
1

UniDoSA: The Unified Specification and
Detection of Service Antipatterns
Francis Palma, Student Member, IEEE, Naouel Moha, Member, IEEE,

and Yann-Gaël Guéhéneuc, Senior Member, IEEE

Abstract—Service-based Systems (SBSs) are developed on top of diverse Service-Oriented Architecture (SOA) technologies or
architectural styles. Like any other complex systems, SBSs face both functional and non-functional changes at the design or
implementation-level. Such changes may degrade the design quality and quality of service (QoS) of the services in SBSs by
introducing poor solutions—service antipatterns. The presence of service antipatterns in SBSs may hinder the future maintenance and
evolution of SBSs. Assessing the quality of design and QoS of SBSs through the detection of service antipatterns may ease their
maintenance and evolution. However, the current literature lacks a unified approach for modelling and evaluating the design of SBSs in
term of design quality and QoS. To address this lack, this paper presents a meta-model unifying the three main service technologies:
REST, SCA, and SOAP. Using the meta-model, it describes a unified approach, UniDoSA (Unified Specification and Detection of
Service Antipatterns), supported by a framework, SOFA (Service Oriented Framework for Antipatterns), for modelling and evaluating
the design quality and QoS of SBSs. We apply and validate UniDoSA on: (1) 18 RESTful APIs, (2) two SCA systems with more than
150 services, and (3) more than 120 SOAP Web services. With a high precision and recall, the detection results provide evidence of
the presence of service antipatterns in SBSs, which calls for future studies of their impact on QoS.

Index Terms—Antipatterns, Service-based systems, REST, SCA, SOAP, Web services, Specification, Detection, Quality of service,
Design, Software maintenance and evolution

F

1 INTRODUCTION

S ERVICE Oriented Architecture (SOA) [1]—a collection
of principles and methods for designing and develop-

ing service-based systems (SBSs)—helps IT organisations to
meet their business needs. SBSs developed using a SOA
are composed of loosely-coupled, platform-independent,
reusable functional units, a.k.a., services [1]. SBSs are de-
signed and implemented using a number of different archi-
tectural styles and technologies, typically REST [2], Service
Component Architecture (SCA) [3], and SOAP Web services
[4]. In this paper, we refer these technologies as service tech-
nologies and the systems developed using these technologies
as SBSs [5].

Services and SBSs are not exempt of some common
software-engineering challenges: maintenance and evolu-
tion. Maintenance and evolution take place when new or
changed user requirements appear, typically due to: (1) func-
tional changes, i.e., changes at design and implementation
levels and (2) non-functional changes, i.e., changes in the
execution contexts or in service-level agreements. All these
changes may degrade the design quality (or implementation
quality) and the quality of service (QoS) of SBSs and may
cause the appearance of service antipatterns. Antipatterns are

• F. Palma is with the Screaming Power, Canada in collaboration with
Ryerson University, Canada.
E-mail: francispalmaphd@gmail.com.

• Y.-G. Guéhéneuc is with the Department of Computing and Software
Engineering, Polytechnique Montréal, Canada.
E-mail: yann-gael.gueheneuc@polymtl.ca.

• N. Moha is with the Department of Computer Science, University of
Québec in Montréal, Canada.
E-mail: moha.naouel@uqam.ca.

poor solutions to recurring design problems. The concept of
antipattern was introduced by Koenig [6] as a way of doc-
umenting common mistakes in various phases of software
development. Brown et al. [7] described an antipattern as a
literary form that describes commonly occurring solution
of a problem that may generate negative consequences.
Naturally, antipatterns also exist in SBSs [8].

Multi Service and Tiny Service are examples of two typical
service antipatterns [8]. Multi Service represents a service
that implements a long list of operations varying in business
abstractions. A service implemented as a Multi Service is not
easily reusable and exhibits a low cohesion among its oper-
ations. Being overloaded by many different client requests,
the Multi Service might become frequently inaccessible to
its end-users. On the contrary, Tiny Service, a small service
with very few operations, implements only a part of an
abstraction, thus requiring several other tightly coupled
services to complete an abstraction, increasing the design
and development complexity. Researchers suggest that Tiny
Service is the cause of failures in SBSs [9].

Antipatterns, for example Multi Service, may occur due
to ignorance, i.e., when engineers miss to identify proper
business services when analysing requirements due to the
absence of proper use cases [8]. This ignorance may lead to
developing an interface for Multi Service with diverse/unre-
lated abstractions and operations, which must be detected
and could be refactored. Such Multi Service interface may
hinder maintenance and evolution in terms of cost and
time. In the example of a Tiny Service, when engineers map
the requirements and business services, every individual
responsibility is mapped into a separate service [8]. This
mapping results in introducing too many services (service

2

interfaces) of small sizes into the system, increasing archi-
tectural and development complexity. Such mapping must
also be identified automatically to facilitate maintenance
and evolution for the SBSs in the long run. The detection
of such service antipatterns is essential for the analysis of
the design quality and QoS of SBSs.

However, this analysis is challenging because (1) service
antipatterns do not have a formal specification and (2) each
kind of SBSs technology, i.e., REST, SCA, and SOAP, includes
common and differing concepts with the others. With a
few commonalities among them, the service technologies
vary in their (1) building blocks, (2) composition styles,
(3) development method, and (4) communication or client
interaction styles. These variations pose some challenges
to analyse them uniformly and effectively. They can also
explain that the detection of service antipatterns in SBSs has
not received much attention in the literature.

We identify three potential problems from the literature
on the detection of service antipatterns in SBSs and propose
solutions in this paper as follows:

• No unified meta-model of various service tech-
nologies: To detect service antipatterns independent
of SBS technologies (e.g., REST, SCA, and SOAP)
uniformly, we need a unified meta-model to ap-
ply generic approaches to specify and detect ser-
vice antipatterns effectively. This unified meta-model
must provide concepts from the diverse technologies
and their inter-related concepts. However, combin-
ing various technologies is challenging because, de-
spite some commonalities, these technologies differ
in architectural styles and on how their clients con-
sume services.
Solution: Having a unified meta-model is the first
step before proposing a effective approach for the
specification and detection of service antipatterns in
service technologies.

• No specification of service antipatterns: To detect
service antipatterns, we must specify them in a
machine-processable yet human-understandable for-
mat. Without proper specifications, service antipat-
terns are ambiguous and cannot be detected au-
tomatically. The present service-antipatterns litera-
ture describes antipatterns textually and informally,
which is hard to handle and use.
Solution: Specifying service antipatterns using a
specification language in an automatable format is
the pre-requisite step for their automatic detection.

• No dedicated unified approach and framework for
the detection of service antipatterns: SBSs operate
in Internet-based dynamic environment. The execu-
tion contexts of SBSs, i.e., scenarios based on chore-
ographed services, and their dynamic nature, i.e.,
physical availability and service-level agreements
between services and clients, make the analysis of
services and the detection of service antipatterns
challenging. There are numerous contributions in the
literature for the detection of object-oriented (OO)
antipatterns, e.g., [10], [11], [12], [13], [14], [15], [16],
[17], [18]. Yet, there is no consolidated method and
technique for such detection in SBSs.

Solution: Providing a unified approach based on a
generic framework facilitates the detection of service
antipatterns in SBSs regardless of their underlying
technologies and increases the reusability and exten-
sibility of the framework.

In the literature, some progresses have been made in the
domain of SOAP Web services [9], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], of RESTful APIs [31],
[32], and of RESTful APIs for cloud services [33], [34]. In
our previous works [5], [31], [35], we proposed technology-
specific approaches for REST [31], SCA [5], and SOAP [35].
In this paper, to perform the detection of service antipatterns
uniformly, we combine those technology-specific contribu-
tions by (1) proposing a unified meta-model that unifies the
concepts in the technologies to specify service antipatterns
effectively and (2) providing an integrated and extensible
framework capable of detecting service antipatterns in vari-
ous SBSs.

Thus, we present a novel and innovative approach,
UniDoSA (Unified Specification and Detection of Service
Antipatterns), relying on a framework, SOFA (Service Ori-
ented Framework for Antipatterns), for the unified speci-
fication and automatic detection of service antipatterns in
SBSs. SOFA facilitates the static and dynamic analyses of
SBSs where the static analysis concerns quantifying design-
related structural properties and the dynamic analysis refers
to quantifying runtime properties while executing an SBS.
Our proposed UniDoSA approach relies upon a domain
specific language (DSL) to specify service antipatterns in
terms of metrics, both static and dynamic, at higher-level
of abstraction. The DSL is based on a unified meta-model
defined after a thorough domain analysis of service an-
tipatterns from the literature. With the help of the DSL and
SOFA, we automatically generate detection algorithms from
the specifications of service antipatterns, later, we apply
them on a target SBS.

We show the usefulness of UniDoSA by defining rules
for 12 service antipatterns from REST, SCA, and SOAP and
by performing their detection. We validate the detection re-
sults in terms of precision, recall, and F1-measure on: (1) 18
well-known REST APIs, including Facebook, Twitter, Drop-
box, and YouTube, (2) FraSCAti, the largest open-source
SCA system with 130 services and Home-Automation [36],
a demo SCA application with 13 services, and (3) more than
120 SOAP services collected from the Web services search
engine programmableweb.com. We show that UniDoSA
allows the specification and detection of a representative set
of service antipatterns with a high average precision and
recall, e.g., more than 75%.

Thus, with this paper, we contribute to the literature on
antipatterns and on SOA with:

• A unified meta-model combining different service
technologies and architectural styles showing the
differences and commonalities among them;

• Based on the unified meta-model, a unified DSL
to specify service antipatterns regardless of service
technologies with higher-level abstractions;

• A unified approach, UniDoSA, relying the unified
meta-model and DSL, for the specification and de-
tection of service antipatterns in SBS technologies;

3

• An extensive validation of UniDoSA on 18 well-
known RESTful APIs, more than 150 services from
two SCA system, and more than 120 SOAP services;

• An online prototype tool, WEBRESTPAD, for the
detection of service antipatterns, in particular for
RESTful APIs that are more popular and widely used
by service providers.

The remainder of this paper is organised as follows.
Section 2 briefly discusses the background of this paper,
comparing the three SBS technologies. Section 3 presents
the unified meta-model for the three service technologies.
Section 4 shows that the unified UniDoSA approach can
be used to efficiently and effectively specify and detect
different service antipatterns relying on a unified frame-
work, SOFA. Section 5 presents a detailed example where
we apply our UniDoSA approach using a common service
antipattern, Multi Service. Section 6 discusses the experi-
ments and the results we obtained. Section 7 highlights
relevant works in the literature through a literature survey
and shows how this paper fills in existing gaps. Finally,
Section 8 concludes and sketches future work.

2 BACKGROUND

In this section, we briefly introduce the three service tech-
nologies considered in this paper: REpresentational State
Transfer (REST) [2], Service Component Architecture (SCA)
[3], and SOAP Web services [4]. We also show a detailed
comparison among them. Later, we perform a literature
review to identify contributions on antipatterns detection
pertaining to these service technologies and to identify gaps
in the current literature.

2.1 Service Technologies
We consider the following three service technologies be-
cause, as of today, they are dominant in terms of acceptance
in the industry due to their simplicity in publishing and
consuming services over the Web [37].

2.1.1 REpresentational State Transfer (REST)
REST allows resource-centric remote services [2]. Unlike
SOAP services below, which operate using customised op-
erations, REST services use standard HTTP operations, e.g.,
GET, POST, PUT, and DELETE, to access and manipulate re-
sources, thus increasing data transport efficiency and reduc-
ing data handling complexity. This efficiency of REST comes
from its light-weight design and simple usage scheme. The
unique characteristics of REST architectures are: (1) the
explicit use of HTTP methods, (2) the statelessness and
cacheability, thus scalability, (3) the exposure of directory-
like URIs (Uniform Resource Identifiers), and (4) the ability
to transfer data in many Web formats, including XML and
JSON (JavaScript Object Notation).

2.1.2 Service Component Architecture (SCA)
SCA is a software technology that provides a model to
compose applications on top of SOA design principles [3].
The composition, a.k.a., SCA composite, is described using a
standard XML-based language, SCDL (Service Component
Definition Language) where a set of related SCA components

are orchestrated. The components provide the actual desired
business functionalities in the form of services. SCA defines
a technology-agnostic model for composing diverse inter-
face definition languages (WSDL or Java), implementation
languages and frameworks (Java, BPEL, C/C++, Spring, or
OSGi), and bindings (SOAP, JMS, or REST).

2.1.3 SOAP Web Services

SOAP Web services rely on the XML-based messaging pro-
tocol SOAP (Simple Object Access Protocol) [4] and operate
using customised operations. The communications between
clients and SOAP services are based on standards: (1) XML
(eXtensible Markup Language) as the service data format,
(2) HTTP as the transport protocol, (3) SOAP as the reliable
and secured messaging protocol, (4) UDDI (Universal De-
scription, Discovery, and Integration) as the service discov-
ery mechanism, and (5) WSDL (Web Services Description
Language) as the formal service contract.

2.2 Comparison of the Service Technologies

We now compare the three service technologies. Differences
at the architectural, design, and implementation-level exist
among the service technologies, as summarised in Table 1.
An extensive review of the literature help us to identify
and classify the various technology-specific properties high-
lighted in Table 1, which we must consider when analysing
various service-based systems.

The next two sections discuss the differences among the
three service technologies in two aspects: their core design
elements and service consumption styles.

2.2.1 Core Design Elements

A first major difference among the three service technologies
is in their core design elements.

REST relies on resources that can be anything from one
single piece of data (e.g., a name, a salary) to a complete
file (e.g., JPEG or PDF). Resources are identified using URIs
(Uniform Resource Identifiers) and are accessible via stan-
dard HTTP methods. REST resources can also be a collection
of other resources, i.e., composite resources.

SCA relies on component as its building block. A com-
ponent provides a specific service and implements at least
one interface [3]. A collection of related components are
specified in a SCA composite and these components work
together to achieve a higher-level business goal.

A service relying on the SOAP protocol is operation-
centric and exposes an arbitrary set of customised opera-
tions. Clients can search a service directory for their desired
customised interfaces. One use of such services is by orches-
trating them using a well-defined structured language, like
BPEL4WS [38].

2.2.2 Service Consumption Styles

Differences among the three service technologies exist re-
garding their use, i.e., the consumption of their services. The
diverse service consumption styles may introduce diverse
technology-specific antipatterns, which we summarise in
the following.

4

TABLE 1: Non-trivial Architectural Differences among REST, SCA, and SOAP technologies.

Comparison Criteria SOAP SCA REST
Cacheability no no cacheable
Contract design contract first/last contract last contract-less
Dynamic configuration management no yes no
Dynamic deployment no yes no
Error handling no built-in built-in
Message encoding yes yes no
Messaging support yes within domain vendor-specific no
Policy WS-Policy SCA policy framework no standard
Operations invoking protocol SOAP SOAP, JMS, RMI HTTP
Reliability WS-Reliability non-standard no
Representation of information XML-standard XML-standard JSON, XML, MIME, so on
Security WS-Security SCA security policy HTTP, SSL
Standards based yes yes no
Statelessness mostly stateful by default stateless completely stateless
Transactions WS-AtomicTransaction WS-AtomicTransaction no standard
Transport protocol HTTP, TCP, SMTP, JMS HTTP, TCP, SMTP, JMS HTTP
Verbosity more more less
Service composition WS-BPEL SCDL mashups
Service/resource identification WS-Addressing no URI
Core design elements service component resource
Focus accessing named operations accessing components as service units accessing named resources
Human intelligible payload no no yes
Hypermedia/hyperlinking no support no support natural support
Interface different interfaces for services different interfaces for components uniform interface for resources
Service discovery UDDI registries not applicable no standard
Service invocation through calling RPC method through calling RPC method via URL path
Standardised interface definition Web Services Description Language Service Component Definition Language no
Interface exposure public neither neither
Method callability exposed as remotely callable operation no no
Specification JAX-WS SCA-J JAX-RS
Written documentation no dependency no dependency highly dependent

1) REST has no standardised contract or specification.
SOAP services have public, discoverable WSDL-
based contracts, a.k.a., service interfaces. SCA sys-
tems have SCDL-based specifications that are pri-
vate and non-discoverable. Generating or writing
those service contracts and specifications must fol-
low standardised conventions and best practices to
allow their understandability and re-usability.
Summary: Depending on the service technology, the
appearance of service antipatterns related to service con-
tracts might vary.

2) The SOAP clients invoke services relying only on
the SOAP protocol. SCA also executes its compo-
nent services relying on SOAP, JMS, or REST proto-
cols when various SCA composites are not within a
single machine. As for REST, the service invocation
is completely dependent on HTTP and relies on
client requests based on resources URIs.
Summary: Antipatterns in REST depend on how well
the HTTP client requests are formed following best prac-
tices for REST described in the literature from the client
side and how well the HTTP responses are designed from
the server side. Thus, depending on the technologies the
types of antipatterns may vary.

3) The response data and exchanged messages are
available only in XML form for SOAP services,
in XML or SDO (Service Data Objects) for SCA
systems, and in any Web formats, like JSON, XML,
MIME, YAML, or PDF, for REST.
Summary: For SOAP and SCA services, having only

one data representation is not a bad practice whereas
REST must facilitate multiple representations of the same
resource and having only one representation is considered
a bad practice in REST.

2.3 Overview of Service Antipatterns

Designers or developers may follow technology and
developer-neutral bad practices while designing or develop-
ing SBSs using different service technologies. Thus, service
antipatterns exist in the different service technologies, REST,
SCA, and SOAP.

Figure 1 shows a Venn diagram relating 12 service an-
tipatterns found in REST, SCA, and SOAP services. Table 2
presents the concise textual descriptions of the 12 services
antipatterns of interest in this paper. We identify and relate
these 12 service antipatterns from the literature as defined
in [8], [9], [39], [40], [41], [42], [43], [44]. It is important to
mention that to the best of our knowledge, all the research
activities reported in Section 7 deal with the detection of
technology-specific service antipatterns only.

In Figure 1, some antipatterns are specific while others
are common to the different service technologies. Antipat-
terns may be of types inter-service (involve other services
in a SBS) or intra-service (not depending or impacting other
services directly) and may require static, dynamic, or hybrid
analyses of services to be detected.

REST APIs clients do not need to know concrete in-
terfaces to the services that they consume and only send
requests using well-known HTTP methods. Thus, REST

5

TABLE 2: List of 12 Antipatterns in REST, SCA, and SOAP Technologies.

Antipattern(s) in SCA, REST, and SOAP
Ambiguous Name is an antipattern where the developers use the names of interface elements (e.g., port-types, operations, and messages) that are very short
or long, include too general terms, or even show the improper use of verbs. Ambiguous names are not semantically and syntactically sound and impact the
discoverability and the re-usability of a service [39].

Bloated Service is an antipattern related to service implementation where services or resources in SOA become ‘blobs’ with one large interface and–or lots of
parameters. Bloated Service performs heterogeneous operations with low cohesion among them. It results in a system with less maintainability, testability, and
reusability. It requires the consumers to be aware of many details (i.e., parameters) to invoke or customize them [40].

Antipattern(s) in SCA and SOAP
Multi Service, also known as God Object corresponds to a service that implements a multitude of methods related to different business and technical abstractions.
This service aggregates too many methods into a single service, such a service is not easily reusable because of the low cohesion of its methods and is often
unavailable to end-users because it is overloaded, which may also induce a high response time [8].

Tiny Service is a small service with few methods, which only implements part of an abstraction. Such service often requires several coupled services to be used
together, resulting in higher development complexity and reduced usability. In the extreme case, a Tiny Service will be limited to one method, resulting in many
services that implement an overall set of requirements [8].

Antipattern(s) in SCA and REST
Nobody Home (Deprecated Resource in REST) corresponds to a service (or resource), defined but actually never used by clients. Thus, the methods from this service
(or related to this resource) are never invoked, even though it may be coupled to other services. Yet, it still requires deployment and management (or appears in
the API documentation), despite of its non-usage [41].

Antipattern(s) in SOAP and REST
In CRUDy Interface antipattern, the design encourages services to adopt the RPC-like behavior by creating CRUD-type operations, e.g., create_X(), read_Y(),
etc. Interfaces designed in that way might be chatty because multiple operations need to be invoked to achieve one goal. In general, CRUD operations should
not be exposed via interfaces [42].

In REST, the URIs with CRUDy verbs (e.g., create, read, update or delete) or their synonyms can be confusing for API clients, i.e., conceptually, it overloads the
HTTP methods, and thus, introduce CRUDy URI antipattern. Using CRUDy terms in a URI prohibits users to use appropriate HTTP methods applicable to a
certain context [43].

Antipattern(s) only in SCA
Sand Pile is also known as “Fine-Grained Services". It appears when a service is composed by multiple smaller services sharing common data. It thus has a high
data cohesion. The common data shared may be located in a Data Service antipattern [9].

Antipattern(s) only in SOAP
Chatty Web Service is an antipattern where a high number of operations are required to complete one abstraction where the operations are typically attribute-
level setters or getters. A chatty Web service may have many fine grained operations for which: (1) maintenance becomes harder since inferring the order of
invocation is difficult and (2) many interactions are required, which degrades the overall performance with higher response time [8].

Antipattern(s) only in REST
Forgetting Hypermedia: The lack of hypermedia, i.e., not linking resources, hinders the state transition for REST applications. One possible indication of this
antipattern is the absence of URL links in the resource representation, which typically restricts clients to follow the links, i.e., limits the dynamic communication
between clients and servers [44].

Ignoring MIME Types: The server should represent resources in various formats, e.g., xml, json, pdf, etc., which may allow clients, developed in diverse languages,
a more flexible service consumption. However, the server side developers often intend to have a single representation of resources or rely on their own formats,
which limits the resource (or service) accessibility and re-usability [44].

antipatterns are defined in the literature focusing on best
practices of making client requests and sending server re-
sponses. For example, Forgetting Hypermedia and Ignoring
MIME Types antipatterns indicate that the HATEOAS princi-
ple is not enforced and that content-negotiation mechanism
are lacking [44].

The antipatterns in SCA and SOAP services are de-
scribed in the literature based on various criteria related
to services design and implementation and their runtime
behavior (e.g., Multi Service, Tiny Service, and Chatty Web
service) because in SCA and SOAP services, clients consume
services by invoking operations defined in their service
interfaces and the runtime behavior of services depend on
how well the services are designed and implemented.

The detection algorithms for common antipatterns,
shown in Figure 1, are similar across service technolo-
gies but require a unified model of these service tech-
nologies. The detection algorithms for technology-specific
antipatterns will of course vary. Figure 1 shows a com-
parison among antipatterns in REST, SCA, and SOAP ser-
vices. Antipatterns in SOAP services are defined at the
service interface-level whereas antipatterns in SCA are at
component-level. The components in SCA are at a higher
level of granularity than the services in SOAP. Moreover, the
antipatterns in REST applicable at the resources level.

In this paper, we analyse SOAP services as individual
entities, i.e., not as composition of services. Therefore, none
of the discussed antipatterns for SOAP services are at the
service composition-level. Nevertheless, there are antipat-
terns that spread across several SOAP services, e.g., Stovepipe
Service or Single-Schema Dream [8], which we will analyse
in future work because analysing a set of services requires
at least one execution scenario defined using a process
language [38].

In summary, in this section, we compare different ser-
vice technologies and identify a list of non-trivial differ-
ences that describe the technology-specific characteristics
or properties. These different characteristics yield different
antipatterns from one technology to another. We show the
differences and commonalities among antipatterns in vari-
ous technologies in Section 2.3 and conclude that:

“Despite the presence of some common antipatterns across
diverse service technologies, there exist also antipatterns that
are technology-specific, and, therefore, their specification and de-
tection may differ, which poses the challenge to have a unified
and technology-independent approach for the detection of service
antipatterns in different service technologies."

6

S
C
A

REST

Sa
nd

 Pi
le

Chatty W
eb service

Multi Service

D
eprecated R

esource CR
UD

y
In

te
rf
ac

e

Ambiguous Name

Forgetting Hypermedia

Tiny Service

Ignoring MIME Types

CR
UD

y
UR

I

Bloated Service

N
obody H

om
e

SO
AP

Architectural Choices Antipattern Names Existence Level Distribution Level

SCA ∩ REST ∩ SOAP
Ambiguous Name [39]

Interface
Intra-service

Bloated Service [40]

SCA ∩ SOAP
Multi Service [8]
Tiny Service [8]

SCA ∩ REST
Nobody Home [41] Component
Deprecated Resources Resource Intra-resource

REST ∩ SOAP
CRUDy Interface [42] Interface Intra-service
CRUDy URI [43] Resource Intra-resource

SCA Sand Pile [9] Composition Inter-service

SOAP Chatty Web Service [8] Interface Intra-service

REST
Forgetting Hypermedia [44]

Resource Intra-resource
Ignoring MIME Types [44]

Fig. 1: Set Relation among Service Antipatterns in REST,
SCA, and SOAP technologies.

3 UNIFIED META-MODEL

We propose a unified meta-model for service technologies.
To build this unified meta-model, we build, study, and com-
bine the meta-models of the three technologies, as shown in
Figure 2, depicting their commonalities and differences at
their design and implementation levels. We benefit from the
proposed unified meta-model to define a unified domain-
specific language for specifying the service antipatterns at a
higher level of abstraction for their representation. Section
4 details how we define and use such a unified domain
language for the specification and detection of service an-
tipatterns in the three technologies.

We introduce the unified meta-model for REST, SCA,
and SOAP services in Figure 2. Individual meta-models of
REST, SCA, and SOAP services can be found in previous
works: [45], [46], and [47], respectively. In Figure 2, we
present the simplified versions of their meta-models by
hiding optional details not related to services design and
implementation.

To develop our unified meta-model, we follow an iter-
ative and incremental process. We start with the multiple
technology-specific models, and, as the first step, identify
their core elements, i.e., the basic building blocks for each
technology, including Component for SCA, REST service
for REST, and SOAP service for SOAP. We then consider
other related elements that are mandatory for the existence
of these core elements. For example, an SCA component
must define at least one service (i.e., what it is doing) and
a REST service must have at least one resource (i.e., what it
operates on). Thus, incrementally, we develop a ‘complete’

meta-model through iterations, i.e., a small segment with
few model elements at a time. We come to a stop only when
we all agree on a model segment after each iteration. The
process of building our unified meta-model is inspired from
the Unified Software Development Process [48].

Our proposed unified meta-model has six parts, each
representing a distinct area within the model. The elements
in blue on the left of the meta-model represents concepts
specific to REST while the elements in green represents SCA-
specific concepts in the model. The central-top elements of
the model in red corresponds to the concepts specific to
SOAP services. The core part of the proposed meta-model,
i.e., elements in black, includes the concepts common in all
three technologies studied in this paper and is marked as
REST ∩ SOAP ∩ SCA. Finally, The elements in green on the
right of the meta-model represents concepts specific to SCA.
In the following we discuss some interesting parts of the
proposed meta-model.

3.1 REST ∩ SOAP ∩ SCA
As shown in Figure 3, the core part of the proposed unified
meta-model includes the concepts common in all three
SBS technologies. All the three SBS technologies imple-
ment at least one SecurityMechanism to make service
consumption secured. For example, REST may rely on
OAuth whereas SCA may rely on SCA Security Policy and
SOAP uses WS-Security. Moreover, all these technologies
use a specific Transport protocol. The HTTP protocol,
for example, can be used both by REST and SOAP. Each
technology shares the notion of Service through which
operations or methods become also integral part of these
three technologies. REST, SCA, and SOAP technologies also
share the notion of service Endpoint. Finally, all these
three SBS technologies rely on a specification mechanism
that either exposes their capabilities (e.g., HTML/PDF for
REST or WSDL for SOAP) or their configuration details (e.g.,
SCDL for SCA).

3.2 REST
Among REST-specific concepts in the proposed meta-model
are the Resource, RESTService, Method, Request, and
Response concepts, which are worth to discuss in details.
The RESTService is based on URI conventions and de-
fined as a collection of multiple Resources that can be
accessed via a baseURI, a.k.a., an Endpoint. To access a
Resource, at least one Method of type HTTPMethods must
be defined by a REST developer or offered by one REST ser-
vice. HTTP methods (e.g., GET, POST, PUT or DELETE) are
used by client to the REST services to request a Resource.
In addition, a REST Request and Response may include
a Body. Each Resource has a Representation of type
MediaTypes.

3.3 SCA
This part of the meta-model includes concepts specific
only to SCA, including the Reference, Component, Wire,
Property, Composite, and others concepts. The design
and implementation of SCA systems require these concepts,
which are not found in REST and SOAP meta-models. In

7

RE
ST
Se
rv
ic
e

k
ba
se
U
RI
/E
St
rin
g
[X
]

k
de
sc
rip
tio
n/
ES
tr
in
g
[X
]

Re
so
ur
ce

k
U
RI
/E
St
rin
g
[X
]

M
et
ho
d

k
H
TT
PM

et
ho
d/
H
TT
PM

et
ho
ds
[X
]

k
pa
th
/E
St
rin
g
[X
]

k
pa
ra
m
et
er
s/
Pa
ra
m
et
er
Ty
pe
s
[X
]

«E
nu
m
er
at
io
n»

H
TT
PM

et
ho
ds

G
ET

PO
ST

PU
T

D
EL
ET
E

«E
nu
m
er
at
io
n»

Pa
ra
m
et
er
Ty
pe
s

@
Q
ue
ry
Pa
ra
m

@
Pa
th
Pa
th

@
Fo
rm
Pa
ra
m

@
Co
ok
ie
Pa
ra
m

@
H
ea
de
rP
ar
am

@
M
at
rix
Pa
ra
m

Re
qu
es
t

k
m
et
ho
d/
H
TT
PM

et
ho
ds
[X
]

k
ho
st
/E
St
rin
g
[X
]

k
re
qu
es
tU
RI
/E
St
rin
g
[X
]

Re
sp
on
se

k
st
at
us
_c
od
e/
EI
nt
[X
]

Pa
ra
m
et
er

k
da
ta
Ty
pe
/E
St
rin
g
[X
]

k
pa
ra
m
et
er
Ty
pe
/P
ar
am

et
er
Ty
pe
s
[X
]

Re
pr
es
en
ta
tio
n

k
m
ed
ia
Ty
pe
/M

ed
ia
Ty
pe
s
[X
]

«E
nu
m
er
at
io
n»

M
ed
ia
Ty
pe
s

JS
O
N

XM
L

YA
M
L

H
TM

L
PD
F

JP
EG

Sp
ec
ifi
ca
tio
n

k
na
m
e/
ES
tr
in
g
[X
]

k
fo
rm
at
/S
pe
cF
or
m
at
[X
]

«E
nu
m
er
at
io
n»

Sp
ec
Fo
rm
at

H
TM

L
PD
F

W
AD

L
W
SD
L

SC
D
L

Se
cu
rit
yM

ec
ha
ni
sm

k
ty
pe
/S
ec
ur
ity
Ty
pe

[X
]

«E
nu
m
er
at
io
n»

Se
cu
rit
yT
yp
e

O
Au
th

W
Sq
Se
cu
rit
y

W
Sq
Se
cu
re
Co
nv
er
sa
tio
n

Tr
an
sp
or
tL
ay
er
Se
cu
rit
y

SC
A
Se
cu
rit
y
Po
lic
y

Er
ro
rR
es
po
ns
e

k
H
TT
PC
od
e/
EI
nt
[X
]

k
Er
ro
rD
et
ai
ls
/E
St
rin
g
[X
]

Se
rv
ic
e

SO
AP
Se
rv
ic
e

k
na
m
e/
ES
tr
in
g
[X
]

In
te
rf
ac
eQ
po
rt
Ty
pe
F

k
na
m
e/
ES
tr
in
g
[X
]

O
pe
ra
tio
nJ
M
et
ho
d

k
na
m
e/
ES
tr
in
g
[X
]

M
es
sa
ge
s

k
en
co
di
ng
_s
ty
le
/E
St
rin
g
[X
]

O
ut
pu
tM
es
sa
ge

k
m
sg
N
am

e/
ES
tr
in
g
[X
]

In
pu
tM
es
sa
ge

k
m
sg
N
am

e/
ES
tr
in
g
[X
]

ta
rg
et
N
am

es
pa
ce

k
na
m
e/
ES
tr
in
g
[X
]

Pa
rt

k
na
m
e/
ES
tr
in
g
[X
]

k
ty
pe
/E
St
rin
g
[X
]

Bi
nd
in
g

k
na
m
e/
ES
tr
in
g
[X
]

k
ty
pe
/B
in
di
ng
Ty
pe

[X
]

k
tr
an
sp
or
t/
Tr
an
sp
or
t[
X]

En
dp
oi
nt

k
U
RI
/E
St
rin
g
[X
]

Po
rt

k
na
m
e/
ES
tr
in
g
[X
]

k
lo
ca
tio
n/
ES
tr
in
g
[X
]

«E
nu
m
er
at
io
n»

Bi
nd
in
gT
yp
e

SO
AP

RM
I

CO
RB
A

JY
EE

RE
ST

D
CO

M

«E
nu
m
er
at
io
n»

Tr
an
sp
or
t

H
TT
P

SM
TP

FT
P

Co
m
po
ne
nt

k
na
m
e/
ES
tr
in
g
[X
]

Re
fe
re
nc
e

k
na
m
e/
ES
tr
in
g
[X
]

SC
AS
er
vi
ce

k
na
m
e/
ES
tr
in
g
[X
]

Im
pl
em

en
ta
tio
n

Im
pl
em

en
ta
tio
n_
Co
m
po
si
te

k
na
m
e/
ES
tr
in
g
[X
]

Im
pl
em

en
ta
tio
n_
BP
EL

k
pr
oc
es
s/
ES
tr
in
g
[X
]

Im
pl
em

en
ta
tio
n_
Ck

k
k
cl
as
s/
ES
tr
in
g
[X
]

Im
pl
em

en
ta
tio
n_
Ja
va

k
cl
as
s/
ES
tr
in
g
[X
]

Co
m
po
si
te

k
na
m
e/
ES
tr
in
g
[X
]

k
ta
rg
et
N
am

es
pa
ce
/E
St
rin
g
[X
]

Pr
op
er
ty

k
na
m
e/
ES
tr
in
g
[X
]

k
va
lu
e/
ES
tr
in
g
[X
]

W
ire

k
so
ur
ce
/E
St
rin
g
[X
]

k
ta
rg
et
/E
St
rin
g
[X
]

k
na
m
e/
ES
tr
in
g
[X
]

SC
AC
lie
nt

k
na
m
e/
EJ
av
aC
la
ss
[X
]

W
SC
lie
nt

k
na
m
e/
EJ
av
aC
la
ss
[X
]

RE
ST
Cl
ie
nt

k
na
m
e/
EJ
av
aC
la
ss
[X
]

Cl
ie
nt

SC
AI
nt
er
fa
ce

k
co
nv
er
sa
tio
na
l/
ES
tr
in
g
[X
]

In
te
rf
ac
e_
W
SD
L

k
na
m
e/
ES
tr
in
g
[X
]

In
te
rf
ac
e_
Ja
va

k
na
m
e/
ES
tr
in
g
[X
]

H
ea
de
r

k
fie
ld
s/
EM

ap
[X
]

Bo
dy

k
co
nt
en
t/
ER
es
ou
rc
e
[X
]

k
lin
ks
/E
St
rin
g
[C
]

Po
lic
y

k
na
m
e/
Po
lic
y
[X
]

«E
nu
m
er
at
io
n»

Po
lic
y

W
Sq
Po
lic
y

SC
Aq
Po
lic
y

En
co
di
ng

k
st
yl
e/
En
co
di
ng
St
yl
e
[X
]

«E
nu
m
er
at
io
n»

En
co
di
ng
St
yl
e

RP
CJ
en
co
de
d

RP
CJ
lit
er
al

D
oc
um

en
tJ
en
co
de
d

D
oc
um

en
tJ
lit
er
al

X
X_
_C

X

X_
_C

X

C

X

N_
_CX

X_
_C

X

C

X

C

X

X_
_C

X

X
N_
_X

X

X

X

N_
_X

X

X

X X_
_C X

C
X

C

X

X

X

X_
_C

X X_
_C

X

C

X

X

X

X_
_C

X

C

X

C
X

N_
_X

X

N_
_X

X

N_
_X

X

C

k

C

X

X

C

XC

X

C

ac
ce
ss

in
vo
ke
s

in
st
an
tia
te
s

X

C

X

C

X

N_
_X

X

C

X
C

X

N_
_X

X

N_
_X

X
X

X

X_
_C

X X

X

X

X

X

X

X

X

X

X

X
in
vo
ke

en
co
di
ng
_s
ty
le

X

X

R
E
S
T

S
O
A
P

R
E
S
T
∩
S
O
A
P
∩
S
C
A

S
O
A
P
∩
S
C
A

S
C
A

k
na
m
e/
EJ
av
aC
la
ss
[X
]

k
tr
an
sp
or
t/
Tr
an
sp
or
t[
X]

O
p
en
A
PI

R
A
M
L

C

N_
_X

N_
_X

Fa
ul
t

k
m
sg
N
am

e/
ES
tr
in
g
[X
]

X

X

X

Fig. 2: Unified Meta-model for REST, SCA, and SOAP Technologies.

8

RESTService
- baseURI: EString [1]
- description: EString [1]

Resource
- URI: EString [1]

Specification
- name: EString [1]
- format: SpecFormat [1]

«Enumeration»
SpecFormat
HTML
PDF
WADL
WSDL
SCDL

SecurityMechanism
- type: SecurityType [1]

«Enumeration»
SecurityType

OAuth
WSNSecurity
WSNSecureConversation
Transport Layer Security
SCA Security Policy

Service

SOAPService
- name: EString [1]

targetNamespace
- name: EString [1]

Endpoint
- URI: EString [1]

11..O

1

1

1
0..1

1

1

1

1

1

1..O

Component
- name: EString [1]

1

SCAService
- name: EString [1]

O

1

1

1

RAML
OpenAPI

1

Fig. 3: Elements Common in REST, SCA, and SOAP Technologies (REST ∩ SCA ∩ SOAP).

OpenAPI

Fault

Fig. 4: Elements Common in SCA and SOAP Technologies (SCA ∩ SOAP).

SCA, a Component provides at least one Service and
several Components may reside within a Composite.
Multiple Composites may be connected via Wires and
Components, which might be dynamically reconfigured via

various Property values.

9

3.4 SOAP

The concept that only belongs to SOAP Web services is
the Policy concept. The rest of the concepts needed to
describe SOAP-based SBSs are either common with REST
or SCA. For example, SOAP shares with SCA the con-
cepts of Interface, Binding, Security, Policy, and
Operation/Method. SOAP also shares with REST the
concepts of Endpoint and Transport. In general, SOAP
shares more commonality with REST and SCA, unlike the
few common concepts that exist in REST and SCA.

3.5 REST ∩ SOAP

This part of the meta-model represents the intersection
between REST and SOAP meta-models. A set of argu-
ments, a.k.a., Parameter, must be specified to make a
HTTP Request. The most recent state of the requested
resource is returned as a Response message that must have
a Representation, which is generally in a globally ac-
cepted representation format rather than MIME, e.g., XML,
JSON, or PDF for REST, and only in XML for SOAP. Thus, in
the proposed unified meta-model, the Representation is
defined as an abstract entity, which is generalised in various
data representation formats.

3.6 SOAP ∩ SCA

Figure 4 shows the concepts common in SOAP and SCA
services where a Service implements an Interface
and each service has at least one Method/Operation
defined and at least one Binding specified bind-
ing to a service. The concepts Interface/PortType,
Service, Method/Operation, and Binding are common
in SOAP and SCA meta-models as well as Policy and
SecurityMechanism concepts.

3.7 Discussion

This first unified meta-model, in Figure 2, of the three most
popular service technologies brings the following benefits:

1) It is helpful in specifying and identifying rather than
analysing service antipatterns in SBSs uniformly, as
much independent of technologies as conceptually
possible, by providing a common language to spec-
ify service antipatterns at a higher-level represen-
tation abstraction and without ambiguity, i.e., no
multiple semantics of the same antipattern concept;

2) It clearly separates the technology-specific concepts
and relates them where applicable, which is helpful
in understanding the commonalities and differences
among various service technologies;

3) The specification of service antipatterns uniformly
allows building a unified approach for their de-
tection in service-based systems regardless of their
underlying technologies.

Our unified meta-model is applicable to model any SBSs
developed with REST, SCA, or SOAP services. It is, in ad-
dition, extensible for new technologies by integrating their
shared concepts, for example, architectural components and
communication styles.

For example, if it is required to add the WCF (Windows
Communication Foundation) service technology in our uni-
fied meta-model, the identification of basic concepts in WCF
is the first step. A WCF service exposes a collection of
endpoints where each endpoint is a portal to communicate
with external services. A service endpoint has an address (a
network address), a binding (how the end-point communi-
cates with other services including transport protocol (e.g.,
TCP, HTTP), encoding (e.g., text or binary), and security
requirements (e.g., SSL or SOAP message security)), and
a contract (what the endpoint communicates), and is a
collection of messages organised in operations. Moreover,
an endpoint address is formed using a URI and an identity.
A binding, for example, has a name and a namespace.

These concepts above are from WCF technology and
are closely related to SOAP-based Web services. Therefore,
while comparing with SOAP, it is expected that the common
elements between WCF and SOAP would be relatively
numerous when compared to other technologies.

Then, to accommodate WCF, we would start by adding
the most basic element, WCF service, in the model and
incrementally add or map other elements depending which
pre-existing model elements match with the concepts in
the new technology we want to add. In summary, after a
thorough domain analysis, it is achievable only by domain
experts with the knowledge of existing unified meta-model.

4 PROPOSED UNIFIED APPROACH

Relying on our unified meta-model, we now present a uni-
fied approach for the specification and detection of service
antipatterns in SBSs written in either one of the three service
technologies REST, SCA, and SOAP.

Figure 5 shows our proposed unified approach,
UniDoSA (Unified Specification and Detection of Service
Antipatterns), for specifying and detecting service antipat-
terns in SBSs. Starting with the textual descriptions of
service antipatterns and ending with the validation of the
detected occurrences of these antipatterns, the four main
steps of UniDoSA include:
Step 1: Specification. This step includes performing a thor-
ough domain analysis by studying the definitions and
textual descriptions of antipatterns from the literature to
identify the relevant static and dynamic properties of the el-
ements of the unified meta-model to specify them. The iden-
tified properties represent (1) measurable attributes of the
elements of the proposed meta-model and (2) the relations
among elements. Thus, we use the elements of the unified
meta-model as the vocabulary to define a common domain
specific language (DSL) to formalise antipatterns with rule
cards. Rule cards are representations of antipatterns at a
higher-level of representation abstraction, which are both
machine processable and human readable. Figure 10 shows
examples of rule card for Multi Service and Tiny Service.
Figure 12 shows the rule card of Forgetting Hypermedia REST
antipattern. For REST antipatterns, rule cards are applied on
the HTTP requests and responses.
Step 2: Generation. From the rule cards in the previous step,
we generate automatically their detection algorithms using
a template-based technique. We define templates of detection

10

Textua l
Description of
SOA Antipa tte rns

Rule Cards

Step 1 Step 2

Generation

Services
(SCA, SOAP, REST)

Detection

Specification

Detection
Algorithms

Step 3

Domain Analysis

Vocabulary

Step 4

Validation

Service
Candidate

Services
involved in
Antipa tte rns

Antipa tte rns

Fig. 5: UniDoSA Approach for the Specification and Detection of Service Antipatterns in SBSs.

algorithms with well-defined tags, which we replace by con-
crete values at generation-time of the detection algorithm.
This step results in detection algorithms (i.e., Java programs)
for each service antipattern that we have specified and that
we want to detect. In fact, manually implementing Java
programs would be more complicated and at a much lower-
level of abstraction. Thus, we rely on a technique for the
automatic generation of the detection algorithms.
Step 3: Detection. For the detection of antipatterns, we
introduce the framework SOFA (Service Oriented Frame-
work for Antipatterns). The computations of all static and
dynamic metrics or properties are performed by SOFA. Our
SOFA framework also assists in semantic analysis of services
interfaces. In this step, we apply the detection algorithms
automatically generated in the previous step on different
SBSs and report candidate service antipatterns as the occur-
rences of service antipatterns. Moreover, for REST services,
SOFA provides the means to concretely send HTTP requests
and to apply automatically the detection algorithms on both
HTTP requests and responses.
Step 4: Validation. In this step, we rely on independent
engineers and external developers to manually validate the
suspected services, i.e., the occurrences of service antipat-
terns, obtained in the previous step to verify that those
services indeed suffer from the antipatterns as described in
the literature and as listed in Table 2 in form and semantics,
the latter being only possibly validated by developers.

Our UniDoSA approach is designed to work for any
number of antipatterns regardless of technology, in par-
ticular, currently, for the SOAP, SCA, and REST service
technologies.

The next two sections describe the specification of ser-
vice antipatterns and the generation of their detection algo-
rithms in further details. We describe SOFA in Section 4.3.
We discuss the validation of the occurrences in Section 6.

4.1 Specification of Service Antipatterns
As the first step towards the specification of service an-
tipatterns from their textual, informal descriptions in the
literature, we perform a thorough domain analysis of ser-
vice antipatterns by studying their definitions and textual
descriptions [9], [8], [19] and in online resources and articles
[40], [39], [42], [49], [41]. The process of domain analysis
involves identifying, capturing, and organising reusable in-
formation for using them in software development [50]. The
domain analysis allows us to identify properties relevant
to service antipatterns, including static properties related

to their design (e.g., cohesion and coupling) and dynamic
properties, such as QoS properties (e.g., response time,
availability, or throughput) and to relate these properties to
the elements of the unified meta-model describing the three
service technologies.

Static properties are properties that apply to the static de-
scriptions of SBSs, such as WSDL files for SOAP services and
SCDL files for SCA services (under the Specification
element in the meta-model) whereas dynamic properties
are related to the dynamic behavior or nature of SBSs
as observed during their execution. Our proposed unified
meta-model (see Figure 2) represents the elements necessary
to compute static properties.

Not all service antipatterns require the computation of
dynamic properties but it is possible using our meta-model.
The dynamic or behavioral properties of services in the
meta-model are related to the SCAService, SOAPService,
and RESTService elements. Dynamic properties for each
of these elements include, for example, response time, avail-
ability, and throughput. These dynamic properties can only
be measured by concretely invoking the services. Table
3 shows the elements in our meta-model and what we
measure on them. The last column in Table 3 shows how we
identify the measurement of elements. This identification
also works as the basis of our DSL. After analysing the
descriptions of the service antipatterns (see Table 2), we
identify from our meta-model the elements on which to
perform the measurement and how we can perform the
measures while we define the rule cards for antipatterns.

We compute the dynamic properties by relying on an
external API called SoapUI1. To obtain the best possible
estimate, for each service, we randomly select five oper-
ations (with minimal or no parameters), invoke them ten
times, and take the average of the measures. However, the
measurement of dynamic properties may vary depending
on the Internet traffic. To address the traffic issue and not to
bias the detection, we rely on taking the average of several
invocations, e.g., ten invocations of the same service.

For example, in our UniDoSA approach, the Ambiguous
Name, CRUDy URI, and CRUDy Interface service antipat-
terns require only the static analysis where as Multi Service
or Chatty Web Service antipattern requires both the static and
dynamic analyses for its detection.

Table 2 lists antipatterns for REST, SCA, and SOAP
services selected from the literature and which are com-
monly found in SBSs. We highlight their various relevant

1. www.soapui.org/apidocs/overview-summary.html

11

TABLE 3: The Elements in our Meta-model and What We Measure on Them.

Element Name Domain(s) What We Observe or Measure
on the Element Identified by

Body REST Count of links in response body
Count of verbs in request body

TLB
VRB

Header REST

Presence of authentication cookie
Presence of client cookie
Presence of client caching value
Presence of entity tag
Presence of header link
Presence of location field
Presence of server cookie
Presence of server caching value

AC
CC
CCV
ET
HL
LF
SC
SCV

Method REST The http method used HM

Representation REST The resource representation format RRF

Request REST Presence of ’action’ keywords
Presence of verbs in request URI

AK
VRU

Service REST, SOAP, SCA

The availability of a service
The coupling of a service
The cohesion among operations in a service
Total number of method invocations
Total number of transitive methods invoked
The response time of a service

A
CPL
COH
NMI
NTMI
RT

Interface(portType),
Operation/Method,
Messages

SOAP, SCA The average length of signatures
The ratio of general terms in signatures

ALS
RGTS

Interface(portType) SOAP, SCA

The average ratio of identical port-types
Total number of interfaces in a component
Total number of operations in port-types
The total number of port-types in an interface

ARIP
NI
NOPT
NPT

Operation/Method SOAP, SCA

The average ratio of identical operations
The average number of accessor operations
The average number of identical operations
The average number of parameters in operations
The average number of primitive type parameters
The total number of operations declared
The total number of verbs in operation signatures
The total number of CRUD operations
The total number of utility methods

ARIO
ANAO
ANIO
ANP
ANPT
NOD
NVOS
NCO
NUM

Messages SOAP, SCA The average ratio of identical messages
The total number of verbs in message signatures

ARIM
NVMS

Component SCA The total number of services encapsulated
The total number of parameters in a component

NSE
TNP

Reference SCA The total number of incoming references
The total number of outgoing references

NIR
NOR

properties unique to antipatterns that are measurable in
bold-italic. We use these properties and the elements of the
unified meta-model as the vocabulary to define a DSL, in
the form of a rule-based language, for specifying service
antipatterns. The DSL offers software engineers higher-level
domain-related abstractions and variability points (e.g., five-
point Likert scale from VERY_LOW to VERY_HIGH) to specify
service antipatterns based on their judgments, experiences,
and contexts.

We manually identify and organise relevant domain
concepts and properties essential for specifying service an-
tipatterns via rule cards at a high-level of abstraction using
a DSL. With our domain analysis, specifications of service
antipatterns are made in a consistent high-level abstraction
and capture all relevant domain expertise. Thus, for the do-
main experts, it becomes easy to understand and modify the
specifications without prior knowledge of the underlying
detection framework.

The DSL provides the engineers with high-level,
domain-related abstractions that enable them to express
various measurable properties of service antipatterns. Us-

ing a DSL offers greater flexibility than implementing ad-
hoc detection algorithms manually because the DSL allows
describing antipatterns using higher-level domain-related
abstractions and focusing on what to detect instead of how
to detect it [51]. Our DSL is independent of any imple-
mentation concern, such as the computation of static and
dynamic metrics and, thanks to the unified meta-model,
of the particular service technologies. Moreover, our DSL
allows the adaptation of the antipattern specifications to the
context and characteristics of the analysed SBS by adjusting
the threshold used in the rules. For example, if the service
interfaces of some SBS have, in general, high numbers of
operations, engineers may choose to use the value of the
NOD metric as VERY_HIGH instead of HIGH, as in Figure 10
for the Multi Service antipattern.

As for alternatives to our DSL, other rule-based declar-
ative languages exist including the Object Constraint Lan-
guage2 (OCL). The OCL helps describing rules to apply
on Unified Modeling Language (UML) models. However,

2. http://www.omg.org/spec/OCL

12

languages like the OCL do not suit our purpose because our
specifications of service antipatterns comes with a higher
level of abstraction and domain expressiveness. In addi-
tion, there exist not much pragmatic implementations for
leveraging the OCL except the SimpleOCL3, a not-fully-
developed, proof-of-concept implementation of the OCL
standard built on top of EMF and EMFText4.

The unified meta-model in Figure 2 provides the vocab-
ulary used in the BNF grammar of our DSL and its con-
structs, e.g., expressions (service domain-specific) and symbols
(approach-specific). The constructs fit our problem domain
precisely. We combine those domain and approach-specific
constructs to create a DSL that can be used to specify service
antipatterns.

4.2 Generation of Detection Algorithms

This step follows a process to generate detection algo-
rithms automatically, leveraging the model-driven engineer-
ing (MDE) methodology and using a template-based tech-
nique. The generative programming [52] is an approach for
generating customised software artifacts including source
code. Several works in the literature have leveraged gener-
ative programming, in particular, the template-based tech-
niques, for design patterns or design antipatterns [11], [53],
[54]. We define a unique template for all rule cards consist-
ing of well-defined tags to be replaced with the values of
different metrics defined in the rule cards.

From the previous step, using the specified rule cards,
we generate detection algorithms for the service antipat-
terns by parsing the rule card and feeding templates with
values extracted from the rule cards. For the generation
of detection algorithms, we rely on the Eclipse Model-
ing Framework (EMF) [55] and its code-generation facility
based on a predefined Ecore model [56]. The EMF project, a
modeling framework, and code-generation facility, provides
tools and runtime support to generate compilable code for
the detection of each service antipattern.

Antipattern Rule
kEMFText)

R
ul
e
C
ar
d
k.
rc
)

Step 2

E
co
re
M
od
e
lk
.e
co
re
)

Create
Metamodel
kEcore)

Step 1

Parse, Validate Rule
kEMFText)

Step 3

M
od
el
s
of
R
ul
es
k.
xm
i)

Predefined Templates
kAcceleo)

D
et
ec
tio
n
A
lg
or
ith
m
s

k.
ja
va
)

Code Generation
kAcceleo)

Step 4

DSL Syntax
kEMFText)

Eclipse Modeling Framework kEMF)

Fig. 6: Detection Algorithm Generation Process.

Figure 6 shows the different steps involved in the al-
gorithm generation process. For each step in Figure 6, in
the parentheses we show the technology/tools on which
we rely, and, for each input/output, we show the file types
within the parentheses. Following the generation process,
first, we create a meta-model of our DSL as an Ecore instance
(Step 1). We also define modules in the form of MTL files,
which consists template(s). Our EMF meta-model consists

3. https://modeling-languages.com/simpleocl-tool/
4. http://www.emftext.org/index.php/EMFText

of two parts, e.g., the Ecore models and the genmodel
description files. The Ecore file contains the information
about the defined classes, i.e., one executable main class for
each service antipattern. The genmodel file contains addi-
tional information for the code generation, e.g., the path and
file information. In addition, the genmodel file could also
have the control parameters, i.e., how the code should be
generated. In our approach, we have created static instances
that are produced when we generate the code of our meta-
model (i.e., using a genmodel). We select the meta-model
from which our generation module will take its types, in our
case it is Ecore. We also need to choose the meta-class that
will be used to generate the code file (in our case, EClass).

Then, we use EMFText [57] to write and validate rule
cards on-the-fly (Step 2). For the generation of the detection
algorithms, first, we parse the rule cards of each antipattern
and represent them as models. Then, we use Ecore to
validate syntactically the rule-card models against the meta-
model of our DSL (Step 3). Ecore guarantees the correctness
of the rule-card models. We use a template-based code gen-
eration technique provided by Acceleo [58] (Step 4). Acceleo
is a pragmatic implementation of the Object Management
GroupâĂŹs MOF Model to Text Language standard. An
M2T (Model to Text) projectâĂŤAcceleoâĂŤfocuses on the
generation of textual artifacts, e.g., source code, from mod-
els. As the inputs, Acceleo needs a model in standard XML
or XMI format and some templates (MTL) that we defined
in Step 1. With these templates and the Acceleo engine, we
parse the models of service antipatterns and generate the
detection code.

This generative process is fully automated to avoid
any manual steps, which are usually error-prone and time
consuming. This process also ensures the traceability be-
tween the specifications of antipatterns with the DSL and
their concrete detection in SBSs using SOFA. Consequently,
engineers can focus on the specification of antipatterns,
without considering any technical aspects of the underlying
detection framework and service technologies.

4.3 SOFA Framework

We now describe UniDoSA underlying framework and its
different components. Figure 7 shows the underlying frame-
work, SOFA (Service Oriented Framework for Antipatterns),
that supports the specification and detection of service an-
tipatterns. SOFA is itself a SBS based on the SCA technology.
It has eight components each of which provides a stand-
alone service. The components include:

• Detection represents the main detection service that
initiates and controls the overall detection process.
It also provides an interface to the clients to run the
detection process and helps the clients visualise the
detection results;

• Metric provides the computation of both the static
and dynamic metrics. This component also stores the
static metric values in a repository to be used on the
fly. The values of dynamic metrics cannot be stored,
as they may change for different executions;

• Rule Specification is responsible for specifying and
representing a rule card using the Rule and Operator.

13

Detection

Algorithm
Generation

Rule
Specification

Rule

Operator

Boxplot

Metric

SCA Handler

Web Service
Handler

Executes

REST
Handler

Detection
Results

Interface for
Provided Service

Component
Providing a Service

Legend:

Reference to an
External Component

Fig. 7: SOFA Framework

All the rule cards are also stored in a repository used
by the Algorithm Generation;

• Algorithm Generation generates the detection algo-
rithms automatically from the specified rule cards.
These detection algorithms can be executed by the
clients using the Detection service;

• Rule represents a repository of all the rules, a combi-
nation of which is known as a rule card. Some rules
may depend on Metric to compute required metrics;

• Operator provides all the boolean and comparison
operators to merge or group rules to form a rule card;

• Boxplot provides the means for computing bound-
ary and threshold values. It provides all statistical
analyses during the detection phase of our approach;

SOFA also has three other components: SCA Handler,
Web Service Handler, and REST Handler dedicated to the
analyses of different technology-specific systems. For exam-
ple, the REST Handler component assists in sending HTTP
requests and receiving HTTP responses to be analysed later
on while the Web Service Handler assists for the SOAP tech-
nology to invoke concretely SOAP Web services to measure
dynamic metrics.

The Detection component in the SOFA framework re-
turns the occurrences of service antipatterns into a text
file with the detection details, e.g., the values of underly-
ing metrics, the structural properties of service/component
identified as being parts of some antipatterns, the box-plot
values as compared to various other services/components
in the analysed system. Engineers can use this output file to
further manually investigate the occurrences, i.e., to decide
on how to refactor or resolve the antipatterns based on their
knowledge and experience.

In the following, we discuss the detection of the Multi
Service antipattern as our example.

5 A DETAILED EXAMPLE

In this section, we show an application of our UniDoSA
approach for the specification and detection of service an-
tipatterns in SBSs through the widely known Multi Service
antipattern.

As shown in Figure 5, our approach consists of four
steps. In the following, we show the application of our
approach on the Multi Service antipattern.

5.1 Domain Analysis (Step 1)

The first step of UniDoSA involves domain analysis and
specification for each service antipattern. The domain anal-
ysis is inspired from previous works [50]. It is “a process
by which information used in developing software systems is
identified, captured, and organised with the purpose of making
it reusable when creating new systems” [50]. In our approach,
service antipatterns are the information and the detection
algorithms are software systems. The information on specified
service antipatterns are to be reusable when specifying
new service antipatterns. Thus, the domain analysis ensures
that the language for specifying antipatterns is built upon
consistent high-level abstractions and is flexible with high
expressiveness. This step is crucial to UniDoSA because its
output serves as the input for the following steps. As we
identify the key concepts through the domain analysis, we
can express them as properties-value pairs. This can be done
using the following two steps:

5.1.1 Process

Input: Textual descriptions of service antipatterns from the
literature, such as [9], [8], [19], [40], [39], [42], [49], [41]. We
also require the meta-model and the general architectural
description of each service technology.
Output: A list of the key attributes found in the literature
to describe service antipatterns that forms a vocabulary for
antipatterns. We also obtain concepts that works as the basis
for building our unified meta-model. These base informa-
tion consist of individual elements and their relationships
within and across the service technologies.
Description: The goal of processing of the descriptions is to
identify, define, and organise key attributes used to describe
the antipatterns. The key attributes refer to keywords or
specific service-oriented concepts used to describe antipat-
terns in the literature [8], [9], [19], [39], [40], [42], [49], [41].
These collected attributes carry a vocabulary of reusable
concepts to specify antipatterns. For the domain analysis,
we perform a thorough search of the literature for key
concepts in the antipatterns descriptions. The analysis is
performed iteratively. More specifically, for each description
of an antipattern, we extract all key concepts, compare
them with the collected concepts and, finally, include new
concepts in the domain, taking into account synonyms
and homonyms [59]. In the end, we realise a collection
of concepts that form a unified vocabulary for specifying
service antipatterns. The attributes can be of three types:
measurable, lexical, or structural. Measurable attributes are
countable (e.g., interfaces, operations, and so on). The lexical
attributes are the vocabulary used to name service artifacts
like interfaces, operations, or service parameters. Structural
attributes and relationships define the structures of service
artifacts. We also combine three technology-specific meta-
models and come up with a unified meta-model, the indi-
vidual element of which are domain-specific concepts. We
count or measure on the elements of this unified meta-
model as shown in Table 3.
Implementation: This is essentially a manual step as indi-
cated in Figure 5. However, this step requires the engineers’
knowledge and expertise and can be assisted using domain
analysis tools.

14

5.1.2 Example with Multi Service
We summarise the textual description of the Multi Service [8]
antipattern in Table 2. In the description of the Multi Service,
we identify the key concepts (in italic in the table) of services
with many defined operations related to different business
and technical abstractions, not easily reusable because of
the low cohesion of their methods, often unavailable to end-
users because they are overloaded and may have a high
response time [8]. The measurable attributes of Multi Service
include the concepts of many operations, low cohesion, high
response time, and low availability.

We characterise the identified measurable attributes by
values specified using keywords such as high, low, few,
and many, as found in the textual description of the Multi
Service antipattern. The attributes can be aggregated using
common set operators, e.g., intersection (∩) and union (∪).
In our example, all attributes must be measured to identify
a service as a Multi Service antipattern. We present more
details on the attributes and their possible values for the key
concepts in Section 4.1 where we present the DSL derived
from our domain analysis, its grammar, and a list of the
attributes and their possible values.

5.1.3 Discussion
The process of domain analysis is iterative. In particular,
if we want to consider a new service antipattern, we must
extract the key concepts or attributes from its description
and compare them with existing attributes for avoiding
repetition. In our domain analysis, we study 12 service an-
tipatterns. However, other existing service antipatterns from
the literature can be analysed and the DSL can be extended
with new attributes and values. We believe these 12 service
antipatterns are representative of the whole set of service
antipatterns described in the literature and include more
than 40 reusable key concepts. Using these key concepts,
our DSL forms a consistent vocabulary of reusable concepts
to specify service antipatterns. One of the outcomes in
this Domain Analysis step is that we provide an identifier
for each key concepts (which are measurable properties
of elements in our meta-model) related to the 12 services
antipatterns. These key concepts are also known as metrics
in our DSL.

5.2 Specification (Step 1)
After we conduct the domain analysis, the specification of
services of antipatterns follows. In this phase, we specify
each service antipattern with a high-level of abstraction in a
repetitive process.

5.2.1 Process
Input: A vocabulary of service antipatterns, i.e., in our case
the meta-model elements, their measurable attributes/prop-
erties, and their measurement values/scales.
Output: Specifications detailing the rules to apply on a SBS
to detect the specified service antipatterns.
Description: We formalise the attributes required to specify
detection rules at a high-level of abstraction using a DSL
(see Figure 8). The DSL allows the specification of service
antipatterns declaratively via the compositions of rules in
rule cards (i.e., sets of related rules), for example as shown

in Figure 10 for the Multi Service antipattern. Using the an-
tipattern vocabulary, we construct rules and rules cards for
each service antipattern. In general, we put each measurable
attribute in a rule, e.g., the rule checks for the value of
an attribute or if an attribute reaches/exceeds a predefined
threshold value.

Individual rules may relate to the structure of the service
interfaces or the behavior of services. For uniformity, we
consider that antipatterns characterise services. Thus, a rule
for detecting multi methods/operations reports the service
interfaces defining a multitude of methods/operations.

A rule verifies and, for example, returns the set of
services if the total number of methods/operations is too
high or low compared to other services in the system. Our
defined rules have a consistent granularity and thus it is
possible to combine their outputs using common set opera-
tors, like union and intersection. In our UniDoSA approach,
we choose services as the level of granularity for the sake of
simplicity and without loss of generality.
Implementation: Based on their knowledge and experience,
engineers manually define the specifications for the detec-
tion of service antipatterns using the vocabulary.

5.2.2 Example with Multi Service
We define our DSL using a Backus Normal Form (BNF)
grammar as shown in Figure 8. A rule card is identified
by the keyword RULE_CARD, followed by a rule card name
and a set of rules (line 1). A rule describes a set of static
or dynamic properties, e.g., metrics (lines 9–12), and may
have relationships with other rules, such as via association
(ASSOC) (lines 17-19), and may combine with other rules
via set operators such as union (UNION) or intersection
(INTER) (line 6). A metric may define a numerical value
(line 7) or an ordinal value defined using five-point Likert
scale (line 13): very high, high, medium, low, very low.
However, the values can be also boolean type (TRUE or
FALSE, line 14) and reference type (NULL or EMPTY, line
15). In the SOFA framework, we define ordinal values by
relating ordinal values with concrete numerical values to
avoid manually setting threshold values using the box-plot
statistical technique [60] as shown in Figure 9.

We identify and define a set of 41 metrics (see lines 9-12
in Figure 8) after the domain analysis, as listed in Tables 4
and 5. This extendable metric suite can be used to specify
various service antipatterns in SCA, SOAP, and REST.

Figure 10 shows the rule cards for Multi Service and Tiny
Service antipatterns. The Multi Service antipattern is charac-
terised by very high response time, high number of oper-
ations, low availability of SOAPService or SCAService,
and low cohesion among its Method/Operations. A Tiny
Service corresponds to a service that declares a very low
number of operations and has a high coupling with other
services. In Table 6, we define metrics relevant to Tiny Ser-
vice and Multi Service antipatterns, namely COH - Cohesion
(adapted from [61]), CPL - Coupling, NOD - Number of Op-
erations Declared, RT - Response Time, and A - Availability.

Figure 11 shows the similarity between the Multi Service
antipatterns in SCA and SOAP. As shown in Figure 10, the
Multi Service antipattern characterises a service (or compo-
nent) with high number of operations (or methods) defined
in its interface, which corresponds to the same class, i.e.,

15

1 rule_card ::= RULE_CARD:rule_cardName { (rule)+ };
2 rule ::= RULE:ruleName { content_rule };

3 content_rule ::= metric | relationship | operator ruleType (ruleType)+

4 | RULE_CARD: rule_cardName

5 ruleType ::= ruleName | rule_cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id_metric ordi_value
8 | id_metric comparator num_value | id_metric comparator const_value

9 id_metric ::= ALS | ANAM/ANAO | ANIM | ANP | ANPT | ARIM | ARIO | ARIP | COH | CPL | NCO | NI | NIR | NMD/NOD | NOPT
10 | NOR | NPT | NSE | NUM | NVMS | NVOS | RGTS | TNP
11 | AC | AK | CC | CCV | ET | HL | HM | LF | RRF | SC | SCV | TLB | VRB | VRU
12 | A | NMI | NTMI | RT

13 ordi_value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
14 bool_value ::= TRUE | FALSE
15 ref_value ::= NULL | EMPTY

16 comparator ::= < | ≤ | = | 6= | ≥ | > | ∈ | /∈

17 relationship ::= relationType FROM ruleName cardinality TO ruleName cardinality
18 relationType ::= ASSOC | COMPOS
19 cardinality ::= ONE | MANY | ONE_OR_MANY | num_value NUMBER_OR_MANY

20 rule_cardName, ruleName, ruleClass ∈ string
21 num_value ∈ double
22 const_value ∈ string

Fig. 8: BNF Grammar of Rule Cards in UniDoSA.

TABLE 4: List of Service Metrics for Specifying Service
Antipatterns in SCA and SOAP. (Relevant concepts from the
unified meta-model in Figure 2 are marked in bold.)

Metrics Full Names Static/Dynamic
A Availability of a Service dynamic

ALS Average Length of Signatures/Names static
ANP Average Number of Parameters in Operations static
ANPT Average Number of Primitive Type Parameters static
ANIO Average Number of Identical Operations static
ANAO Average Number of Accessor Operations static
ARIP Average Ratio of Identical PortTypes static
ARIO Average Ratio of Identical Operations static
ARIM Average Ratio of Identical Messages static
COH Service Cohesion static
CPL Service Coupling static
NCO Number of CRUD Operations static
NOD Number of Operations Declared static
NOPT Number of Operations in PortTypes static
NI Number of Interfaces static
NIR Number of Incoming References static
NMI Number of Method Invocations dynamic
NOR Number of Outgoing References static
NPT Number of PortTypes static
NTMI Number of Transitive Methods Invoked dynamic
NSE Number of Services Encapsulated static
NUM Number of Utility Methods static
NVMS Number of Verbs in Message Signatures/Names static
NVOS Number of Verbs in Operation Signatures/Names static
RGTS Ratio of General Terms in Signatures/Names static
RT Response Time of a Service dynamic
TNP Total Number of Parameters static

Operation/Method, in the unified meta-model in Figure
2. Moreover, the cohesion metric is calculated for both tech-
nologies using the Operation/Method and Message ele-
ments (e.g., InputMessage and OutputMessage). In con-
trast, the two other characteristics, e.g., availability and re-
sponse time, correspond to Component and SOAPService
for SCA and SOAP services, respectively. This difference
comes from the different granularity and architectural build-
ing blocks of the two technologies.

Like for SCA and SOAP, the specifications of REST
antipatterns also use metrics, which are measured from
the resources (i.e., Resource in the meta-model), perspec-
tive whereas the metrics in SCA and SOAP are mostly

TABLE 5: List of Service Metrics Specific for Antipatterns
in REST. (Relevant concepts from the unified meta-model in
Figure 2 are marked in bold.)

Metrics Full Names Static/Dynamic
AC Authentication Cookie dynamic
AK Action Keywords static
CC Client Cookie dynamic
CCV Client Caching Value dynamic
ET Entity Tag dynamic
HL Header Link dynamic
HM Http Method static
LF Location Field dynamic
RRF Resource Representation Format dynamic
SC Server Cookie dynamic
SCV Server Caching Value dynamic
TLB Total Links in response Body dynamic
VRB Verbs in Request Body dynamic
VRU Verbs in Request URI static

service interface and operation centric (Specification
and Method/Operation in the proposed meta-model). We
show 14 REST-specific metrics in Table 5. For example, as
presented in Figure 12, Forgetting Hypermedia [44] represents
a service in which the link to a Resource entity, i.e., entity
links, are absent in the response body or header provided
by the response. For HTTP GET requests, such entity links
should be provided in the response body or header, hence,
checking missing links in the body or header is adequate
(see line 9-10 in Figure 12). For HTTP POST requests, the
server should provide an external location in the response
header or a link in the response body. Therefore, looking for
the absence of such location in the response header (see line
11 in Figure 12) or missing link in the response body (see
line 9 in Figure 12) is enough to detect Forgetting Hypermedia
service antipattern in REST.

5.2.3 Discussion
Carrying out the domain analysis ensures that the speci-
fications of service antipatterns are done with high-level
abstractions and captures domain expertise and reusable

16

knowledge. Moreover, our DSL provides greater flexibility
than implementing ad-hoc detection algorithms. Domain
experts can modify the specifications at a high-level of
abstraction without complete knowledge of the underlying
detection framework, for example, either by adding new
rules or by modifying existing ones, or by modifying the
threshold values for metrics. Our proposed DSL is precise
(i.e., no ambiguity) and expressive. In fact, the use of our
DSL is not dependent on computer skills or knowledge
about our underlying SOFA framework. The rule cards for
all the 12 services antipatterns are available in our technical
report [62].

The domain analysis and specification are iterative: if
during the process a key concept or an attribute is left
unconsidered, it can be added to our DSL later. Our method
as well as our specification language are flexible and the
flexibility relies on the expressiveness of the language and
available key concepts that we verified on a set of 12 service
antipatterns.

5.3 Generation of Detection Algorithm (Step 2)
This section presents the generation of the detection al-
gorithm for the Multi Service antipattern for the sake of
completeness. We put more technical details in our technical
report [62].

5.3.1 Process
Input: Rule cards of service antipatterns.

Fig. 9: Numerical Values Projected to Five-point Likert Scale
Ordinal Values using a Boxplot.

1 RULE_CARD: MultiService {
2 RULE: MultiService {INTER MultiOperation HighResponse LowA LowCohesion};
3 RULE: MultiOperation {NOD VERY_HIGH};
4 RULE: HighResponse {RT VERY_HIGH};
5 RULE: LowA {A LOW};
6 RULE: LowCohesion {COH LOW};
7 };

1 RULE_CARD: TinyService {
2 RULE: TinyService {INTER FewOperation HighCoupling};
3 RULE: FewOperation {NOD VERY_LOW};
4 RULE: HighCoupling {CPL HIGH};
5 };

Fig. 10: Rule Cards for Multi Service and Tiny Service An-
tipatterns in SCA and SOAP services.

TABLE 6: The Definitions of Metrics in Multi Service and
Tiny Service Antipatterns.

Metric: Cohesion (COH)

COH = (SIDC + SIUC + SISC) / 3, where,

SIDC (Service Interface Data Cohesion) = Common(Param(SOp(sis))) +
Common(returnTypes(SOp(sis))) / Total(SOp(sis))× 2, where,

- SOp(sis), set of all operations exposed in the interface sis of service s;
- Common(Param(SOp(sis))), a function to calculate the number of service
operation pairs with at least one common input parameter type;
- Common(returnTypes(SOp(sis))), a function to calculate the number of
service operation pairs with the same return type;
- Total(SOp(sis)), a function to return the number of all possible combina-
tions of operation pairs for the service interface sis;

SIUC (Service Interface Usage Cohesion) = Invoked(clients, SOp(sis)) /
(|clients| × |SOp(sis)|), where,
- clients, the set of all the clients of service s;
- Invoked(clients, SOp(sis)), a function to compute the total number of all
used operations by a client;

SISC (Service Interface Sequential Cohesion) = SeqConnected(SOp(sis)) /
Total(SOp(sis)), where,
- SeqConnected(SOp(sis)), a function to calculate the number of service
operation pairs that have sequential dependencies;
- Total(SOp(sis)), a function returning the number of all possible combina-
tions of operation pairs;

Scale: Absolute; Measurement Unit: Count; Range: between 0 and 1;

Metric: Coupling (CPL)

CPL = CPLindv / CoupleSum(CPLindv), where,

- CPLindv = NIC + NOC for each service or component;
- NIC, total number of incoming connections for a service or component;
- NOC, total number of outgoing connections for a service or component;
- CoupleSum(CPLindv), a function to calculate the total incoming and
outgoing connections for all individual services or components;

Scale: Absolute; Measurement Unit: Count; Range: between 0 and 1;

Metric: Number of Operations Defined (NOD)

NOD = Count(Opsi), where,

- Count(Opsi), a function returning the total number of operations or
methods defined in a service interface (si);

Scale: Absolute; Measurement Unit: Count; Range: minimum 1;

Metric: Response Time (RT)

RT = Sum(Timeres_rcvd - Timereq_sent) / TotalOpInvokedsi, where,

- Sum(Timeres_rcvd - Timereq_sent), a function to calculate the total time
required to receive responses for all the invoked operations from a service
interface;
- TotalOpInvokedsi, total number of operations invoked from a service
interface;

Scale: Absolute; Measurement Unit: Milliseconds; Range: minimum 0;

Metric: Availability (A)

A = TotalSuccessResponsesi / TotalOpInvokedsi, where,

- TotalSuccessResponsesi, total number of success responses received after
sending an arbitrary number of service requests;
- TotalOpInvokedsi, total number of operations invoked from a service
interface;

Scale: Ratio; Measurement Unit: Percentage; Range: between 0 and 100;

Output: Automatically generated detection algorithms for
the service antipatterns.
Description: From our textual unified DSL, we build a
meta-model for DSL using the Ecore [56] (as shown in
our technical report [62]) and a parser to model rule cards
and manipulate these models of service antipatterns pro-
grammatically. Then, we automatically generate algorithms
using our defined templates. The detection algorithms are
based both on the models of the service antipatterns and

17

the underlying SOFA framework. The generated detection
algorithms are correct by construction of our specifications
using a DSL.
Implementation: The generation of detection algorithms
is automatic and relies on our SOFA framework (Service
Oriented Framework for Antipatterns) that provides ser-
vices required by all detection algorithms. As discussed in
Section 4.3 and shown in Figure 7, these services imple-
ment operations related to the operators (i.e., how the set
operations are performed on the results of two or multiple
rules through the Operator service), attributes (i.e., how
the metric values are calculated using the Metric service),
and the ordinal values (i.e., how the Boxplot service com-
putes and maps the numerical values to the ordinal values).
Our SOFA framework also provides services to handle
technology-specific building blocks and components. For
example, the parsing of the WSDL specification files for
SOAP services is different to parsing SCDL specification
files in SCA systems. In summary, our SOFA framework can
automatically compute metrics, perform structural analyses
on service interfaces, and apply the rules on these services to
decide if a service can be considered as an antipattern. Our
set of ten services (see Figure 7) and the overall design of
the SOFA framework are driven by the key attributes from
the domain analysis and support our proposed DSL. For the
sake of brevity, we present and describe the meta-model of
rule cards that is achievable from our DSL in our technical
report [62].
Framework for Detection: Our SOFA framework is devel-
oped upon the component-based SCA technology. We chose
the SCA as our implementation choice because of its ad-
vantages over other technologies including (1) flexibility of
development and (2) reusability, i.e., each service component
has well-defined interfaces, thus, it can be developed, tested
and debugged independently.

We rely on OW2 FraSCAti [63] as our framework un-
derlying technology. OW2 FraSCAti was itself implemented
as an SCA application composed of 13 SCA composites

Service

SOAPService
+ name: EString [1]

Interface.portType*
+ name: EString [1]

Operation/Method
+ name: EString [1]

Messages
+ encoding_style: EString [1]

OutputMessage
+ msgName: EString [1]

InputMessage
+ msgName: EString [1]

SCAService
+ name: EString [1]

1

0..1

1

1..*

1

*

1

1..*

* Component
+ name: EString [1]1

1

*

1

Number of
Operations Defined

(NOD)

Number of
Methods Defined
(NMD)

Multi
Service

Response Time
(RT)

Response Time
(RT)

Availability
(A)

Availability
(A)

Cohesion
(COH)

Cohesion
(COH)

Multi
Service

Fig. 11: Similarity between Multi Service Antipatterns in SCA
(right) and SOAP (left).

1 RULE_CARD: ForgetHyperMedia {
2 RULE: ForgetHyperMedia {UNION GetRequestLink PostRequestLink};
3 RULE: GetRequestLink {INTER HttpMethodGet NoLinkGet};
4 RULE: PostRequestLink {INTER HttpMethodPost NoLinkPost};
5 RULE: NoLinkGet {UNION NoBodyLink NoHeaderLink};
6 RULE: NoLinkPost {INTER NoBodyLink NoLocationHeader};
7 RULE: HttpMethodGet {HM = ’GET’};
8 RULE: HttpMethodPost {HM = ’POST’};
9 RULE: NoBodyLink {TLB = 0};
10 RULE: NoHeaderLink {HL = NULL};
11 RULE: NoLocationHeader {’Location’ 6∈ ResponseHeader};
12 };

Fig. 12: Rule Card of the Forgetting Hypermedia REST An-
tipattern.

Fig. 13: Implementation Architecture of the SOFA Frame-
work.

(with a total of 91 SCA components). The OW2 FraSCAti
can encompass service components and bindings from var-
ious service technologies including JAX-WS, JMS, EJB, RMI,
and REST. Thus, the benefit of using FraSCAti lies in that
applications built with diverse technologies and bindings
could be introspected and reconfigured at runtime via its
own APIs. For example, the OW2 FraSCAti Explorer APIs
enable loading and starting an SCA specification composite
file, exploring an already running SCA application then
discovering underlying SCA components and discovering
SCA services and references to other components. It can also
start or stop the components or composites dynamically.
However, for the services under analysis from any service
technology, we must build a service skeleton imitating the
real service interfaces. Figure 13 shows the implementation
architecture of our SOFA framework. In the following, we
show some code snippets related to the implementation part
of our SOFA framework.
Set Operators: Our operator packages are defined under the
ofa.rulecard.setoperators package that defines the
methods required to perform intersection or union between
the results returned by the individual rules, i.e., a set of
services satisfying or reaching defined metric thresholds.
We apply these operators on the sets of services that are
potential antipattern candidates. The resultant set contain
only the appropriate services. For example, the exec()
method in Listing 1 performs an intersection on two sets
of services and returns a new set of services. To ease the

18

set operations, within a set we only provide signatures of
services.

Listing 1: Code Snippet of Intersection Operator.
1public class Intersection implements ASetOperator {
2
3 @Override
4 public Set<String> exec(Set<String> set1,
5 Set<String> set2) {
6 return Sets.intersection(set1, set2);
7 }
8}

Measurable Properties: We compute metrics as measurable
properties using the introspection features provided by the
OW2 FraSCAti APIs. Our metric suit consists of 41 mea-
surable properties as discussed in Section 5.2. Our SOFA
framework can compute any metric on a set of services. For
example, in the Listing 2 below, the compute() method
computes the metric NMD (also known as NOD) on each
service of a system.

Listing 2: The Class Calculating the NMD Metric on a Service
Interface.

1public class NMD extends AMetric {
2
3@Override
4public void compute(Object relService, String serviceName,
5Component currentComponent, String componentName) {
6 if (!this.boxplot.getEntries().containsKey(serviceName)){
7 this.boxplot.addEntry(componentName,
8 new relService.getClass().getDeclaredMethods().length);
9 }

10}
11}

The Boxplot service component of our SOFA framework
offers methods to compute and access the quartiles for and
outliers of a set of metric values as illustrated in Listing 3.

Listing 3: The Class Defining the Boxplot Service of our
SOFA Framework.

1public class BoxPlot {
2 public double getHigherOutlier(){
3 return this.sortedValues[this.nbValues-1];
4 }
5 public double getLowerQuartile() {
6 int lowerQuartile = (this.nbValues + 1) / 4;
7 return this.sortedValues[lowerQuartile];
8 }
9 public double getUpperQuartile() {

10 int upperQuartile = (3 * this.nbValues + 3) / 4;
11 return (upperQuartile < this.sortedValues.length) ?

this.sortedValues[upperQuartile] : 0.0;
12 }
13 public Map<String, Double> getHighOutliers() {
14 return this.getValues(">", this.maxBound -

this.fuzziness, null);
15 }
16 public Map<String, Double> getLowOutliers() {
17 return this.getValues("<=", this.minBound +

this.fuzziness, null);
18 }
19}

Algorithm Generation: We start with the rule card of a
service antipattern modelled using Ecore. The Ecore model
can also be represented in XMI as shown in the below:

Listing 4: Rule Card Model for Multi Service Antipattern.
1<?xml version="1.0" encoding="ASCII"?>
2<rulecards:RuleCard xmi:version="2.0"
3xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4xmlns:rulecards="http://rulecards/1.0" name="MultiService">

5 <children xsi:type="rulecards:SmellComposite"
name="MultiService" children="//@children.1
//@children.2 //@children.3 //@children.4"/>

6 <children xsi:type="rulecards:SmellOrdinalValue"
name="MultiOperation" comparator="EQUAL"
ordinalValue="VERY_HIGH">

7 <leftMetricValue xsi:type="rulecards:MetricLeaf"
metric="NOD"/>

8 </children>
9 <children xsi:type="rulecards:SmellOrdinalValue"

name="HighResponse" comparator="EQUAL"
ordinalValue="VERY_HIGH">

10 <leftMetricValue xsi:type="rulecards:MetricLeaf"
metric="RT"/>

11 </children>
12 <children xsi:type="rulecards:SmellOrdinalValue"

name="LowA" comparator="EQUAL" ordinalValue="LOW">
13 <leftMetricValue xsi:type="rulecards:MetricLeaf"

metric="A"/>
14 </children>
15 <children xsi:type="rulecards:SmellOrdinalValue"

name="LowCohesion" comparator="EQUAL"
ordinalValue="LOW">

16 <leftMetricValue xsi:type="rulecards:MetricLeaf"
metric="COH"/>

17 </children>
18</rulecards:RuleCard>

We implement the generation of the detection algorithms
using an approach similar to that proposed in our previous
work [11], which relies on the Visitor pattern [64]. We
benefit from the Visitor because, for each antipattern, using
the same Java template, we can generate varied execution
code that are detection algorithms. As discussed earlier,
our templates are predefined snippets of Java code with
well-defined tags that can be replaced by concrete values
at runtime. More details on the templates and generation
algorithm can be found in our technical report [62].

5.3.2 Example with Multi Service

The following code snippet presents the visit method to
generate the detection rule related to a measurable property
or metric. When we visit the model of the rule card (as
shown in Listing 4, we replace the tag <CODESMELL> by the
name of the rule. For example, for Multi Service, we replace
the tag <CODESMELL> with MultiOperation (see Figure 10).
We also replace the tag <METRIC> by the name of the metric.
For example in Figure 10, we replace the tag <METRIC>
by NOD. Finally, we replace the tag <ORDINAL VALUES>
by an ordinal value. For example for the metric NOD, it is
VERY_HIGH, as shown below in Listing 5.

Listing 5: The Visitor Method to Generate the Detection Rule
of a Metric.

1public void visit(IMetric aMetric) {
2 replaceTAG("<CODESMELL>", aRule.getName());
3 replaceTAG("<METRIC>", aMetric.getName());
4 replaceTAG("<ORDINAL_VALUE>", aMetric.getOrdinalValue());
5}
6
7private String getOrdinalValue(int value) {
8 String method = null;
9 switch (value) {

10 case VERY_HIGH : method = "getHighOutliers";
11 break;
12 case HIGH : method = "getHighValues";
13 break;
14 case MEDIUM : method = "getNormalValues";
15 break;
16 case VERY_LOW : method = "getLowOutliers";
17 break;
18 case LOW : method = "getLowValues";
19 break;
20 default : method = "getNormalValues";
21 break;

19

22 }
23 return method;
24}

The detection algorithm for a service antipat-
tern is defined as implementing the interface,
ServiceAntipattern, as shown in Listing 6.

Listing 6: The Automatically Generated Detection Algo-
rithm for Multi Service Antipattern.

1public class MultiService extends ServiceAntipattern {
2
3 public MultiService() {
4
5 MetricValue metricValue1Smell1 = new

MetricLeaf(Metric.NMD);
6 Smell smell1 = new SmellOrdinalValue(metricValue1Smell1,

Comparator.EQUAL, OrdinalValue.VERY_HIGH);
7
8 MetricValue metricValue1Smell2 = new

MetricLeaf(Metric.COH);
9 Smell smell2 = new SmellOrdinalValue(metricValue1Smell2,

Comparator.EQUAL, OrdinalValue.LOW);
10
11 MetricValue metricValue1Smell3 = new

MetricLeaf(Metric.RT);
12 Smell smell3 = new SmellOrdinalValue(metricValue1Smell3,

Comparator.EQUAL, OrdinalValue.VERY_HIGH);
13
14 MetricValue metricValue1Smell4 = new

MetricLeaf(Metric.A);
15 Smell smell4 = new SmellOrdinalValue(metricValue1Smell4,

Comparator.EQUAL, OrdinalValue.LOW);
16
17 this.rootSmell = new SmellComposite(SetOperator.INTER);
18 this.rootSmell.addChildSmell(smell1);
19 this.rootSmell.addChildSmell(smell2);
20 this.rootSmell.addChildSmell(smell3);
21 this.rootSmell.addChildSmell(smell4);
22 }
23}

The final detection algorithm aggregates the detection
algorithms of several metrics, implementing the interface
MetricValue as shown in Listing 7.

Listing 7: Combining the Computation of Individual Metric
using Set Operators.

1public class MetricLeaf implements MetricValue {
2
3 public MetricLeaf(Metric metricId) {
4 this.metricId = metricId;
5 }
6
7 @Override
8 public BoxPlot getBoxPlot() {
9 return this.metricId.getImpl().getBoxplot();

10 }
11
12 @Override
13 public Set<Metric> getMetrics() {
14 Set<Metric> set = new HashSet<>();
15 set.add(metricId);
16 return set;
17 }
18
19 @Override
20 public String toString() {
21 return metricId.name();
22 }
23}

We combine the results of the computation of individual
metric using the set operators of our Boxplot service to
obtain occurrences of the antipattern.

5.3.3 Discussion
The Ecore models derived from our meta-model, DSL, and
SOFA framework provide a concrete mechanism to generate

and apply detection algorithms automatically. The addition
of another attribute or metric in the DSL requires the im-
plementation of the analysis within SOFA. In particular,
the implementation of the computation of the metric. This
addition of new metrics might vary from minutes to hours
depending on the complexity of the metric being added.
The Ecore models of service antipatterns that are used to
generate detection algorithms must be instantiated each
time for each antipattern. In our UniDoSA approach, all the
metric values are computed on the fly.

5.4 Detection (Step 3)
This section briefly discusses how we perform the detection
of an antipattern.

5.4.1 Process
Input: The detection algorithms for service antipatterns and
a service-based system in which to detect the antipatterns.
Output: Suspicious services whose interfaces and behaviour
conform to the specifications of service antipatterns.
Description: We automatically apply the detection algo-
rithms on service-based systems to detect suspicious ser-
vices. Detection algorithms can be applied individually to
detect a single service antipattern or in batch to detect
multiple service antipatterns at once.
Implementation: Invoking and applying the generated de-
tection algorithms on a service-based system is straightfor-
ward, using the Detection service provided by our SOFA
framework.

5.4.2 Example with Multi Service
Following our example of the Multi Service antipattern, we
apply the detection algorithm of the Multi Service antipat-
tern on, for example, the SCA specification along with the
executable Jars of the service-based system for the SCA
technology. Listing 8 shows a code snippet of the detection
module with two SCA applications HomeAutomation and
FraSCAti.

Listing 8: Main Detection Module for Service Antipatterns.
1public class Launcher {
2
3 public enum App {
4 HomeAutomation,
5 FraSCAti;
6 ...
7 }
8
9 public static App currentApp = App.FraSCAti;

10 public static SOFAManager sofaManager = new SOFAManager();
11 public static void main(String[] args) throws Exception {
12
13 for (Motif antipattern : Motif.antiPatterns())
14 sofaManager.addAntipatternToDetection(antipattern);
15
16 if (currentApp == App.HomeAutomation)
17 sofaManager.runDetection("jar", "composite");
18
19 else if (currentApp == App.FraSCAti)
20 sofaManager.runDetectionOfFraSCAti();
21
22 else if (currentApp == ...)
23 sofaManager.runDetectionOf...();
24
25 String metrics = sofaManager.getUsedMetricsResults();
26 System.out.println(metrics);
27 String detection = sofaManager.getDetectionResults();
28 System.out.println(detection);
29 }
30}

20

5.4.3 Discussion
Our UniDoSA approach can automatically analyse (1) spec-
ification files for SCA, i.e., SCDL files with composites and
components, (2) WSDL files with services, operations, and
messages for SOAP services. For REST services, we perform
a semi-automatic conversion of REST services into an SCA-
compliant format with which we can concretely invoke the
REST services using required credentials. SOFA framework
should be extended to support the automatic analysis of the
WSDL 2.0 standard, which is a de-facto specification file for
REST services. We let such an extension as our future work.

In the following sections, we present experiments using
SCA applications, SOAP Web services, and REST services.

6 EXPERIMENTS

We now present a series of experimental studies through
which we validate our UniDoSA approach. The goals of our
experiments are to show that we can efficiently and effec-
tively: (1) specify service antipatterns using the proposed
DSL and that our DSL is extensible for new antipatterns
and service technologies and (2) detect occurrences of the
specified antipatterns across various service technologies
efficiently in terms of the accuracy and performance of the
detection algorithms.

6.1 Our Conjectures
Our experimental studies aim at supporting the following
four conjectures:

• Generality: Our DSL allows the specification of different
service antipatterns, from simple to more complex ones,
independent of service technologies (SOAP, SCA, REST)
using the proposed unified meta-model.

• Accuracy: Our automatically-generated detection algo-
rithms have a precision and recall greater than 75%, i.e.,
more than three-quarters of the detected occurrences of the
antipatterns are true positive and more than three-quarters
of all existing antipatterns are detected, respectively.

• Extensibility: Our proposed unified meta-model, the ser-
vice DSL, the proposed framework, SOFA, are extensible
for adding new service metrics and technology-specific or
technology-neutral antipatterns.

• Performance: The average computation time required for
the detection of service antipatterns using the generated
algorithms is reasonably low, i.e., in the order of few
seconds no matter the technology.

6.2 Subjects
We use 12 service antipatterns from SCA, SOAP, and REST
from the literature [65], [9], [39], [40], [8], [41], [42], which are
commonly found and well-explained with related examples.
Table 2 presents the list of service antipatterns that we
analysed and detected.

6.3 Objects
We detect occurrences of the 12 service antipatterns in the
following systems:

• REST: We use 18 widely-used and popular REST
services that we found well-documented and listed

in Table 7. These 18 REST define clearly their under-
lying HTTP methods, service end-points, authentica-
tion details, and client-request parameter details.

• SCA: We perform experiments on two SCA systems:
Home-Automation [36] and FraSCAti [63]. The Home-
Automation is developed independently in Spirals
Project-Team, INRIA, France, to simulate a digital
home for controlling basic household tasks remotely.
Home-Automation is designed with 15 SCA compo-
nents (including two extended components), each
providing unique services with seven use cases. FraS-
CAti has a total of 91 SCA components providing
130 distinct services. To the best our knowledge,
FraSCAti is currently the largest open-source SCA
system implementing the SCA standard. We thus
analyse in total 150 SCA services.

• SOAP services: Most of the SOAP Web
services are proprietary. It is difficult to find
freely-available services for our experimental
studies. Web services search engines, e.g.,
eil.cs.txstate.edu/ServiceXplorer or
www.programmableweb.com, help finding service-
interfaces and are limited in number and have the
risk of providing broken or dislocated results. We
perform our experiments with more than 120 SOAP
services collected from the Programmable Web,
e.g., www.programmableweb.com, which is more
updated and list more than 16,000 APIs of diverse
technologies from wide range of service providers.

We believe that our experiments are reproducible on
other services, in particular from the SCA, SOAP, and REST
domains. We demonstrate the strength of our UniDoSA
approach and the capability of the SOFA framework with
two SCA systems, more than 120 of SOAP services, and 18
REST APIs. However, for the SCA systems, an executable
package and its specification file in SCDL language are
required for the detection. For SOAP services our approach
requires a valid WSDL, and, for the REST, we require a list
of resources and related HTTP verbs together with a base
URI. With this minimal set of input, one can replicate our
detection steps.

6.4 Process

Using the SOFA framework, we generate the detection
algorithms corresponding to the rule cards of the 12 service
antipatterns. Then, we apply these detection algorithms on
the target SBSs. Finally, we validate the detection results
by analysing the candidate service antipatterns manually
(1) to validate that these candidate service antipatterns are
true positives and (2) to identify false negatives (if any), i.e.,
missing antipatterns.

To validate the results on REST and SOAP services, we
hire two graduate students who independently validate the
detected occurrences. We consolidate the results and come
to conclusion for the occurrences where the two graduate
students do not agree through discussions among all the
authors and the students, finally using a maximum vote. As
for the validation on FraSCAti, the core developers of the
FraSCAti team assist us. We send our obtained detection

21

TABLE 7: List of 18 REST APIs and URLs of their Documen-
tations.

REST APIs Online Documentations
Alchemy alchemyapi.com/api
BestBuy developer.bestbuy.com
Bitly dev.bitly.com/api.html
CharlieHarvey charlieharvey.org.uk/about/api
DropBox www.dropbox.com/developers/core/docs
Externalip api.externalip.net
Facebook developers.facebook.com/docs/graph-api
GoogleBook developers.google.com/books
Instagram instagram.com/developer
Linkedin developer.linkedin.com/docs
Musicgraph developer.musicgraph.com/api-docs/overview
Ohloh github.com/blackducksw/ohloh_api
StackExchange api.stackexchange.com/docs
TeamViewer integrate.teamviewer.com/en/develop/api
Twitter dev.twitter.com/overview/documentation
Walmart developer.walmartlabs.com
YouTube developers.google.com/youtube/v3
Zappos developer.zappos.com/docs/api-documentation

results of a set of suspicious SCA components and the tex-
tual descriptions of service antipatterns to the core FraSCAti
development team. Based on their pragmatic knowledge
and development experiences, they manually evaluate each
occurrence. Both for the SOAP services and the SCA detec-
tion results, we do not provide our specifications of service
antipatterns not to bias them with our own understanding
on service antipatterns.

We use precision, recall, and F1-measure to measure the
accuracy of our detection algorithms. Precision estimates
the ratio of true occurrences identified among the detected
antipatterns (cf. Equation 1) while recall estimates the ratio
of detected antipatterns among the existing antipatterns (cf.
Equation 2). F1-measure is the harmonic mean of precision
and recall to conclude on the detection accuracy with a
single value (cf. Equation 3).

precision =
|{existing_antipatterns} ∩ {detected_antipatterns}|

|{detected_antipatterns}|
(1)

recall =
|{existing_antipatterns} ∩ {detected_antipatterns}|

|{existing_antipatterns}|
(2)

F1 = 2×
precision× recall

precision + recall
(3)

6.5 Detection Results and Discussions

Figures 14, 15, 16, and 17 present the detection results graph-
ically using mosaic plots for the 12 service antipatterns in
the 18 REST services, the FraSCAti and Home-Automation
SCA systems with 150 services, and in 122 SOAP services.
In total, the SCA-based Home-Automation system has 15 SCA
components. We show the details on all the components in
our technical report [62]. In Figure 16, we only show the
SCA components in Home-Automation system detected as
candidate service antipatterns by UniDoSA. Similarly, due
to large number of SOAP services analysed in this paper,
we only present in Figure 17 the SOAP services detected as
candidate service antipatterns by UniDoSA. In the Figures

Non-relevant
antipatterns
No detection

Detected
antipatterns

Fig. 14: Detection Results of 12 Antipatterns in 18 RESTful
APIs.

14 to 17, the red squares present antipatterns detected for
a service or component under analysis, the green squares
represent no detection, and the grey squares indicate when a
service antipattern is not applicable for a service technology.

Table 8 shows the detailed detection results where the
first column lists various service antipatterns followed by
the applicable technologies in the second column. The third
and fourth column list candidate service (or component)
antipatterns and related metric values or occurrences, re-
spectively. We show the average detection time for each an-
tipattern in the fifth column. The final three columns show
the precision, recall, and F1-measure for each antipattern. In
the below, we discuss several detected service antipatterns
in detail.

As Table 8 shows, Ambiguous Name is the most com-
monly occurred antipattern in the service domain. This in-
dicates that designers and developers do not pay significant
attention to properly naming the software entities like the
services, interfaces, components, operations, and messages,
and so on. This might hinder the reusability and under-
standability of, for example, service interfaces by the service
consumers. Similarly, we found Tiny Service antipattern as
more common than its counterpart Multi Service antipattern.
This indicates that developers are aware of not overloading
a service with a multitude of operations, rather, they tend to
put very few operations under a service.

As for the REST-specific antipatterns, the results show
that REST API designers often do not put hyperlinks in the
response body or header, and thus, introduce the Forgetting
Hypermedia antipattern. However, it is, in general, a good
practice to provide links in the response, which promotes
the HATEOS (Hypermedia as the Engine of Application
State) constraint in REST. Furthermore, REST developers
often tend to ignore representing resources in multiple for-
mats to avoid development complexity. For example, REST
service consumers may request a resource in JSON or XML
or HTML or in any other formats, but the problem arises
when the service developer strictly provides resources in
one format (e.g., XML), limiting the consumersâĂŹ choice.
Due to this very common but poor practice, as shown in
Table 8, we identified a high number of occurrences (94 out
of 115 tested REST methods, i.e., more than 80%) of Ignoring
MIME Types antipatterns.

In the following sections, we present a detailed discuss

22

TABLE 8: General Detection Results of 12 Antipatterns.

Average

23

Non-relevant
antipatterns
No detection

Detected
antipatterns

Fig. 15: Detection Results of 12 Antipatterns in the FraSCAti SCA System.

Fig. 16: Detection Results of 12 Antipatterns in the Home-
Automation SCA System.

our detection results for each antipattern.

6.5.1 Forgetting Hypermedia and Ignoring MIME Types

RESTful interactions are driven by hypermedia with which
clients interact through URL links placed in resource rep-
resentations [2]. In REST, the absence of such strictly rec-
ommended interaction pattern is commonly known as the
Forgetting Hypermedia antipattern [44], which we detected
in nine RESTful APIs, e.g., Bitly, DropBox, and Facebook
(see Table 8 for the full list of APIs). Among the 115 REST
requests that we sent, a total of 55 were detected as occur-
rences of the Forgetting Hypermedia antipatterns—REST APIs
developers in practice may not always provide links in a
resource representation. Out of the 55 detected occurrences,
53 instances were confirmed after manual inspection of all
response bodies and headers.

Thus, two occurrences of Forgetting Hypermedia are not
validated, i.e., our approach identified them as false posi-
tives. For example, a condition for a REST API to be an in-
stance of Forgetting Hypermedia is the absence of links in the
response header or body. In a particular case, using the URL
api.dropboxapi.com/1/metadata/auto/<path>, we
send an HTTP request to DropBox to get the meta-data on
a file. It returns the HTTP response using the keyword

Non-relevant
antipatterns
No detection

Detected
antipatterns

Fig. 17: Detection Results of 12 Antipatterns in 120 SOAP
Web Services.

‘path’ in its body. However, in our rule card for Forgetting
Hypermedia antipattern, we compute the TLB and HL metrics
by counting links or locations in the response body and re-
sponse header, respectively. While calculating those metrics,
we only rely on keywords like ‘location’ or ‘link’, for which
two occurrences are missed where the resource locations are
identified using the keyword ‘path’. The manual validation
rightly considered this detection not to be an instance of
Forgetting Hypermedia antipattern. Therefore, we plan to
extend our framework with other possible synonyms as
well as using WordNet for identifying URLs from response
body/header in the REST domain. This would improve our
precision for Forgetting Hypermedia antipattern.

Thus, two occurrences of Forgetting Hypermedia are not
validated, i.e., our approach identified them as false posi-
tives. For example, a condition for a REST API to be an in-
stance of Forgetting Hypermedia is the absence of links in the
response header or body. In a particular case, using the URL
api.dropboxapi.com/1/metadata/auto/<path>, we
send an HTTP request to DropBox to get the meta-data on a

24

file. It returns the HTTP response using the keyword path in
its body. However, in our rule card for Forgetting Hypermedia
antipattern, we compute TLB and HL metrics counting links
or locations in the response body and response header,
respectively. To calculate those metrics, we only rely on
keywords like location or link, for which two occurrences
are missed where the resource locations are identified using
the keyword path. The manual validation rightly considered
this detection not to be an occurrence of the Forgetting Hyper-
media antipattern. We plan to extend with the other possible
synonyms for identifying URLs from response body/header
in the REST domain. This would improve our precision for
Forgetting Hypermedia antipattern.

We also detected Ignoring MIME Types in eight REST
services. According to REST principles [2], the server should
represent resources in multiple formats, which allow clients
a more flexible service consumption. Yet, server-side devel-
opers often provide a single representation (or rely on their
own formats), which limits the use of resources and service
accessibility and reusability. We detected ten instances of Ig-
noring MIME Types antipattern in Twitter and nine instances
in YouTube. Moreover, we found in BestBuy and Facebook,
only three instances of Ignoring MIME Types antipattern, i.e.,
they mostly follow the good design principle of multiple
resource representations.

6.5.2 Multi Service and Tiny Service

From Table 8, we briefly discuss detection results of Tiny
Service and Multi Service. In particular, we detected the
IMediator SCA component as a Multi Service antipattern
in Home-Automation due to its very high number of interface
methods (NMD or NOD = 13) with a very low cohesion among
its methods (COH=0.027) and a very high response time
(RT=132ms). All these values are assessed as high or low by
the Boxplot component of SOFA, i.e., compared to the values
from other components in Home-Automation. For example,
the Boxplot component estimated the median value of NMD
(or NOD) in Home-Automation as 2, compared to which 13 is
quite high. Similarly, the detected Tiny Service antipattern,
i.e., MediatorDelegate, has a very low number of meth-
ods (NMD=l) with a high coupling (CPL=0.44) with respect
to other Home-Automation components. The cohesion (COH)
and coupling (CPL) metrics range between 0 and 1.

We also detected juliac as an instance of the Multi
Service antipattern in FraSCAti due to its high response time
(RT=1,018ms), low cohesion (COH=0.1), and high number of
methods declared in its interface (NMD=5) when compared
to other components. In fact, the median values calculated
by the Boxplot component are: 4ms, 0.1, and 1, respec-
tively. We validated this detection with the core FraSCAti
development team, who confirmed that juliac is a Multi
Service because it implements six different features of two
dissimilar abstractions. Furthermore, juliac requires extra
execution time because it instantiates the initial SCA system
configuration files. Thus, human inspection justifies our
detection of juliac as Multi Service.

SOFA cannot detect Explorer-GUI as an occurrence of
the Multi Service antipattern because the scenarios that we
tested for FraSCAti did not include any use of the graphical
interface. Yet, the core development team also reported

Explorer-GUI as a Multi Service. Our scenarios involved
62 FraSCAti components out of 91 existing components.

We also detected SrtmWs-PortType,
ShadowWs-PortType, and Hydro1KWs-PortType as
instances of the Tiny Service antipatterns in SOAP services
because they possess very low values for NOD (i.e., 2) and
COH (i.e., 0.0). As computed by the Box-Plot component
in SOFA framework, NOD values of 2 are rather low
compared to the median of 5.5. Moreover, the COH values
are significantly low compared to other SOAP services
whose COH values are in the range of 0.216 and 0.443. Such
small services implemented as Tiny Service often require
other services to function, resulting in higher development
complexity and reducing their independent usability. A
manual validation of the interfaces of the SOAP Web
services confirmed the detection of this antipattern only
for ShadowWs-PortType and Hydro1KWs-PortType
SOAP services. In fact, for the SrtmWs-PortType service,
our external experts who manually validated our results
agreed that the operations defined in its interface could
fulfill an abstraction, and, thus, they did not consider
SrtmWs-PortType service as an antipattern. Our SOFA
framework is currently unable to capture the abstraction or
context defined within a service interface, which we plan
to allow in future work. However, we did not detect any
occurrence of Multi Service in the SOAP services.

Thus, having a Multi or Tiny Service in an SBS, which
exhibits extreme design practices, may degrade the de-
sign quality and hinder maintenance of an SBS, should be
avoided. Our UniDoSA approach can automatically identify
such services with extreme design within SBSs and, there-
fore, can facilitate maintenance.

6.5.3 Nobody Home

We detected NativeCompiler, ServletManager,
WsdlCompiler, BPELEngine components from
FraSCAti as occurrences of the Nobody Home antipattern.
For example, the implementation of BPELEngine does
not support the weaving of sensors and triggers to
introspect at runtime [63], which is discarded by default,
by the FraSCAti design. In SCA, weaving is a technique
to introspect components at runtime and allow engineers
to measure dynamic and structural properties of each
component. Moreover, the BPELEngine component had
not been invoked in any of our executed scenarios. The
FraSCAti core team partially disagreed with our detection
and suggested that it could be invoked in other scenarios,
e.g., where FraSCAti particularly handles BPEL scripts.

The UselessService component in Home-Automation
is also identified as an occurrence of the Nobody Home
antipattern because it was not invoked in any executed
scenarios (i.e., NIR=0 and NMI=0) even though the com-
ponent was orchestrated with other components in Home-
Automation. The presence of such components or services
not in use within a SBS may increase its maintenance cost.
In REST, we did not detect occurrences of the corresponding
Deprecated Resources antipattern because we implemented
only a part of entire resources and tested them all. Thus,
no unused or untested resources, i.e., Deprecated Resources
were found in REST validation.

25

6.5.4 Ambiguous Name
We detected the AIP3_PV_ImpactCallback as reported
in Table 8 as an occurrence of the Ambiguous Name antipat-
tern. This Web service offers operations with a set of signa-
tures that (1) are extremely long (ALS=0.675), (2) use high
number of general terms for naming (RGTS=0.85), (3) con-
tain many messages having verbs (NVMS=26) and (4) having
multiple verbs or action names within a single signature
(NVOS=7). In comparison to the median values (e.g., median
of ALS=0.463, RGTS=0.0, NVMS=6, and NVOS=3) as calculated
by the Boxplot service component, the computed metric
values are high. The SOAP services having Ambiguous Name
antipattern—which represents poor interface elements nam-
ing with (1) very short or long identifiers, (2) too general
terms as identifiers, and (3) improper use of verbs—are
not semantically and syntactically sound interfaces over the
Web and, thus, impact the discoverability and the reusability
of services. Applying UniDoSA can help service developers
in detecting and refactoring Ambiguous Name in SBSs.

6.5.5 Chatty Web Service and CRUDy Interface
We detected ForeignExchangeRates and
TaarifCustoms as occurrences of the Chatty Web
Service and CRUDy Interface antipatterns because of their
low cohesion (COH=0.16 and 0.12, respectively), high
average number of accessor operations (50≤ANAO≤72.22),
high number of operations (18≤NOD≤24), and high
response time (RT>3s), when compared to other
SOAP services. The manual validation did not confirm
ForeignExchangeRates as a Chatty Web Service because
the order of operations invocation can be inferred from
the service interface. The specification of CRUDy Interface
includes Chatty Web Service. Therefore, the detection of
ForeignExchangeRates as a CRUDy Interface was not
confirmed.

Thus, having a chatty Web service in a SBS, which
exhibits low cohesion among its operations and causes
high response time, impacts their maintainability (because
inferring the order of invocation is difficult and many inter-
actions are required) and the overall performance. UniDoSA
can automatically detect such bottleneck services within
SBSs and, therefore, facilitate maintenance.

6.6 Discussion on the Conjectures
We now discuss and support the four conjectures stated in
Section 6.1.

6.6.1 Generality
We specified three SCA antipatterns (as listed in Table 2).
These antipatterns range from simple ones, such as the
Tiny Service and Multi Service, to complex ones, such as
the Sand Pile, which involve several services and complex
relationships. In particular, Sand Pile uses both the ASSOC
and COMPOS relation types in its rule card. Also, Sand
Pile refers, in its specification, to another antipattern, i.e.,
DataService.

As for the SOAP antipatterns, we specified three an-
tipatterns from the literature (see Table 2) that are complex
antipatterns with composite rules, such as CRUDy Interface
composed of another rule card, i.e., Chatty Web Service. We

also specified antipatterns combining six different rules,
Ambiguous Name antipattern, for instance.

Using our DSL, derived from our proposed unified
meta-model, the generality of defined rule cards for REST
antipatterns is also fulfilled because engineers can define
rule cards relying on REST-specific metrics and their own
experience and knowledge on REST. The proposed DSL
allows engineers to specify antipatterns related to HTTP
responses (e.g., Forgetting Hypermedia and Ignoring MIME
Types) and related to resource URI design (e.g., CRUDy URI).

Thus, we showed that using our unified meta-model
and DSL, it is possible to specify from simple to complex
antipatterns regardless of the SBSs technology, in particular,
for SOAP, SCA, and REST), which supports the generality of
our DSL.

6.6.2 Accuracy
Concerning the accuracy of our detection algorithms, as
shown in Table 8, we obtained an average recall of 96.67%,
precision of 89.78%, and an average F1-measure of 91.3%.
The achievement of such detection accuracy is possible
because we defined the rule cards after a thorough literature
review and a careful analyses of relevant properties for all
service antipatterns and based on a unified meta-model of
the service technologies. Also, we automatically generated
the detection algorithms using the rule cards.

Thus, we can positively support our second conjecture
on the accuracy of our automatically generated (or imple-
mented) detection algorithms.

6.6.3 Extensibility
Our defined DSL is flexible in the integration of new service
metrics and antipatterns. For example, we implemented 14
metrics, e.g., AC, AK, CCV, HL, HM, RRF, SC, TLB, and so on
as listed in Table 5 dedicated to REST services.

For specifying SCA antipatterns described in the litera-
ture (see Table 2), we included metrics dedicated to SCA:
Table 4 provides the list of service metrics among which the
metrics specific to SCA, namely COH, CPL, NIR, NOR, NUM
were initially defined and extracted from the literature.

Later, for specifying new SOAP antipatterns, we reused
several pre-existing metrics, for example ANP, ANPT, COH,
CPL. We also added some new SOAP metrics to our metric
suite, namely ALS, ARIP, NOPT, RGTS, and so on, which are
very specific to SOAP services.

However, the underlying SOFA framework should also
be extended to provide the operational implementations
of the new service metrics. Such an addition can only be
realised by developers skilled with our framework, which
may require hours according to the complexity of the met-
rics. However, once the metrics are integrated in the SOFA
framework, their use is straightforward for the specification
of rule cards using the DSL because the underlying meta-
model already encompasses all the elements needed to
describe services in the three service technologies.

We added SCA antipatterns (e.g., Sand Pile, Bloated Ser-
vice, and Multi Service, and so on) within our detection
framework first and then extended the framework with new
SOAP antipatterns (e.g., CRUDy Interface) and REST (e.g.,
Forgetting Hypermedia, Ignoring MIME Types), which further
confirms the extensibility of our SOFA framework.

26

Furthermore, our proposed meta-model can be extended
with new SBS technologies. However, for this paper it was
not required because it already encompasses the three main
SBS technologies, namely SCA, SOAP, and REST. However,
as a future work, we plan to integrate new SBS technologies
to extend our proposed meta-model.

Thus, with these extensibility features of our DSL and
our SOFA framework, we positively support A3.

6.6.4 Performance
We performed all our experiments on an Intel Dual Core at
3.30GHz with 4GB of RAM.

For the detection of antipatterns in REST APIs, the total
required time includes: (1) the execution time, i.e., sending
REST requests and receiving REST responses and (2) the
time required to apply and run the detection algorithms on
the requests and responses.

For SCA, computation times include introspection time
during static and dynamic analyses, computing metric val-
ues, and applying detection algorithms.

For SOAP, for each antipattern, the detection time also
includes: (1) the filtering of the WSDL files, (2) the genera-
tion of the concrete services implementation, (3) the genera-
tion of the detection algorithms, and (4) the computation of
the related metrics.

Regarding the metrics computation and total detection
time, the antipattern computation time is only a fraction
of the total detection time as reported in Table 8. The
detection time in Table 8 also includes the time required to
invoke a service over the Internet, which may significantly
vary depending on the bandwidth/traffic. However, the
antipatterns computation times, in general, do not vary on
a large scale since the detection is performed offline after
metrics are computed on-the-fly and range between 10ms
and 250ms (with an average of 80ms), which is on average
less than 1% of the total detection time reported in Table 8.

As shown in Table 8, the average detection time for all
antipatterns (regardless of the technologies) is 12.42s with a
minimum of 0.606s (Nobody Home) and a maximum of 78.67s
(Multi Service). Thus, with such a low average detection time
of 12.42s, we can positively support our fourth conjecture on
performance.

6.7 Discussion

Based on our proposed unified meta-model (in Section 3),
we built the UniDoSA approach for the detection of service
antipatterns in three service technologies involving three
main steps from the specification of service antipatterns to
their detection via the automatic generation of detection
algorithms (in Section 4). We also listed various service
metrics that we used to specify service antipatterns (in
Section 4.1). Using those metrics, we defined rule cards for
12 service antipatterns. We also presented the SOFA detec-
tion framework (in Section 4.3) and discussed the detailed
evaluation of our approach through experimental studies
with three commonly used service technologies, i.e., REST,
SCA, and SOAP (in Section 6). We stated and positively
supported four conjectures on the Generality of our DSL,
the Accuracy of our detection algorithms, the Extensibility
of our DSL and SOFA framework, and the Performance of

our detection algorithms in Section 6.6. Therefore, we can
conclude that:

“With our proposed UniDoSA approach that encompasses a
unified meta-model and a DSL, we can effectively specify and
detect service antipatterns in three major service technologies with
high accuracy and low performance overhead."

6.8 Threats to Validity

The main threat to the validity of our results concerns
their external validity, i.e., the possibility to generalise our
approach to other REST services, SCA systems, and SOAP
Web services. In this paper, we minimise threats to external
validity by performing experiments with 18 common and
widely-used REST services, invoking more than 115 meth-
ods. We also used one demo SCA system and one large scale
SCA system, i.e., FraSCAti with more than 150 services. For
SOAP Web services, we experimented with more than 120
SOAP services.

For internal validity, the detection results not only depend
on the services provided by the SOFA framework, but also
on the antipattern specifications using rule cards defined
for the service antipatterns. To minimise the threat to the
internal validity: (1) we unified the elements of the three
main service technologies into a unified meta-model, (2)
we thoroughly studied the descriptions and definitions of
each antipattern from the literature, and (3) we ensured that
the SOFA framework does not introduce any antipatterns.
Also, we performed experiments on a representative set of
antipatterns.

The subjective nature of specifying and validating an-
tipatterns is a threat to construct validity. We tried to lessen
this threat by defining rule cards for service antipatterns
based on a literature review and thorough domain analysis
and by involving independent engineers in the validation.

We also tried to minimise the threat to reliability validity
by automating the generation of the detection algorithms
for REST, SCA, and SOAP, such that each subsequent de-
tection produces consistent sets of results with high pre-
cision and recall. To further ensure the reliability validity
we also used external people (e.g., graduate/undergraduate
students, FraSCAti developers, professional engineers) to
assess the detection accuracy.

Statistical validity is the extent to which the conclu-
sions drawn from experiments are accurate and reliable.
To increase the statistical validity of our results: (1) for
REST, we chose multiple providers among the largest REST
API providers in the market including DropBox, Facebook,
Instagram, StackExchange, Twitter, YouTube, and so on; (2)
for SCA, we chose the largest available open-source SCA
system, OW2 FraSCAti5 and an independent, demo SCA
application Home Automation; (3) for SOAP, we randomly
chose in https://www.programmableweb.com more than
120 SOAP services. Our high average precision and recall
(89.78% and 96.67%, respectively) on sample sets of services
after manual validation suggest that our UniDoSA approach
could perform with high accuracy on other SBSs.

5. https://projects.ow2.org/bin/view/frascati/

27

6.9 Online Tool Support

We have developed a Web-based tool, WEBRESTPAD, to
facilitate the analysis of RESTful APIs with the aim of
detecting REST patterns and antipatterns in them. The tool
is available to use on http://webrestpad.sofa.uqam.ca/.

The main purpose of the WEBRESTPAD tool is the
detection of the REST patterns and antipatterns in public
RESTful APIs. For a given RESTful API, the tool runs the
detection algorithms and displays on the screen for each
resource of the API under analysis (1) the detected REST
patterns and antipatterns and (2) the traces of each detection
showing what makes it a pattern or antipattern.

The key functionalities of the WEBRESTPAD include (1)
the addition of a new RESTful API through a new API can
be added to the repository that contains all the RESTful
APIs under analysis; (2) the detection of REST (anti)patterns
that require the invocation of REST services, a.k.a., dy-
namic REST (anti)patterns, which currently lists 14 REST
(anti)patterns; and (3) the detection of REST (anti)patterns
that do not require the invocation of REST services, a.k.a.,
static REST (anti)patterns, which currently lists seven REST
(anti)patterns.

Concerning its architecture, the WEBRESTPAD tool is
a multi-tier application that consists of a Java EE Web
application and a RESTful API. For the dynamic REST
(anti)patterns detection, all the functionalities that are avail-
able in the Web application are also available in the provided
RESTful API.

7 RELATED WORK

Design of quality is essential for building easily maintain-
able and evolvable SBSs. Service antipatterns are a means to
measure design quality.

There are numerous approaches dealing with the de-
tection of OO antipatterns. However, unlike research in
the OO domain, research on methods and techniques for
the detection of service antipatterns is in its infancy. We
performed a thorough literature review following the guide-
lines by Kitchenham [66] and retrieved relevant research
works related to the detection of service-antipatterns and
provide a summary.

In fact, the goal of our thorough literature review is to
provide a general summary on the detection of antipatterns
from all the domains to show what works have been done
related to poor design practices (i.e., antipatterns) for object-
oriented and service-oriented systems.

We build a search string based on three concepts:

1) Service oriented architecture or object oriented design
(relevant keywords – SOA, SOA architecture, SOA
service, service oriented, software architecture, OO,
OOD, object oriented);

2) Antipatterns (relevant keywords – design pattern,
software pattern, software design, pattern detection,
antipattern); and,

3) Service-based systems or object oriented systems (rele-
vant keywords – SBS, SBSs, application software,
web service, service base, web application, web
service, REST, RESTful, REST service, OO systems,
SCA, service component architecture).

With all the search codes and related constraints, our
search string is as follows:

“((((SOA* or SOA architec* or SOA service* or service orien* or software architec*
or OO* or OOD* or object oriented*)wn AB AND (design pattern* or software
pattern* or software design* or pattern detection* or antipattern*)wn TI AND
(SBS* or SBSs* or application software* or web service* or service-base* or web

application* or web service* or REST* or RESTful* or REST service* or OO
systems* or SCA* or service component architecture*)wn AB)) AND ((({computer
software} or {software design} or {software architecture} or {software engineering}
or {object oriented programming} or {web services}) WN CV) and (({ca} or {ja} or

{cp}) WN DT) and ({english} WN LA)))”

In Table 9, we list works that deal with antipatterns
in OO or services in the first column. We also show the
types of antipatterns that they consider in the third column;
the techniques on which they rely in the fourth column.
The fifth and sixth columns show the types and levels of
analysis, respectively. The last column shows if those works
automated the detection of antipatterns.

In the following sections, based on the results retrieved
using our search string defined above, we answer two
research questions and summarise relevant research studies
in the literature.

7.1 What are the Research Studies Performed in OO
Domain on the Detection of Antipatterns?

Table 9 highlights notable works, e.g., [10], [11], [12], [13],
[14], [15], [16], [17], [18], in the OO domain inspiring our
work on the detection of service antipatterns in SBSs.

OO detection techniques cannot be directly applied to
service technologies. Indeed, service technologies have ser-
vices as first-class entities, whereas OO have classes, which
are at a lower level of granularity. Moreover, the dynamic
nature of services raises challenges that are not faced in OO
development and requires more dynamic analyses than OO.
However, previous works on OO systems form a sound
basis of expertise and technical knowledge for building
methods for the detection of service antipatterns.

7.2 What are the Research Studies Performed in SO
Domain on the Detection of Service Antipatterns?

Various works were carried out for the detection of
technology-specific antipatterns, for example, in RESTful
APIs [32], in RESTful APIs for cloud services [33], [34],
in SCA components [67], [68], and in SOAP Web services
[9], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30]. In our previous works [31], [35], [5], we discussed
some technology-specific contributions from the literature in
details. In particular, we highlighted the significant contri-
butions related to the detection of patterns and antipatterns
in SCA, e.g., [67], [68]. There are a number of works for dis-
covering bad practices in writing WSDLs [25], [26], [27], [28],
[29], [30]. Some works contribute to the catalog of service
antipatterns by defining new service antipatterns, but do
not focus on their specification and detection, for example
[9], [23], [19], [24]. However, to get the full benefit of those
newly defined antipatterns, there should be a generic way
to specify and detect them within SBSs regardless of their
underlying technologies.

28

TABLE 9: Relevant Works in the Literature on the Detection of OO, Service, and Cloud Service Antipatterns.

Contributions Target Systems Types of Antipatterns Techniques Used Type of Level of Analysis Performed
Analysis Detection?

Salehie et al. [10] OO systems design-related antipatterns metrics and rule-based heuristics design-time class X
Moha et al. [11] OO systems design-related antipatterns rule cards, MDE design-time class X
Stoianov and Sora [12] OO systems design-related antipatterns rules-based (Prolog) both class interaction X
Smith and Williams [13], [14] OO systems performance antipatterns n/a n/a n/a ×
Cortellessa et al. [15], [16] OO systems performance antipatterns logical predicates, MDE design-time architectural, class X
Di Marco and Trubiani [17] OO systems performance antipatterns logical predicates, MDE run-time class X
Peiris and Hill [18] OO systems performance antipatterns SVM, performance metrics run-time class X

Palma et al. [5] SCA systems antipatterns rule cards, MDE both components interaction X
Demange et al. [67] SCA systems design patterns rule cards, MDE both components interaction X
Nayrolles et al. [68] SCA systems design-related antipatterns mining association rules run-time components interaction X

Král and Žemlička [9], [23] Web services design-related antipatterns n/a n/a n/a ×
Král and Žemlička [19] Web services design-related antipatterns n/a n/a n/a ×
Tripathi et al. [24] Web services design-related antipatterns n/a n/a n/a ×
Torkamani and Bagheri [25] Web services design-related antipatterns n/a n/a n/a ×
Anchuri et al. [26] Web services hotspot services n/a n/a n/a ×
Zheng and Krause [27] Web services interaction-related antipatterns n/a n/a n/a ×
Rodriguez et al. [28] Web services service discoverability antipatterns information retrieval design-time interface X
Mateos et al. [29] Web services WSDL writing antipatterns information retrieval design-time interface X
Rodriguez et al. [30] Web services WSDL writing antipatterns rule-based technique design-time interface X
Palma et al. [35] Web services service design and documentation rule cards, MDE both interface X
Ouni et al. [20] Web services WSDL writing antipatterns search-based, rule-based design-time interface X
Wang et al. [22] Web services WSDL writing antipatterns bi-level optimization, rule-based design-time interface X
Ouni et al. [21] Web services WSDL writing antipatterns genetic programming, rule-based design-time interface X

Palma et al. [31] REST APIs syntactic design of requests/responses heuristics-based run-time resource X
Rodríguez et al. [32] REST APIs HTTP requests heuristics-based run-time resource X

Petrillo et al. [33] REST APIs for Cloud HTTP requests, URI design ontology-based, rule-based run-time interface X
Brabra et al. [34] REST APIs for Cloud HTTP requests, URI design heuristics-based run-time interface X

7.3 Maturity Model vs. Antipatterns

The Richardson Maturity Model [69] estimates how ‘RESTful’
Web services are. In the four-layered model, Richardson
proposed to use three factors (e.g., URI, HTTP methods, and
hypermedia) to decide the maturity of a service. The more
a service employs these three factors, the more mature it is.
This model measures how much a REST service is reaping
the benefits of REST, for example, the use of tunneling,
multiple resources, HTTP verbs, and hypermedia controls.

Instead of verifying the RESTfulness of Web services, our
approach focuses on assessing their design quality. Even if
a Web service complies with Richardson Maturity Model,
it does not guarantee that the service is well-designed
from an architectural point of view and would not hinder
the maintenance and evolution of SBSs. Therefore, rather
than focusing on RESTfulness, our approach focuses on
the design quality of Web services. In addition to that our
approach is technology-neutral, i.e., the maturity model ap-
plies to REST only while our unified approach is capable of
assessing design quality of SBSs regardless their underlying
technology.

7.4 Summary

We identify the following gaps in the literature:

• Numerous contributions are presented in the lit-
erature for analysing OO design quality to detect
antipatterns in OO systems, whereas the analysis of
SBSs was exploited a little. Those OO approaches are
not directly applicable to SBSs;

• Several approaches were proposed in the literature
to analyse SCA systems, relying on the analysis of
execution traces [68] or metric-based quantitative

analysis [67]. However, these approaches are pro-
posed considering the SCA systems only;

• A number of empirical validations were performed
in the literature on the detection of antipatterns in
SOAP services interfaces, i.e., discovering bad prac-
tices in writing WSDL or identifying best practices
[28], [30], [24], [20], [21], [22]. However, these analy-
ses are static and do not incorporate runtime aspects
(e.g., availability or response time) of SOAP services;

• For REST, the works in [31], [32] existed dealing
with antipatterns in REST services, which was unable
to handle SCA or SOAP services. A more rigorous
assessment of REST services is required. Moreover,
some works have been done on detecting antipat-
terns in RESTful APIs for cloud services [33], [34];

• There exists no unified meta-model that combines
different service technologies and provide a means to
detect service antipatterns in SBSs developed using
diverse technologies in a generic way;

• There exists no unified domain-specific language
(DSL) that can facilitate the representation of service
antipatterns without ambiguity regardless of SBS
technologies. This unified DSL is only possible once
we define a unified meta-model.

• A unified framework-based approach is missing in
the literature for the static/dynamic analyses of SBSs.

We filled the above gaps in the literature and contributed
with a unified detection approach by proposing a unified
meta-model that describe three major service technologies,
building a domain-specific language to describe antipat-
terns, and relying on an underlying detection framework
that can support the specification of service antipatterns.

29

8 CONCLUSION

Service-based Systems (SBSs), relying on services as first-
class entities, are developed on top of diverse service tech-
nologies and architectural styles. The REST, SCA, and SOAP
Web Service technologies are widely used by companies to
design and develop SBSs [2], [3], [4].

SBSs are subject to functional and non-functional changes,
which may degrade their design and implementation and
introduce service antipatterns. Antipatterns in SBSs (1) may
hinder their further maintenance and evolution and (2) may
degrade their design quality and quality of service (QoS).
Such antipatterns must be detected to improve their design
and QoS, and ease their maintenance and evolution.

Among the many reasons for the antipatterns to occur,
ignorance of developers and time to deliver constraint are
notable. For example, Multi Service antipattern may easily
occur when a developer tries to put too much responsi-
bilities under a single service without knowing the con-
sequences, and, in an opposite scenario, a Tiny Service is
very easy to introduce by developing services with one or
very few fine-grained tasks without a complete abstraction.
However, finding a proper balance between a Multi Service
and a Tiny Service, i.e., to form the proper abstraction, is
always a challenge for service developers. Another way
of introducing antipatterns by the designers is selecting
an improper set of services or orchestrating services in an
improper manner. This may meet the functional require-
ments without fulfilling the non-functional goals, which
in turn can degrade the system performance due to poor
design choices. Our goal is to provide a unique solution for
engineers to help them understand the service domain and
to get rid of service antipatterns. We do this through the two
following aspects.

First, we presented a unified meta-model to support the
unified specification of service antipatterns in different ser-
vice technologies. Then, we proposed an unified approach,
UniDoSA (Unified Specification and Detection of Service
Antipatterns) that uses the unified meta-model to assess the
design quality and QoS of SBSs by means of the detection
of service antipatterns in SBSs. UniDoSA is supported by an
underlying framework, SOFA (Service Oriented Framework
for Antipatterns), which provides a common platform to: (1)
specify service antipatterns at higher-level of abstraction,
(2) generate detection algorithms for service antipatterns
automatically, (3) apply generated detection algorithms on
diverse SBSs and report candidate service antipatterns in-
volved in service antipatterns, and (4) validate the candidate
service antipatterns to confirm them as real antipatterns.

We showed the effectiveness of the UniDoSA approach
in four steps: (1) Generality – the domain specific language
(DSL) based on the unified meta-model is flexible to define
antipatterns rule cards in various service technologies, (2)
Accuracy – our specified rule cards have a high accuracy
with average detection precision and recall of more than
75%, i.e., we obtained an average precision of 89.78% and
an average recall of 96.67%, (3) Extensibility – the DSL
and the SOFA framework are extensible for adding new
service metrics and antipatterns, and (4) Performance – the
generated detection algorithms perform with low overhead,
i.e., the average detection times are in the order of seconds.

Major challenges on extending the SOFA include: engineers
require thorough knowledge on the framework and the
addition of new metrics or service technology is time de-
manding because it is not automatic and requires repeating
the first three steps (i.e., specification after domain analysis,
generation, and detection) of our UniDoSA approach.

In summary, UniDoSA is the first unified approach to
detect service antipatterns in SBSs regardless of their un-
derlying implementation technologies and it provides high
detection accuracy.

As future work, we want to verify the impact of ser-
vice antipatterns on the maintenance of SBSs. It would be
interesting to see how the detected antipatterns influence
the systems in which they have been detected. Indeed, we
plan to see empirically how these systems under study
perform having antipatterns in them, compared to, while
those detected antipatterns are re-factored by modifying or
improving their design. We also plan to use OCL rules on
our meta-model for two reasons: (1) to check its integrity
and (2) to enable the antipatterns navigating the unified
meta-model that will facilitate their specification. In the line
of future work, we also plan to work on the correction of
the detected service antipatterns, in particular by involving
developers in semi-automated approaches.

ACKNOWLEDGMENT

The authors are thankful to Dr. Wei Wu for his valuable
insights and comments on this paper. We would like to
thank Moustapha Boulgoudan from University of Québec
in Montréal, Canada and GaÃńtan FranÃğois from Polytech
Montpellier, France for their help with the implementation
of the online antipattern detection tool. This work was
partly supported by NSERC, Canada Chairs, and FRQ-NT
research grants.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, August 2005.

[2] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures,” Ph.D. dissertation, 2000.

[3] D. Chappell, Introducing SCA. USA: Chappell & Associates, July
2007.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web Services:
Concepts, Architectures and Applications,” ser. Data-Centric Sys-
tems and Applications. Springer, 2003.

[5] F. Palma, M. Nayrolles, N. Moha, Y.-G. Guéhéneuc, B. Baudry,
and J.-M. Jézéquel, “SOA Antipatterns: An Approach for their
Specification and Detection,” International Journal of Cooperative
Information Systems, vol. 22, no. 04, 2013.

[6] A. Koenig, “Patterns and antipatterns,” The patterns handbook:
techniques, strategies, and applications, pp. 383–390, 1998.

[7] W. J. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mow-
bray, Anti Patterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley and Sons, 1998.

[8] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE AntiPat-
terns. John Wiley and Sons, August 2003.

[9] J. Král and M. Žemlička, “Crucial Service-Oriented Antipatterns,”
in In Proceedings of the International Conference on Software Engineer-
ing Advances, vol. 2, no. 1. International Academy, Research and
Industry Association (IARIA), 2008, pp. 160–171.

[10] M. Salehie, S. Li, and L. Tahvildari, “A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws,” in Proceed-
ings of the 14th IEEE International Conference on Program Comprehen-
sion, ser. ICPC. Washington, DC, USA: IEEE Computer Society,
2006, pp. 159–168.

30

[11] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“DECOR: A Method for the Specification and Detection of Code
and Design Smells,” IEEE Transaction on Software Engineering,
vol. 36, no. 1, pp. 20–36, January 2010.

[12] A. Stoianov and I. Sora, “Detecting Patterns and Antipatterns in
Software using Prolog Rules,” in International Joint Conference on
Computational Cybernetics and Technical Informatics (ICCC-CONTI),
May 2010, pp. 253–258.

[13] C. U. Smith and L. G. Williams, “New Software Performance
AntiPatterns: More Ways to Shoot Yourself in the Foot,” in Interna-
tional Computer Measurement Group Conference, 2002, pp. 667–674.

[14] C. U. Smith and L. G. Williams, “Software Performance Antipat-
terns,” in Proceedings of the 2nd International Workshop on Software
and Performance, ser. WOSP ’00. New York, NY, USA: ACM, 2000,
pp. 127–136.

[15] V. Cortellessa, A. Di Marco, and C. Trubiani, “Software Perfor-
mance Antipatterns: Modeling and Analysis,” in Formal Methods
for Model-Driven Engineering, ser. Lecture Notes in Computer
Science, M. Bernardo, V. Cortellessa, and A. Pierantonio, Eds.
Springer Berlin Heidelberg, 2012, vol. 7320, pp. 290–335.

[16] V. Cortellessa, A. Di Marco, and C. Trubiani, “An Approach
for Modeling and Detecting Software Performance Antipatterns
based on First-order Logics,” Software & Systems Modeling, vol. 13,
no. 1, pp. 391–432, 2014.

[17] A. D. Marco and C. Trubiani, “A model-driven approach to
broaden the detection of software performance antipatterns at
runtime,” in Proceedings 11th International Workshop on Formal
Engineering approaches to Software Components and Architectures,
Grenoble, France, 2014, pp. 77–92.

[18] M. Peiris and J. H. Hill, “Towards Detecting Software Performance
Anti-patterns Using Classification Techniques,” SIGSOFT Software
Engineering Notes, vol. 39, no. 1, pp. 1–4, Feb. 2014.

[19] J. Král and M. Žemlička, “Popular SOA Antipatterns,” in Pro-
ceedings of the 2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, ser. COMPU-
TATIONWORLD ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 271–276.

[20] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, “Search-
based Web Service Antipatterns Detection,” IEEE Transaction on
Service Computing, vol. 01, 2015.

[21] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, “Web
Service Antipatterns Detection Using Genetic Programming,” in
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’15. New York, NY, USA: ACM, 2015,
pp. 1351–1358.

[22] H. Wang, M. Kessentini, and A. Ouni, Bi-level Identification of Web
Service Defects. Cham: Springer International Publishing, 2016,
pp. 352–368.

[23] J. Král and M. Žemlička, “The Most Important Service-Oriented
Antipatterns,” in International Conference on Software Engineering
Advances, Aug 2007, pp. 29–29.

[24] D. Tripathi, U. Suman, M. Ingle, and S. K. Tanwani, “Towards
Introducing and Implementation of SOA Design Antipatterns,”
International Journal of Computer Theory and Engineering, vol. 6,
no. 1, pp. 20–25, February 2014.

[25] M. A. Torkamani and H. Bagheri, “A Systematic Method for
Identification of Antipatterns in Service Oriented System Devel-
opment,” International Journal of Electrical and Computer Engineering
(IJECE), vol. 4, no. 1, pp. 16–23, 2014.

[26] P. Anchuri, R. Sumbaly, and S. Shah, “Hotspot Detection in a
Service-Oriented Architecture,” in Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management, ser. CIKM ’14. New York, NY, USA: ACM, 2014, pp.
1749–1758.

[27] Y. Zheng and P. Krause, “Asynchronous Semantics and Anti-
patterns for Interacting Web Services,” in 6th International Con-
ference on Quality Software (QSIC), Oct 2006, pp. 74–84.

[28] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Improv-
ing Web Service Descriptions for Effective Service Discovery,”
Science of Computer Programming, vol. 75, no. 11, pp. 1001–1021,
2010.

[29] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Detecting
WSDL Bad Practices in Code-first Web Services,” International
Journal of Web and Grid Services, vol. 7, no. 4, pp. 357–387, Jan.
2011.

[30] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best Prac-
tices for Describing, Consuming, and Discovering Web Services: A

Comprehensive Toolset,” Software: Practice and Experience, vol. 43,
no. 6, pp. 613–639, 2013.

[31] F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc, “Detection of
REST Patterns and Antipatterns: A Heuristics-Based Approach,”
in Service-Oriented Computing, ser. Lecture Notes in Computer
Science, X. Franch, A. Ghose, G. Lewis, and S. Bhiri, Eds., vol.
8831. Springer Berlin Heidelberg, 2014, pp. 230–244. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-45391-9_16

[32] C. Rodríguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco,
L. Canali, and G. Percannella, REST APIs: A Large-Scale Analysis
of Compliance with Principles and Best Practices. Cham: Springer
International Publishing, 2016, pp. 21–39.

[33] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, Are REST APIs
for Cloud Computing Well-Designed? An Exploratory Study. Cham:
Springer International Publishing, 2016, pp. 157–170.

[34] H. Brabra, A. Mtibaa, L. Sliman, W. Gaaloul, B. Benatallah,
and F. Gargouri, Detecting Cloud (Anti)Patterns: OCCI Perspective.
Cham: Springer International Publishing, 2016, pp. 202–218.

[35] F. Palma, N. Moha, G. Tremblay, and Y.-G. GuÃl’hÃl’neuc,
“Specification and Detection of SOA Antipatterns in Web
Services,” in Software Architecture, ser. Lecture Notes in Computer
Science, P. Avgeriou and U. Zdun, Eds., vol. 8627. Springer
International Publishing, 2014, pp. 58–73. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-09970-5_6

[36] FraSCAti, “Home-Automation,” June 2013. [On-
line]. Available: websvn.ow2.org/listing.php?repname=
frascati&path=/trunk/demo/home-automation/

[37] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful Web
Services vs. “Big” Web Services: Making the Right Architectural
Decision,” in Proceedings of the 17th international conference on World
Wide Web, ser. World Wide Web ’08. New York, NY, USA: ACM,
2008, pp. 805–814.

[38] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Fer-
guson, Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Pren-
tice Hall PTR, March 2005.

[39] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Auto-
matically Detecting Opportunities for Web Service Descriptions
Improvement,” W. Cellary and E. Estevez, Eds. Springer Berlin
Heidelberg, 2010, vol. 341, pp. 139–150.

[40] T. Modi, “SOA Management: SOA Antipatterns,” August 2006.
[41] S. Jones, “SOA Anti-patterns, Available Online:

www.infoq.com/articles/SOA-anti-patterns,” June 2006.
[42] J. Evdemon, “Principles of Service Design: Service Patterns and

Anti-Patterns,” August 2005.
[43] M. Massé, REST API Design Rulebook. O’Reilly, 2012.
[44] S. Tilkov, “REST Anti-Patterns, Available Online:

www.infoq.com/articles/rest-anti-patterns,” July 2008.
[45] F. Valverde and O. Pastor, “Dealing with REST Services in Model-

driven Web Engineering Methods,” V Jornadas Científico-Técnicas
en Servicios Web y SOA, JSWEB, pp. 243–250, 2009.

[46] W. B. Abid, M. Graiet, M. Kmimech, M. T. Bhiri, W. Gaaloul, and
E. Cariou, “Profile UML2.0 for Specification of the SCA Architec-
tures,” Semantics, Knowledge and Grid, International Conference on,
vol. 0, pp. 191–194, 2011.

[47] WWW-Consortium, “WWW Consortium, Web Services Descrip-
tion Language (WSDL) Version 2.0,” Tech. Rep., January 2006.

[48] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software De-
velopment Process. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[49] L. Cherbakov, M. Ibrahim, and J. Ang, “SOA Antipatterns: The
Obstacles to the Adoption and Successful Realization of Service-
Oriented Architecture,” January 2006.

[50] R. Prieto-Díaz, “Domain Analysis: An Introduction,” SIGSOFT
Softw. Eng. Notes, vol. 15, no. 2, pp. 47–54, Apr. 1990.

[51] C. Consel and R. Marlet, “Architecturing Software Using A
Methodology for Language Development,” Lecture Notes in Com-
puter Science, vol. 1490, pp. 170–194, September 1998.

[52] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, and
T. Veldhuizen, Generative Programming and Active Libraries. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 25–39. [Online].
Available: https://doi.org/10.1007/3-540-39953-4_3

[53] L. Geiger and et al., “Template- and Model-based Code Generation
for MDA-tools,” in Proceedings Of The Fujaba Days 2005, Volume
Tr-Ri-05-259 Of Technical Report. University Of Paderborn, 2005, pp.
57–62.

31

[54] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Au-
tomatic Code Generation from Design Patterns,” IBM Systems
Journal, vol. 35, no. 2, pp. 151–171, 1996.

[55] EMF-Eclipse, “Eclipse Modeling Framework (EMF) -
http://www.eclipse.org/emf,” April 2010.

[56] D. Sciamma, G. Cannenterre, and J. Lescot, “Ecore Tools,”
www.eclipse.org/modeling/emft/?project=ecoretools, Tech. Rep.,
May 2013.

[57] EMFText, “http://www.emftext.org/,” www.eclipse.org/acceleo,
Tech. Rep., 2007.

[58] Obeo, “Acceleo,” www.eclipse.org/acceleo, Tech. Rep., 2005.
[59] G. A. Miller, “WordNet: A Lexical Database for English,” Commun.

ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748

Francis Palma is currently an Assistant Pro-
fessor at the Department of Computer Science
in Linnaeus University, Sweden. Francis earned
his PhD in 2015 from Polytechnique Montréal
(University of Montreal), Canada under the su-
pervision of Dr. Naouel Moha and Dr. Yann-
Gaël Guéhéneuc. His main research interests
include analysing the design quality and evaluat-
ing the QoS of service-oriented systems, in par-
ticular, detecting service patterns/antipatterns in
service-based systems.

Naouel Moha is currently Associate Professor
at the Department of Informatics at the Univer-
sity of Québec in Montréal and adjunct direc-
tor of the institutional research centre LATECE
(Laboratory for Research on Technology for E-
commerce). Her research works focus on soft-
ware quality, maintenance and evolution. In par-
ticular, she is interested in the detection of pat-
terns and antipatterns in object and service-
oriented systems. She received a PhD from the
University of Montreal (Canada) and the Univer-

sity of Lille (France).

[60] J. Chambers, W. Cleveland, P. Tukey, and B. Kleiner, Graphical
Methods for Data Analysis. Wadsworth International, 1983.

[61] M. Perepletchikov, C. Ryan, and Z. Tari, “The Impact of Service
Cohesion on the Analyzability of Service-Oriented Software,”
IEEE Transcations on Services Computing, vol. 3, no. 2, pp. 89–103,
April 2010.

[62] F. Palma, N. Moha, , and Y.-G. Guéhéneuc, “A Technical Report
on UniDoSA (The Unified Specification and Detection of Service
Antipatterns),” Tech. Rep., January 2018. [Online]. Available:
http://sofa.uqam.ca/media/unidosa-tr01.pdf

[63] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-
B. Stefani, “A Component-Based Middleware Platform for Recon-
figurable Service-Oriented Architectures,” Software: Practice and
Experience, vol. 42, no. 5, pp. 559–583, May 2012.

[64] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[65] S. Tilkov, “RESTful Design: Intro, Patterns, Anti-Patterns, Avail-
able Online: http://www.devoxx.com,” December 2008.

[66] B. Kitchenham, “Procedures for performing systematic reviews,”
July 2004.

[67] A. Demange, N. Moha, and G. Tremblay, “Detection of SOA
Patterns,” in Service-Oriented Computing, ser. Lecture Notes in
Computer Science, S. Basu, C. Pautasso, L. Zhang, and X. Fu, Eds.,
vol. 8274. Springer Berlin Heidelberg, 2013, pp. 114–130.

[68] M. Nayrolles, N. Moha, and P. Valtchev, “Improving SOA Antipat-
terns Detection in Service Based Systems by Mining Execution
Traces,” in 20th Working Conference on Reverse Engineering, October
2013, pp. 321–330.

[69] L. Richardson, “Richardson Maturity Model,” Tech. Rep., 2010.
Yann-Gaël Guéhéneuc received the PhD de-
gree in software engineering from the University
of Nantes, France in 2003, under the supervision
of Dr. Pierre Cointe. He is currently a full pro-
fessor at the Department of Computer Science
and Software Engineering of Concordia Univer-
sity, where he leads the Ptidej Team on evaluat-
ing and enhancing the quality of object-oriented
programs by promoting the use of patterns, at
the language-, design-, or architectural levels.
His research interests include program under-

standing and program quality during development and maintenance, in
particular through the use and identification of recurring patterns. He
has published many papers in international conferences and journals.

