D. Ernst, “Con-
verting Java Programs to Use Generic Libraries,” Proc. 19th Conf.
Object-Oriented Programming Systems, Languages, and Applications,
D. Schmidt, ed., pp. 15-34, http://portal.acm.org/citation.cfm?id
=1035292.1028979, Oct. 2004.

[41] N. Jussien and V. Barichard, “The PaLM System: Explanation-
Based Constraint Programming,” Proc. Techniques for Implementing
Constraint Programming Systems), N. Beldiceanu, W. Harvey,
M. Henz, F. Laburthe, E. Monfroy, T. Müller, L. Perron, and
C. Schulte, eds., pp. 118-133, Sept. 2000, School of Computing,
Nat’l Univ. of Singapore, tRA9/00.

[42] N. Jussien, “e-Constraints: Explanation-Based Constraint Pro-
gramming,” Proc. First CP Workshop User-Interaction in Constraint
Satisfaction, B. O’Sullivan and E. Freuder, eds., http://
www.emn.fr/jussien/publications/jussien-WCP01.pdf, Dec.
2001.

[43] E. Gamma and T. Eggenschwiler, “JHotDraw,” http://members.
pingnet.ch/gamma/JHD-5.1.zip, 1998.

[44] W.B. Frakes and R. Baeza-Yates, Information Retrieval: Data
Structures and Algorithms. Prentice Hall, 1992.

[45] J. Bieman, G. Straw, H. Wang, P.W. Munger, and R.T. Alex-
ander“Design Patterns and Change Proneness: An Examination
of Five Evolving Systems,” Proc. Ninth Int’l Software Metrics
Symp., M. Berry and W. Harrison, eds., pp. 40-49, http://
csdl.computer.org/comp/proceedings/metrics/2003/1987/00/
19870040abs.htm, Sept. 2003.

[46] G. Antoniol, G. Casazza, M. di Penta, and R. Fiutem, “Object-
Oriented Design Patterns Recovery,” J. Systems and Software,
vol. 59, pp. 181-196, http://web.soccerlab.polymtl.ca/~antoniol/
publications/index.html, Nov. 2001.

[47] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting
Design Patterns,” Proc. 11th Working Conf. Reverse Eng., E. Stroulia
and A. de Lucia, eds., pp. 172-181, http://www.iro.umontreal.
ca/~ptidej/Publications/Documents/WCRE04.doc.pdf, Nov.
2004.

[48] M. Fowler, Patterns of Enterprise Application Architecture, first ed.
Addison-Wesley Professional, http://www.amazon.com/
Patterns-Enterprise-Application-Architecture-Martin/dp/
0321127420, Nov. 2002.

GU�EH�ENEUC AND ANTONIOL: DEMIMA: A MULTILAYERED APPROACH FOR DESIGN PATTERN IDENTIFICATION 683

Yann-Gaël Guéhéneuc received the engineer-
ing diploma from the �Ecole des Mines of Nantes,
France, in 1998 and the PhD degree in software
engineering from the University of Nantes,
France (under Professor Pierre Cointe’s super-
vision) in 2003. His PhD thesis was funded by
Object Technology International, Inc. (now IBM
OTI Labs.) in 1999 and 2000. He is an assistant
professor in the Department of Computing
Science and Operations Research at the Uni-

versity of Montreal, where he leads the Ptidej team on evaluating and
enhancing the quality of object-oriented programs by promoting the use
of patterns at the language, design, or architectural levels. His research
interests are program understanding and program quality during
development and maintenance, in particular through the use and the
identification of recurring patterns. He is also interested in empirical
software engineering; he uses eye trackers to understand and to
develop theories about program comprehension. He has published
many papers in international conference proceedings and journals. He is
a member of the IEEE.

Giuliano Antoniol received the degree in
electronic engineering from the Università di
Padova in 1982 and the PhD degree in electrical
engineering from the �Ecole Polytechnique de
Montréal, Canada, in 2004. He has worked in
companies, research institutions, and universi-
ties. He is currently an associate professor at the
the �Ecole Polytechnique de Montréal, where he
works on software evolution, software traceabil-
ity, software quality, and maintenance. He has

published more than 100 papers in journals and international conference
proceedings. He has served as a member of the program committees of
international conferences and workshops such as the International
Conference on Software Maintenance, the International Conference on
Program Comprehension, and the International Symposium on Software
Metrics. He is currently a member of the editorial board of the Journal
Software Testing Verification and Reliability, the Journal Information and
Software Technology, the Journal of Empirical Software Engineering,
and the Journal of Software Quality. In 2005, he was awarded the
Canada Research Chair Tier I in software change and evolution. He is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

