
1

A Mixed-method Approach to Recommend
Corrections and Correct REST Antipatterns

Fatima Sabir, Yann-Gaël Guéhéneuc, Senior Member, IEEE, Francis Palma, Member, IEEE, Naouel
Moha, Senior Member, IEEE, Ghulam Rasool, and Hassan Akhtar

Abstract—Many companies, e.g., Facebook and YouTube, use the REST architecture and provide REST APIs to their clients. Like
any other software systems, REST APIs need maintenance and must evolve to improve and stay relevant. Antipatterns—poor design
practices—hinder this maintenance and evolution. Although the literature defines many antipatterns and proposes approaches for their
(automatic) detection, their correction did not receive much attention. Therefore, we apply a mixed-method approach to study REST
APIs and REST antipatterns with the objectives to recommend corrections or, when possible, actually correct the REST
antipatterns. Qualitatively, via case studies, we analyse the evolution of 11 REST APIs, including Facebook, Twitter, and YouTube,
over six years. We detect occurrences of eight REST antipatterns in the years 2014, 2017, and 2020 in 17 versions of 11 REST APIs.
Thus, we show that (1) REST APIs and antipatterns evolve over time and (2) developers seem to remove antipatterns. Qualitatively via a
discourse analysis, we analyse developers’ forums and report that developers are concerned with the occurrences of REST antipatterns
and discuss corrections to these antipatterns. Following these qualitative studies, using an engineering-research approach, we propose
the following novel and unique contributions: (1) we describe and compare the corrections of eight REST antipatterns from the academic
literature and from developers’ forums; (2) we devise and describe algorithms to recommend corrections to some of these antipatterns;
(3) we present algorithms and a tool to correct some of these antipatterns by intercepting and modifying responses from REST APIs;
and, (4) we validate the recommendations and the corrections manually and via a survey answered by 24 REST developers. Thus, we
propose to REST API developers and researchers the first, grounded approach to correct REST antipatterns.

Index Terms—REST APIs, REST Antipatterns, Recommendations, Corrections, Change History

F

1 INTRODUCTION

A PPLICATION Programming Interfaces (APIs) are the
software, programmatic interfaces that help appli-

cations and databases share different functionalities and
data [1]. Types of APIs include object-oriented APIs, mes-
saging APIs, and Web APIs. This paper focuses on Web
APIs that expose functionalities over the Internet, accessible
via different protocols over HTTP, and provided/used by
developers and their applications [2].

The number of publicly-available Web APIs has been
growing rapidly since 2010 [3], offered through various tech-
nologies, including RPC, SOAP, and REST. REST (Represen-
tational State Transfer) offers many advantages over SOAP
(Simple Object Access Protocol) or RPC (Remote Procedure
Call) [3]–[6]. REST is also supported by Web giants, like
Facebook, Google, Twitter, or YouTube, to provide access
to their APIs [2].

REST Web services—called REST APIs—are Web-based

• Fatima Sabir and Yann-Gaël Guéhéneuc are with the Department of
Computer Science, Concordia University, Canada
E-mail: fatima.sabir@concordia.ca, yann-gael.gueheneuc@concordia.ca

• Francis Palma is with the Department of Computer Science and Media
Technology, Linnaeus University, Sweden
Email: francis.palma@lnu.se

• Ghulam Rasool is with the Department of Computer Science, COMSATS
University Islamabad, Lahore Campus, Pakistan
E-mail: grasool@cuilahore.edu.pk,

• Naouel Moha is with the Department of Computer Science, École de
Technologie Supérieure (ÉTS) – Université du Québec, Canada
E-mail: moha.naouel@estmtl.ca ,

• Hassan Akhtar is with the Department of Service Delivery, Ericsson in
Islamabad ,Pakistan
E-mail: hassan.akhtarr@gmail.com ,

and distributed services that may reside on different servers
or even in different organisations. Thus, their evolution is
beyond the control of their clients, who may be negatively
impacted by changes. They may include poor practices,
commonly known as antipatterns, as opposed to design pat-
terns, which are agreed-upon good practices [7]–[9]. Antipat-
terns may be introduced during the development activities
when developers try to deliver REST APIs under time and
cost constraints [10], [11]. They may also appear during the
evolution of the REST APIs.

Some studies, e.g., [12]–[15], focused on the automatic
detection of REST design patterns and antipatterns. Other
studies reported the lack of standardisation for documenta-
tion as a source of problems [16], [17]. The violation of REST
design is also reported on various online developers’ forums
by client developers, e.g., regarding status code mismatch,
caching problems, or cookies issues.

However, to the best of our knowledge, there exists no
approach to help developers in correcting their REST APIs.
No work focuses on the correction of REST antipatterns in
REST APIs after such antipatterns have been identified for
two reasons. First, there is a lack of understanding of the
evolution of REST APIs and REST antipatterns and, second,
the source code of REST APIs is often inaccessible (propri-
etary). Thus, corrections can only be recommended, i.e., direct
modification of the actual implementation is impossible.

We apply a mixed-method analysis to understand the
evolution of REST APIs and to propose an approach rec-
ommending corrections to or correcting REST antipatterns.
Figure 1 shows the steps that we follow to build our SOCAR
approach. The basis to build our approach are the antipat-

2

terns and their solutions. We observe that many antipatterns
did not have actionable solutions and that the community
sometimes disagree about existing solutions. Therefore, we
first perform an observation study to identify (1) antipat-
terns that exist and which number evolve in REST APIs
and (2) heuristics that are discussed/used by developers
to address these antipatterns. We use these heuristics in a
second step to build our approach.

First, we perform quantitative and qualitative studies
to identify the heuristics. Quantitatively, via case studies, we
observe the evolutions of major REST APIs and the dis-
cussions of REST antipatterns associated with/due to their
evolution. We analyse 11 REST APIs, including Facebook,
Google, Twitter, and YouTube, over six years by computing
code changes and detecting the occurrences of eight REST
antipatterns. We thus show that (1) REST APIs and REST
antipatterns evolve over time and (2) REST antipatterns
disappear thanks to different solutions, which we collect
as heuristics. Then, qualitatively, using discourse analysis, we
analyse developers’ forums, report that developers are con-
cerned with the evolution and quality of REST APIs, and
collect the heuristics suggested to fix REST antipatterns.

Second, using an engineering-research approach, we pro-
pose a tooled approach, SOCAR (Service Oriented Correc-
tion of Antipatterns in REST), to recommend corrections
of/correct the eight previous REST antipatterns. We base
our approach on the heuristics collected in the previous
quantitative and qualitative studies. Thus SOCAR propose
to the REST antipatterns solutions that have been observed,
proposed, and–or validated by the community. In addition,
we also validate SOCAR recommendations/corrections
with practitioners through a survey and report an average
precision of 75.90% and recall of 67.72%. We also get a
91.12% agreement ratio for SOCAR based on the results of
survey participants.

Thus, the main contributions in this article include:

1) Quantitative studies to understand the evolution of
REST APIs antipatterns between 2014 and 2020.

2) Qualitative studies to understand the good practices
for REST API design from academia and industry.

3) The SOCAR approach and its tool support1 for
recommending corrections to REST antipatterns.

The rest of the article is organised as follows. Sec-
tion 2 discusses the state-of-the-art studies on the detection,
correction, and recommendation of antipatterns in object-
oriented systems and Web services. Section 3 describes our
quantitative and qualitative studies of REST APIs and REST
antipatterns. Section 4 introduces the SOCAR approach and
its steps to investigate the recommendation for correcting
antipatterns, while Section 5 reports the experiments and
results based on our SOCAR approach. Section 6 presents
the validation of our recommendations in the form of a sur-
vey while Section 7 discusses our results. Finally, Section 8
concludes with some future directions.

2 RELATED WORK AND BACKGROUND

This section discusses relevant studies on the detection and
correction of antipatterns from the literature.

1http://www.ptidej.net/downloads/replications/tse20/

2.1 Studies on REST Web Services
REST has gained vast popularity among the Web services
community to design REST Web services [17]. Li and
Chou [17] noticed that most Web services that claim to
use the REST architectural style are not hypermedia driven.
They proposed a REST chart model that helps design and
describe the APIs without violating basic REST principles, in
particular, the hypertext-driven navigation. Another study
presented an approach to analysing the APIs based on a
machine-readable description [18].

REST APIs description languages like Swagger2 and
RAML3 received more attention. A recent study regarding
the Open API initiative proposed their use as the API
description language [19]. Another study reported the de-
scription of REST APIs in multiple languages to be trans-
formed into a canonical meta-model. That canonical meta-
model acted as a repository to calculate metrics [20]. The
authors tested the model for 286 Swagger REST resources
and presented the results based on the metrics proposed for
the API evaluation [20]. Results showed an average between
9 and 40 REST resources per API but the distribution of
resources among the API varies greatly like in Azure, where
61.5% of the resources as read-only. Also, the distribution of
REST resources for Google is equally distributed. They also
notice that APIs are ‘wider than deeper’ [20].

The detection of linguistic patterns and antipatterns is
reported in literature for REST APIs [13], [21]. The tool
called SARA (Semantic Analysis of REST APIs) uses Word-
Net4, Stanford CoreNLP5 along with the Latent Dirichlet
Allocation6 (LDA) topic modeling technique and helps to
check the URI nodes to assess their semantic quality [21].
SARA is validated on 11 REST APIs to detect linguistic
antipatterns with precision up to 88% compared to DOLAR
(Detection of Linguistic Antipatterns for REST APIs) [13]
that has an average precision of 79% for the detection of
linguistic antipatterns in REST APIs.

Other studies also report the syntactic and semantic
design problems in cloud lexicon used by well-known cloud
providers like Google Cloud Platform, Open Cloud Com-
puting Interface, and Open Stack [14]. The detection method
for Cloud APIs is validated with an approach, CLOUDLEX,
for extracting and analysing cloud API lexicon.

All the studies above discuss either best or poor design
practices in URIs for REST APIs or detect antipatterns and
design patterns in REST APIs. None discusses the evolution
of the REST APIs for the correction of antipatterns. Previous
work discusses the correction of code smells in object-
oriented (OO) systems using techniques from the domains
of data mining [22], natural language processing [23], source
code metrics [24], and machine learning [25].

2.1.1 Correction of Antipatterns in OO Systems
Software engineers may relate documentation and changes
in the source code using a version control system [26]. The
percentage of reusable code and examples of such code can
be semi-automatically recommended [27].

2https://swagger.io
3https://raml.org
4https://wordnet.princeton.edu/
5https://stanfordnlp.github.io/CoreNLP/
6https://algorithmia.com/algorithms/nlp/LDA

http://www.ptidej.net/downloads/replications/tse20/

3

Observation 1 Observations 2 and 3

Extract Data
from

Change History

Analysis of HTTP
Requests and Responses

Approach

Antipatterns
Correction
Definitions

SOCAR

Changes in Requests
and Responses
(2014, 2017, 2020)

Trace History
(2014, 2017, 2020)

Antipatterns
Detection

(2014, 2017, 2020)

Changes in REST APIs
Reported on Change-log

(2014, 2017, 2020)

Change History in
Antipattern Instances

Solutions suggested by
Developer Forums

Corrected
Antipatterns Traces

(Requests & Responses)

Corrected Responses
(2014, 2017, 2020)

REST APIs
without

Antipatterns
SODA-R

Fig. 1: Observational Study for the Implementation of SOCAR Approach.

Previous work studied the prioritisation of code smells
based on recommendation strategies using multiple heuris-
tics [28]. It also report strategies to remove or fix code smells
after completing the definition of missing attributes that
help to introduce design patterns and maintain code quality
[29]. A multi-objective approach was also implemented to
improve the coherence with tool support named MORE [29].

The study presented by Terra et al. [30] formalises 32
refactoring recommendations to remove violations related
to architectural conformance. It proposes a tool, ArchFix,
that recommend refactorings. Researchers proposed refac-
torings [31], including Move Method to another class, with
the help of dependencies established by the source method
and the target class while keeping a view of static depen-
dencies, with JMove [31].

The ranking strategies and developer perception are
also used to improve code quality [32] by removing code
smells [33] with the help of refactoring. Recommendation
strategies can help inexperienced developers to perform
refactoring operations using a monitor running in the back-
ground [34].

Another study discusses the use of refactorings to im-
prove system performance vs. those that might negatively
impact evolution [35]. The approach is automated with
JDeodorant as an Eclipse plug-in to rank suitable refac-
torings to remove smells. Some researchers use implicit
dependencies to guide developers in using the most suitable
refactorings [36]. Researchers also proposed an intelligent
software refactoring bot, RefBot, integrated into version-
control systems, like GitHub. Refbot continuously monitors
the software repository and can apply recommendations. It
was evaluated with the help of a survey [37].

Most of the studies mentioned above are evaluated using
industrial case studies or with controlled experiments.

2.1.2 Correction of Antipatterns in Web services

Pautasso [38] proposes solutions to some REST antipatterns
in the form of guidelines. Several books discusses avoiding
antipatterns in REST APIs [39]–[42]. A recent study studied
REST API evolution and its impact on source-code qual-
ity [43] through a qualitative study of Facebook, Google
Maps, and Twitter. Espinha et al. conducted a case study to
investigate the evolution of REST APIs without discussing
solutions to the problems faced by API providers during the
evolution of APIs [43].

Daigneau [44] addresses the importance of design deci-
sions, focusing on suitable patterns. Most providers allow
developers to use old versions for periods of times [44],
which impedes tracking problems faced by users.

Different studies report violation of design principles in
Web services [45], [46]. Practitioners mostly use the code-
first technique to generate source code and then use WSDL
generation tools for service interfaces. Mateos et al. [45]
propose a tool that assists developers in generating WSDLs
with the help Eclipse plug-in called AF-Java2WSDL [45].
They also propose an approach to generate contract-first
WSDL documents [46].

A study [47] proposes OO metrics-driven refactorings
for code-first WSDL-based services. Early code-first refac-
toring technique helps avoid antipatterns during the migra-
tion phase from traditional systems to SOA-based architec-
ture [48]. Another research proposes using early code refac-
toring to retrieve the syntactic registries [49] with the help of
CBO (Coupling Between Objects), WMC (Weighted Method
Complexity), ATC (Abstract Type Count), and EPM (Empty
Parameters Methods). They also compare four different Java
to WSDL tools and two different registries and shows that
refactorings can remove WSDL antipatterns independently
of the WSDL generation tools [49].

Rodriguez et al. [50] discuss bad practices that pre-
vent Web services discovery, with 26 professionals. Another
study reports WSDL bad practices commonly found in
WSDL documents and suggests solutions for these antipat-
terns [51]. There is an attempt to discover static and dynamic
analysis of antipatterns for SOAP services [12] using the
SODA-W tool. Another study addresses SOAP antipatterns
detection using a parallel evolutionary algorithm [52].

A recent study correlates metrics used to evaluate Web
service modularisation using the methodology reported by
Kessentini et al. [28] and the approach by Ouni et al. [53]. It
is evaluated on a set of 22 Web services provided by Ama-
zon and Yahoo with their publicly-available interfaces [54].

To the best of our knowledge, while studies exist on the
detection of antipatterns for Web services, none proposes
to correct REST antipatterns in REST APIs to help API
clients by improving the comprehensibility, discoverability,
usability, and maintainability of REST APIs.

2.2 SOFA Framework and SODA-R

We rely on the SOFA framework (Service Oriented Frame-
work for Antipatterns) to deal with REST antipatterns in
REST APIs. The SOFA framework is based on a Service
Component Architecture (SCA) and relies on FraSCAti [55]
for its run-time support.

An instanciation of the SOFA framework is SODA-R
(Service Oriented Detection for Antipatterns in REST). Fol-
lowing IETF guidelines [56], SODA-R implements a list of
standard requests, responses, attributes, and status codes.

4

Detection

Algorithm
Generation

Rule
Specification

Rule

Operator

Boxplot

Metric

SCA Handler

Web Service
Handler

REST
Handler Heuristics

Executes

SOCARCorrection

Fig. 2: SOFA Framework.

It allows a requester to call REST APIs and collect the
server responses. It also allows analysing these responses, in
particular to detect occurrences of some REST antipatterns.
It also can modify and present modified responses to the
requester. Finally, it can also store HTTP requests and the
detection results for REST antipatterns and design patterns
instances in CSV (Comma Separated Value) format.

The use of SODA-R requires the URIs of the REST
APIs to be called. We carefully craft these URIs follow-
ing the specifications provided in the documentation of
the REST APIs. For example, the URI to obtain a playlist
from YouTube is https://www.googleapis.com/youtube/
v3/playlistItems?playlistId=1 as per YouTube documenta-
tion7. In a previous work [12], we used SODA-R to detect 13
REST patterns and antipatterns in documented REST APIs.

2.3 APIs, URIs, Traces, and Trace Histories

For the recommendation of antipatterns correction, we anal-
yse traces of calls to URIs provided by some REST APIs.

REST APIs are build on the HTTP protocol and
use HTTP verbs (aka methods) (typically POST, GET, and
DELETE) to access resources identified uniquely by their
Uniform Resource Identifiers (URIs). A URI divides into
several parts: scheme, authority (userinfo, host, and port),
path, and query8. The path and query parts form entity
endpoints (EEPs), which are used with HTTP verbs and URI
hosts to create HTTP requests.

Although, technically, REST APIs provide EEPs, in the
following, we use the term URIs because we access the EEPs
provided by various REST APIs on existing hosts, i.e., www.
dropbox.com and, therefore, concretely use URIs to access
resources and obtain responses from these accesses.

We call a trace the combination of a request and its re-
sponse for a HTTP access to a URI [57], [58]. A trace includes
the request header and body and the response header and
body, depending on which HTTP method is being used
for the HTTP call. We use SODA-R to obtain traces. By
following the IETF guidelines [56] and the documentations
of the REST APIs of interest, we ensure that SODA-R collect
correct and relevant traces. We put on the companion Web
site1 the list of all the used URIs.

7https://developers.google.com/youtube/v3/docs/playlistItems
8https://en.wikipedia.org/wiki/Uniform Resource Identifier

A trace history is a set of traces for an API collected at
different points in time. A trace history is a text file that
saves the information of each call performed by SODA-R
for each URI. We perform the detection of antipatterns in
various years and collection associated trace histories. We
thus can compare the trace history of same URIs for different
years and different versions.

3 OBSERVATIONAL STUDY

We perform and report the first observational study on REST
antipatterns to understand their extent and how developers
address them (or not). We select eight REST antipatterns
which Palma et al. [13] detected with SODA-R in 11 REST
APIs. To the best of our knowledge, this is the first and
largest observational study with eight REST antipatterns
and 11 REST APIs over the five years.

We present in the next two subsections 3.1 and 3.2 these
antipatterns and REST APIs before reporting our observa-
tions that (1) REST antipatterns occur and the numbers of
their occurrences increase with time (Section 3.3); (2) these
occurrences and their increases worry REST developers
(Section 3.4); and, (3) these REST developers do correct their
APIs to remove these occurrences (Section 3.5).

The results of our observations are heuristics identified
either from the actual evolution of antipatterns in REST
APIs or from the discussions in developers’ community
forums. As summarised in Figure 1, we use these heuristics
in Section 4 to build our approach.

3.1 Subjects of the Study

We observe the following eight REST antipatterns. Gener-
ally, these antipatterns stem from guidelines for REST APIs,
which are proposed by different organisations [59], [60] and
books [61]. We provide below as many relevant and quality
references as possible for each antipattern and provide con-
sensual definitions. Yet, studies reported a lack of industry
consistency, e.g., [62], like use of nouns for resource names,
which could lead to changes to these definitions as the
guidelines evolve and mature.

1. Breaking Self-Descriptiveness (BSD) occurs when
developers ignore the standardised attributes, formats, or
protocols and use their own customised ones, which breaks
the self-descriptiveness or containment of a message header.
This poor practice also limits the reusability and adapt-
ability of REST resources [60]. The specification of this
antipattern is based on the rules of protocol design [60],
[63]. Every resource must have a unique URI, which must
provide a list of standardised attributes, media types as a
part of API documentation [64].

2. Forgetting Hypermedia (FH) refers to the lack of
hypermedia, i.e., not linking resources, which hinders state
transitions in REST applications. One indication of this
antipattern are missing URL links in the HTTP response,
which prevents clients from following the links [61].

3. Ignoring Caching (IC) occurs when REST clients and
server-side developers avoid the caching capability. The
caching is one of the REST constraints. The developers may
avoid caching by setting Cache-Control to “no-cache” or
“no-store” without an ETag in the response header [61].

https://www.googleapis.com/youtube/v3/playlistItems?playlistId=1
https://www.googleapis.com/youtube/v3/playlistItems?playlistId=1
www.dropbox.com
www.dropbox.com
https://developers.google.com/youtube/v3/docs/playlistItems
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

5

4. Ignoring MIME Types (IMT) refers to the practice
where server-side developers rely on their own formats,
which may limit resource accessibility and re-usability. In
general, requested resources should be available in various
formats, e.g., XML, JSON, HTML, or PDF [61]. Besides, the
response format should be based on the client request [64].

5. Ignoring Status Code (ISC) refers to the practice of
avoiding the rich set of pre-defined application-level status
codes suitable for various contexts and relying only on
common ones, namely 200, 404, and 500, or even use the
wrong or no status codes [61], [62].

6. Misusing Cookies (MC) occurs when client develop-
ers send keys or tokens in the Set-Cookie or Cookie header
field to the server-side sessions. In REST, the session state on
the server-side is not allowed and the use of cookies violates
this constraint [61], [62].

7. Tunneling Through GET (TTG) occurs when devel-
opers rely only on GET for all sorts of actions including
creating, deleting, or updating resources. The HTTP GET
method is inappropriate for all other actions except retriev-
ing resources [61].

8. Tunneling Through POST (TTP), similar to Tunneling
through GET, occurs when the developers depend only on
POST for sending all sorts of requests to the server including
retrieving, updating, or deleting a resource. In REST, the
proper use of POST should be limited in creating server-
side resources only [61].

Examples of detected and corrected REST antipatterns
are available online1.

3.2 Objects of the Study
We select 11 common REST APIs in which we detect and
observe occurrences of the eight REST antipatterns, which
were studied before in the literature [12], [13], [21]. We study
17 different versions of those 11 APIs available online and
reported in Table 1.

We choose the URIs to study based on three criteria.
First, we choose URIs for which we could collect trace his-
tories using our SOFA framework, as in previous work [12],
across the three years of interest: 2014, 2017, and 2020.
Second, we choose URIs which participated in some REST
antipattern in at least one year of interest found using
SODA-R. Third, finally, we choose URIs that we could
trace across the years either because (1) their URIs did
not change, e.g., https://www.googleapis.com/youtube/
v3/playlistItems?playlistId=, or the REST API documenta-
tion clearly states how the URIs changed across the years,
e.g., from https://api.dropbox.com/1/account/info in v1.0
in 2014 to https://api.dropbox.com/2/users/get current
account in v2.0 in 2017 and 2020.

The total number of URIs for 11 REST APIs are 308. A
statistically significant sample with a 95% confidence level
and a confidence interval of 5 would include 172 URIs.
We cover all the URIs available from 2014 to 2020 with
a sample size 204 to cover the complete population. We
conduct a detailed manual analysis of these 204 URIs and
the changes associated with these URIs and find 144 URIs
that satisfy all of our criteria, as shown in Table 2. We
removed Music Graph, Ohloh, Twitter, and Zappos because
they do not provide usable change logs, which prevent us
to find associated changes.

We performed the data collection in 2014, 2017, and 2020
to observe the changes in the occurrences of antipatterns.
We added new versions of the REST APIs in 2017 and 2020
as they came to be released. It was important to collect the
traces at different points in time because some REST APIs
changed without keeping previous versions, like Alchemy:
the “original” v0.9 of 2014 was not accessible anymore in
2017 (even if it was still called v0.9).

3.3 Observation 1: REST Antipatterns Exist and Their
Numbers of Occurrences Increase with Time
Table 3 shows the numbers of occurrences of the eight
antipatterns detected for the years 2014, 2017, and 2020. It
also shows the relative change in antipattern instances for
those years in relation to the previous detection year.

We compute the relative change (Crel) in the occurrences
of antipatterns, using the following equations, in relation to
the actual change (Cactual) in the total occurrences of the
antipatterns for each REST API from 2014 to 2020, with:

Cactual = N −Nref

where, N is the number of antipatterns in the current
detection year and Nref is the number of antipatterns for
the previous detection year. Then, Crel is:,

Crel(N,Nref) =

{
Cactual

Nref
× 100%, for Nref > 0

100%, for Nref = 0

}
The relative change cannot be defined for the first detec-

tion year 2014 because we performed no detection prior to
that year. A negative relative change refers to a decrease in
antipattern instances. In contrast, a positive relative change
refers to an increase in antipattern instances compared to
the previous detection year.

The relative-change values may vary across the years
for a same version, for example for v0.9 of the Alchemy
REST API between 2014 and 2017 because some REST
APIs did change the behaviours of certain of their URIs
without changing their version numbers. Such changes are
bad practices in the versioning of REST APIs [65].

We illustrate the detection and evolution of antipatterns
with the YouTube API. This API had nine instances of Ignor-
ing Media Types (IMT) antipattern in 2014 and 14 instances
in 2017, thus, the actual change (Cactual) is five and the
relative change (Crel) is 56%, i.e., an increase of IMT by 56%.
Interestingly, a new detection in 2020 reports ten instances
of IMT, i.e., a relative change of -29% that suggests some
IMT antipattern instances are removed in 2020.

We now discuss the detection and evolution of antipat-
terns in Facebook and StackExchange APIs. We choose URIs
from Facebook and StackExchange from the year 2014 to
2020 because:

• StackExchange has a complete change log for all the
three versions and is available online and the clients
can use any one of them. The status code catalog is
not complete and only redirecturi is labelled as
mandatory. The other attributes are optional;

• We observe an increase in 6 URIs for version 2.1 and
8 URIs for version 2.2 compared to version 2.0. Only

https://www.googleapis.com/youtube/v3/playlistItems?playlistId=
https://www.googleapis.com/youtube/v3/playlistItems?playlistId=
https://api.dropbox.com/1/account/info
https://api.dropbox.com/2/users/get_current_account
https://api.dropbox.com/2/users/get_current_account

6

TABLE 1: List of 11 REST APIs under Analysis.

REST Available Number of Active URI Changes
APIs Versions Considered URIs Users 2014 2017 2020

Alchemy v0.9 9 not available - C NC
Bitly v4 15 13,530 - C C
Charlie Harvey v1 12 not available - C C
Dropbox v1, v2 17 500 million - C C
Facebook v2.7 to v8.0 21 1.94 billion - C C
MusicGraph v2 19 1 billion - C C
Ohloh v1.0 7 669,601 - C NC
StackExchange v2.0, v2.1, v2.2 53 345 million - C C
Twitter v1 25 600 million - C C
YouTube v3 17 1 billion - C C
Zappos v1 9 not available - C C
11 REST APIs 17 versions 204 URIs
∗Baseline year
C means that some changes occurred in the query/fields
NC means that no change occurred in the query/fields

TABLE 2: Manual analyses of changes per version of API between 2014 and 2020. We remove Music Graph, Ohloh, Twitter,
and Zappos because they do not provide usable change logs.

API Years Versions Number of URIs Types of Antipatterns
Names Studied URIs Added Removed Change Introduced

Alchemy
2014 v0.9 9 - 2 Enhancement 16
2017 v0.9 9 3 4 Enhancement 31

Bitly
2014 v3 15 - - - 7
2017 v3 15 - 1 Enhancement 24
2020 v4 15 14 5 New Feature 32

Charlie Harvey
2014 v1 12 - - - 8
2017 v1 12 2 - Enhancement 12
2020 v1 12 - - - 12

Dropbox
2014 v1 17 38
2017 v2 17 17 - Enhancement 45
2020 v2 17 10 New Feature 23

Facebook
2014 v2.1 21 - - - 49
2017 v2.7 21 7 10 Enhancement 62
2020 v3.10 21 10 10 Enhancement 67

StackExchange
2014 v2.0 53 - - - 73
2017 v2.1 53 6 2 Enhancement 78
2020 v2.2 53 5 1 Enhancement 80

YouTube
2014 v3 17 - - - 21
2017 v3 17 26 - Enhancement/New Feature 37
2020 v3 17 58 - Enhancement/New Feature 22
3 years 13 versions 144 URIs

a few changes are observed for the TTG and TTP
antipattern for version 2.1 and 2.2;

• Facebook has seven versions running simultaneously
for two years, i.e., currently, they are using version
9.0 although version 3.10 is still operational and
Facebook is still allowing clients to migrate to the
newer versions;

• We selected only those URIs that are available in
versions from 2.10 to 3.10 such that they are continu-
ously evolving;

• It was not possible to perform versioned analysis
of request/response because Facebook provides the
calls to resources using non-versioned URI;

• Traces of Facebook version number is neither found
in CSV files nor trace logs;

• We could identify common resource URIs available
in both years 2014 and 2017 from the APIs online

change log, as listed in Table 1. The antipattern
evolution along the version history of Facebook and
StackExchange is available in Table 3.

We analysed the v2.1 in 2014, v2.7 in 2017, and v3.10
in 2020 for Facebook API. For StackExchange, we analysed
v2.0, v2.1, and v2.2 for the three years in 2014, 2017, and
2020. We randomly selected 21 URIs for Facebook and 53
for StackExchange to collect their trace information in which
we identified the presence of antipatterns.

Actual and relative changes for the version history of
Facebook and StackExchange are available in Table 3. The
columns BSD, FH, IMT, ISC, IC, MC, TTG/TTP shows the
occurrences and changes in the occurrences of antipatterns
for each year. For example, the detection results for For-
getting Hypermedia (FH) antipattern in the trace history of
YouTube show us the changes in the antipatterns instances
across different versions for the years 2014, 2017, 2020. This

https://cloud.ibm.com/developer/watson/documentation
https://dev.bitly.com/api-reference
https://charlieharvey.org.uk/about/api
https://dropbox.github.io/dropbox-api-v2-explorer/
https://developers.facebook.com/docs/graph-api/changelog
https://rapidapi.com/blog/directory/musicgraph/
https://www.openhub.net
https://api.stackexchange.com/docs/change-log
https://developer.twitter.com/en/updates/changelog
https://developers.google.com/youtube/v3/revision_history
https://rapidapi.com/apidojo/api/zappos1/endpoints

7

TABLE 3: Actual and Relative Changes in Antipatterns between the year 2014 and 2020.

API Names Year Version BSD Crel FH Crel IMT Crel ISC Crel IC Crel MC Crel TTG/TTP Crel

Alchemy
2014 0.9 0 n/a 1 n/a 2 n/a 1 n/a 7 n/a 0 n/a 5 n/a
2017 0.9 9 100% 1 0% 2 0% 1 0% 9 29% 0 0% 9 80%
2020 0.9 - - - - - - - - - - - - - -

Bitly
2014 3 0 n/a 2 n/a 3 n/a 0 n/a 0 n/a 0 n/a 2 n/a
2017 3 0 0% 5 150% 15 400% 0 0% 0 0% 0 0% 4 100%
2020 4 14 100% 0 -100% 14 -7% 0 0% 0 0% 0 0% 4 0%

Charlie Harvey
2014 1 4 n/a 0 n/a 4 n/a 0 n/a 0 n/a 0 n/a 0 n/a
2017 1 12 200% 0 0% 0 -100% 0 0% 0 0% 0 0% 0 0%
2020 1 12 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Dropbox
2014 1 12 n/a 9 n/a 0 n/a 0 n/a 12 n/a 0 n/a 5 n/a
2017 2 17 42% 14 56% 0 0% 0 0% 8 -33% 0 0% 6 20%
2020 2 17 0% 0 -100% 0 0% 0 0% 0 -100% 0 0% 6 0%

Facebook
2014 2.1 21 n/a 19 n/a 8 n/a 0 n/a 0 n/a 0 n/a 1 n/a
2017 2.7 21 0% 21 11% 12 50% 0 n/a 4 100% 4 100% 0 -100%
2020 3.10 21 0% 21 0% 21 75% 0 n/a 4 0% 0 -100% 0 0%

Music Graph
2014 2 0 n/a 1 n/a 2 n/a 1 n/a 7 n/a 0 n/a 5 n/a
2017 2 9 100% 1 0% 2 0% 1 0% 9 29% 0 0% 9 80%
2020 2 - - - - - - - - - - - - - -

Ohloh
2014 1 3 n/a 0 n/a 0 n/a 0 n/a 1 n/a 3 n/a 0 n/a
2017 1 0 -100% 0 0% 7 100% 0 0% 0 -100% 0 -100% 0 0%
2020 1 - - - - - - - - - - - - - -

StackExchange

2014 2.0 0 n/a 19 n/a 53 n/a 0 n/a 0 n/a 0 n/a 1 n/a
2017 2.0 0 0% 19 0% 53 0% 0 0% 0 0% 0 0% 1 0%
2020 2.0 0 0% 19 0% 53 0% 0 0% 0 0% 0 0% 1 0%
2014 2.1 - - - - - - - - - - - - - -
2017 2.1 0 n/a 24 n/a 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a
2020 2.1 0 0% 24 0% 53 100% 0 0% 0 0% 0 0% 1 100%
2014 2.2 - - - - - - - - - - - - - -
2017 2.2 0 n/a 26 n/a 53 n/a 0 n/a 0 n/a 0 n/a 1 n/a
2020 2.2 0 0% 26 0% 53 0% 0 0% 0 0% 0 0% 1 0%

Twitter
2014 1 10 n/a 3 n/a 9 n/a 0 n/a 0 n/a 0 n/a 0 n/a
2017 1 25 150% 6 100% 25 178% 6 100% 14 100% 0 0% 2 100%
2020 1 - - - - - - - - - - - - - -

YouTube
2014 3 9 n/a 3 n/a 9 n/a 0 n/a 0 n/a 0 n/a 0 n/a
2017 3 17 89% 3 0% 14 56% 0 0% 3 100% 0 0% 0 0%
2020 3 12 -29% 0 -100% 10 -29% 0 0% 0 -100% 0 0% 0 0%

Zappos
2014 1 7 n/a 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a
2017 1 9 29% 0 0% 0 0% 0 0% 0 0% 0 0% 1 100%
2020 1 0 -100% 0 0% 9 100% 0 0% 0 0% 0 0% 1 0%

antipattern is due to service responses that do not contain
any link or the absence of link for location attribute. They
reduce API usability by preventing clients to follow links.

While we study the REST APIs that evolved, for exam-
ple, for StackExchange from version 2.0 to 2.2, we found
significant change in the Forgetting Hypermedia antipattern,
i.e., from 19 in v2.0 in the year 2014 and 2017 to 26 in
v2.2 in the year 2020. For example, for the HTTP call
/2.0/me/write-permissions has no instance of this antipat-
tern in API version 2.0 but the next version 2.1 has one
instance. The instance is also not removed in version 2.2.We
also noticed an increase in the Forgetting Hypermedia an-
tipattern from version 2.0 to 2.2. This information could
also be confirmed from the trace history of StackExchange
API available on our companion Web site1. Many URIs do
not change across versions, i.e., do not introduce any new
antipatterns.

Summary on Observation 1: We found that REST an-
tipatterns evolve, for example because of service migration
to different hosting services. Trace history collected using
SODA-R provides antipatterns evolution along version his-
tory, as shown in Figure 3. We observed relative changes for
antipatterns in APIs from the year 2014 to 2020. APIs docu-
mentation or online change logs are not given by some API
providers or have little information for client developers to
use APIs correctly (e.g., Bitly, Ohloh, Music Graph, Charlie
Harvey, Zappos).

3.4 Observation 2: REST Antipatterns Do Worry API
Developers

Previous work used public, professional developers’ forums
to study developers’ problems and solutions [66], [67].
StackOverflow is a widely used forum for discussing devel-
opment issues. It provides tags on questions and reputation
based on positive and negative votes [68].

/2.0/me/write-permissions

8

A StackOverflow data dump is publicly available under
the Creative Commons License, which we downloaded for
the year 2020 and the topic “software engineering”, which
include 2,284,42 posts. (The data dump provides five XML
documents: Posts, Votes, Comments, Users, and Badges. We
are interested by the Posts to identify problems related to
REST APIs and their solutions by the community.)

The Posts data contains questions with unique IDs, cre-
ation dates, answer counts, comment counts, and associated
tags. We follow the following steps to identify posts dis-
cussing REST API antipatterns and any proposed solution:

1) We filter the posts using related tags, i.e., rest and
restful-architecture [69], yielding 87 and 157 respec-
tively.

2) We consider only recent posts of no more than five
years and with up-votes for their answers greater
than ten, yielding 52 posts.

3) The questions and answers of the 52 posts are man-
ually evaluated by the authors based on their titles,
reported problems, and answers, yielding 31 posts.

4) We apply a two-step verification process to manu-
ally verify each post question and answer to select
the best solution related to REST API design.

As a result, we find 31 relevant posts that discuss prob-
lems with REST API design and their solutions. The data
of all posts and the selected posts are available on our
companion Web site1.

Table 4 reports different problems faced by developers
when service providers do not provide enough documen-
tation. It also summarises the answers proposed on the
developer forum to each of these problems.

In the posts, developers highlight the importance of best
practices in REST API design. Some best practices consider
guidelines proposed by academia and available in the litera-
ture [8], [9]. The definitions of REST antipatterns also follow
the guidelines proposed on professional forums [70]–[72]
and in the literature [8], [9].

While documentation and change logs may help client
applications use REST APIs, researchers reported the lack of
quality documentation as a major hurdle to use APIs [16],
as illustrated by a case study conducted at IBM [16]. We also
observe the same problem while creating our requests to the
REST APIs studied here, i.e., the REST API documentation
does not provide complete guideline for status code and
MIME type (e.g., Charlie Harvey and Ohloh). Complete
information of status code, caching time limit, and required
attributes, standardised header list is also often not avail-
able. However, Facebook, Dropbox, Twitter, and YouTube
provide complete information with examples.

Summary on Observation 2: Developers are concerned
with REST antipatterns. On average, there are 107K views
for posts associated with REST antipatterns and the use
of good design practices in REST APIs. Some of the posts
also provide complete guidelines for the corrections of REST
antipatterns, i.e., Status Code good practises. There is a need
to support clients and providers to improve REST APIs with
solutions to REST antipatterns. Most of the posts refer to the
answers based on guideline provided by Internet Engineer-
ing Task Force (IETF) [60], [73], [70], [71]. REST APIs are also
used by commercial web applications that use cookies but
IETF set rules based on time and also recommend to provide
complete series of Status code.

3.5 Observation 3: REST Antipatterns Are Corrected by
Their API Developers
We investigated the heuristics applied by developers to
correct antipatterns for REST APIs.

Facebook, YouTube, and Dropbox provide a complete
list of information of each version change along with the
migration guide from one version to another. Table 2 shows
the type of changes associated with the year 2017 and
2020, compared to 2014, as Enhancement or New Feature.
Such analyses of the change logs also helps us to form the
correction heuristics of REST antipatterns.

We illustrate developers’ corrections with examples from
Alchemy, Bitly, Dropbox, Facebook, and YouTube APIs.

3.5.1 Alchemy API

Ignoring Mime Type is Detected
Servcie Name :ca.uqam.sofa.alchemy.api.AlchemyMethod name : URL Get Ranked Named
En��es Path:/calls /url/URLGetRankedNamedEn��es

Response:Status Code :301Header:{x-frame-op�ons=[DENY],
content-type[text/html],connec�on=[keep-alive],
etag=["595ebaa0-303],
loca�on=[h�p://gateway-a.wastsonpla�orm.net/calls/url/URLGetRankedNamedEn��es?
Body:<PRE> Dear Alchemy API users, This is an important reminder about loca�on need to be
changed before June 28th,
Request:Header:[cache-control],[no -cache],content type=[applica�on/xml],
connec�on =[keep alive],
host=[access.alchemyapi.coom] ,accept=[applica�on/xml],
get/calls/url/urlgetrankednamedente�es?
Informa�on:[text/html] is not accep�ble by client :[[applica�on/xml]]

Fig. 3: Migration Traces of Alchemy API.

Alchemy is the only API that has a migration history
for resources and servers on the IBM Watson platform. We
invoke seven URIs from Alchemy API and collect their re-
sponses in 2014 and 2017 to observe the changes in response.
The Alchemy API was not available in 2020 anymore.

We called 9 URIs of the Alchemy API in 2014 and 2017.
The selected URIs remained the same across the years but
showed different responses (and antipatterns). Alchemy had
16 URIs in June 2014. Two URIs were removed in late 2014,
replaced by 3 more new URIs. We observed 17 URIs in June
2017. However, four URIs were removed in late 2017 and
Alchemy had 13 URIs in late 2017.

The number of instances of the BSD, IC , TTG, and
TTP antipatterns increased due to changes in the location
attributes, cache-control information, and the addition of
two new POST and one new GET method, not following

https://stackoverflow.com/questions/942951/rest-api-error-return-good-practices

9

TABLE 4: Issues Reported on professional Developer Forum.

Antipattern Question Answer

BSD Contract and protocol to communicate? Link should be provided
Use of Default value Follow RFC standard [70]

FH
Link relation value Link based on client metadata
Hypermedia rel value setting Apply rel value for back end changes
Status code in HATEOS Follow RFC standard [70]

IMT

REST semantic link vs. URI Link should be provided
Best format to use REST design Use XML and JSON as per content request
Preferred internet media type Support (JSON/XML)
REST biggest adoption blocker? Support JSON
Tradeoff between request vs. response Prefer JSON,Decide content header for request
Formate to get response Client can specify formate

IC

Session Violates REST? Yes
Explicitly set Cache state Cache response along response code
How long I can cache? Set cache explicitly
Cache Http response Set time
Ignore HttpCache header? Set time or state as no-cache
How to use Cache? Cache control: no Cache,no store

ISC

Status code in HATEOS? Follow RFC standard [70],response code 409
Response in Status code 400 for bad request
Serve client request Http 4xx
Response in Status code Response along status code description
Response HTTP message Follow RFC standard [71]
HTTP status code for request limit Follow RFC standard [71]

MC Authorization header? Avoid Cookies
Authorization header? Apply based on time

TTP
What exactly are link relation value ? Not use POST for CRUD operations
Represent action verb Use Noun
REST endpoint design Follow RFC standard [70]

TTG
When to use POST? Follow RFC standard [70]
Real time access to server? ’Get’ to retrieve resource
POST response format? Specify response as per Operation type

good practices, as reported in Table 6. The Alchemy API,
after its migration in 2020, has more non-standard attributes
in its headers than in 2014.

We detail the URI /calls/url/URLGetText and changes
in the evolution history for the Ignoring MIME Types an-
tipattern [59]. Figure 3 shows the change history of the
traces collected using SODA-R [12] for the detection of
Ignoring MIME Types antipattern in /calls/url/URLGetText.
The complete trace-log is available online1.

We consider Alchemy API as an example due
to the migration phase from HTTP to HTTPS by
changing its host from www.access.alchemyapi.com to
www.gateway-a.watsonplatform.net. We expected some
improvements and changes in the APIs and, indeed, the
Ignoring MIME Types antipattern disappeared during the
migration. We observed that the evolution of the domain
name did not affect the instances of Ignoring Status Code and
Misusing Cookies for /URLGetRankedNamedEntities. We
studied the online documentation and it shows no change in
attributes or methods for /URLGetRankedNamedEntities
while /TextGetRankedNamedEntities has new attributes,
using access-control-allow-origin, content-security-policy,
x-content-type-options, x-alchemyapi-status, and
strict-transport-security.

3.5.2 Bitly API
Bitly is currently running its version 4.0, which relies on
OAuth 2.0 with an SSL implementation (Secure Sockets
Layer). Only limited details are available in the documenta-
tion regarding the API implementation. A well-documented
API should describe all the underlying resources, status

codes, and HTTP methods. Bitly only describes the status
codes 200, 400, 403, 500, and 503. We implemented all
the status codes [56] and made HTTP requests to collect
responses from Bitly, as we did with the other REST APIs.

Table 3 shows the evolution of the REST antipatterns
from 2014 until 2020. We did not observe any changes for
Ignoring Caching, Misusing Cookies, and Ignoring Status Code.
The Ignoring MIME Type antipattern has a slight change
in 2020 with the release of a new version of the API, i.e.,
version 3. The Tunneling antipattern has four instances. We
found a small change in the instances of the Forgetting
Hypermedia antipattern, removed in 2020. This change might
be due to the absence of the location attribute in the response
meta-data of Bitly API. The resource URIs most impacted
by this antipattern are /link/click, /shorten, /bitly pro
domain, /user/tracking domain, and click/user/tracking
domain list. This antipattern then evolved in July and im-
pacted one more resource URI, /link/encoders by count.
Bitly API resources changed in 2020, i.e., the GET method is
now used to retrieve resources in multiple forms. Previously,
in 2017, Bitly developers relied more on the POST method.
The use of both GET and POST methods leads to the
removal of the Tunneling antipattern.

3.5.3 Dropbox API

The changes that Dropbox API applied from v1 to v2 illus-
trates the correction of the Ignoring MIME Types antipattern,
which is introduced when REST developers do not provide
multiple representations for a resource, forcing clients to
accept a single format, like JSON or XML. Dropbox, like
Charlie Harvey and Ohloh, supports JSON as default MIME

https://softwareengineering.stackexchange.com/questions/314345
https://softwareengineering.stackexchange.com/questions/348380
https://softwareengineering.stackexchange.com/questions/243158
https://softwareengineering.stackexchange.com/questions/301752
https://softwareengineering.stackexchange.com/questions/141951
https://softwareengineering.stackexchange.com/questions/243158
https://softwareengineering.stackexchange.com/questions/301752
https://softwareengineering.stackexchange.com/questions/141951
https://softwareengineering.stackexchange.com/questions/243158
https://softwareengineering.stackexchange.com/questions/301752
https://softwareengineering.stackexchange.com/questions/141951
https://softwareengineering.stackexchange.com/questions/167683
https://stackoverflow.com/questions/39129932
https://stackoverflow.com/questions/58428814/
https://stackoverflow.com/questions/56564341/
https://stackoverflow.com/questions/62627546/
https://stackoverflow.com/questions/64331735/
https://softwareengineering.stackexchange.com/questions/141951
https://softwareengineering.stackexchange.com/questions/141951
https://softwareengineering.stackexchange.com/questions/215165
https://softwareengineering.stackexchange.com/questions/358020
https://softwareengineering.stackexchange.com/questions/370005
https://softwareengineering.stackexchange.com/questions/128512
https://softwareengineering.stackexchange.com/questions/273759/
https://softwareengineering.stackexchange.com/questions/141019
https://softwareengineering.stackexchange.com/questions/181545
https://softwareengineering.stackexchange.com/questions/294445
https://softwareengineering.stackexchange.com/questions/213017
https://softwareengineering.stackexchange.com/questions/373477
https://softwareengineering.stackexchange.com/questions/14373794
https://softwareengineering.stackexchange.com/questions/213131
/calls/url/URLGetText
/calls/url/URLGetText
www.access.alchemyapi.com
www.gateway-a.watsonplatform.net
/URLGetRankedNamedEntities
/URLGetRankedNamedEntities
/TextGetRankedNamedEntities
access-control-allow-origin
content-security-policy
x-content-type-options
x-alchemyapi-status
strict-transport-security
/link/click
/shorten
/bitly_pro_domain
/bitly_pro_domain
/user/tracking_domain
click/user/tracking_domain_list
click/user/tracking_domain_list
/link/encoders_by_count

10

GET https://www.dropbox.com/1/account/info
HTTP/1.1
Accept-Encoding: gzip,deflate
Content-Type: application/XML,JSON
Host: www.dropbox.com
Connection: Keep-Alive

POST
https://www.dropbox.com/2/users/get_current_account
HTTP/1.1
Accept-Encoding: gzip,deflate
Content-Type: application/JSON,XML
Host: www.dropbox.com
Connection: Keep-Alive

2015

2020

Fig. 4: Migration Traces of Dropbox API.

type but other MIME types, like XML and YAML, are also
supported if requested by clients.

We studied the trace history of the Dropbox REST API
for URI /1/account/info associated to version 1, which
changed into /2/users/get current account in version 2.
Dropbox offered JSON and XML as MIME types in 2014.
They still provide multiple resource representations in 2020.
Thus, there is no instance of the Ignoring MIME Types
antipattern in 2017 and 2020. Figure 4 shows the complete
information of traces from version 1 of 2014 to version 2
available in 2020.

3.5.4 Facebook API

We observe changes with each version of Facebook APIs
from 2014 to 2020. Facebook supported non-versioned calls
until v5.0, which is not recommended by professional de-
veloper forums. It supports versioned calls after version 6.0.
There are no instances of the Ignoring Status Code antipattern
in any version. We observe an increase for Ignoring Caching
for the years 2017 and 2020 due to changes in Facebook
marketing policy, now supporting cache-control as private.

3.5.5 YouTube API

YouTube has a long change history and continuously
evolved during the past few years. We observe changes in
the instances of the Breaking Self-descriptiveness, Forgetting
Hypermedia, Ignoring MIME Types, Ignoring Caching, and Tun-
neling antipatterns between May 2014 and September 2020.
We found the Ignoring Cache antipattern across many re-
source URIs over that period. The reason for the evolution of
Ignoring MIME Types, Ignoring Caching, and Tunneling is that
/video/rate was not available in June 2017. However, the
response status did not provide information of the change
in URI, which was also not available in the client-side cre-
dential details. Some of its attributes, e.g., recordingDetails.
locationDescription, recordingDetails.location.latitude, and
recodingdetail.location.longitude, were deprecated in 2017.

There is also a change in /video/rate resource in 2020
due to new policy. Videos uploaded after the 28 July 2020
are restricted while they undergo an audit. These changes
impacted the response of /video/rate. We also found non-
standard attributes, e.g., alt-svc from /activities, /playtimes,
and /guidecategories, which cause the introduction of the
Breaking Self-descriptiveness antipattern.

Table 3 shows the evolution of the REST antipatterns be-
tween 2014 and 2020 for YouTube. Instances of the Ignoring
MIME Types antipattern also exist in /activities, /playtimes,
and /guidecategories, for which these URIs only return
JSON while they should also return XML and other formats.
The instances of Ignoring MIME Types decreased in 2020.
Yet, YouTube still relies on a single representation but we
can parse and convert it into text and XML, thus removing
these URIs from the list of Ignoring MIME Types antipattern.

Summary on Observation 3: While we observe and report
that REST APIs change in time and that the numbers of
antipatterns and their occurrences also change, we could
not find direct evidence in the change logs that developers
targeted these antipatterns. However, REST APIs evolve
and change with new practices and technologies, which
changes the number of antipatterns. For example, multiple
MIME types are still supported by some API providers, i.e.,
Dropbox, but the majority of API providers offer a single
MIME type. As other example, caching changed with dif-
ferent version of the Facebook APIs, from version 2.7 to 3.1,
against guidelines. Thus, it seems that developers do correct
REST antipatterns, albeit not explicitly.

4 SOCAR APPROACH

We develop SOCAR (Service Oriented Correction of An-
tipatterns in REST) as a recommendation/correction system
that identifies occurrences of REST antipatterns and recom-
mend corrections for/correct these occurrences.

In a preliminary step, we encode the corrections observe
in the previous observation study as recommendations of
corrections or actual corrections (when possible). Then,
SOCAR divides into two steps: first, it applies SODA-R
to some REST API to detect occurrences of some REST
antipatterns and, second, it proposes corrections or correct
these occurrences.

4.1 Preliminary Step: Definition of the Corrections
Input: Qualitative study (in Section 3).
Output: Correction recommendations/Corrections.
Description: The trace history of the APIs can be used
to decide the possible corrections for REST antipatterns.
The properties used to correct REST antipatterns are also
available in the literature [12], [59]. The correction heuristics
are based on the changes observed for each URI based
on the observational study, which informs our correction
heuristics. Some of the corrections are recommendations,
e.g., when responses are not parsed as per clients’ choice,
like Ignoring Cache, while others are corrections without
changing the response, e.g., Ignoring Status Code.

For example, for recommending the correction of Break-
ing Self-descriptiveness antipattern, for each API we identify
the list of non-standard header descriptions [56] and use a
remove() correction in case of the detection of non-standard
header attributes in the HTTP response from the server to
display the corrected response headers to the clients.

In another example, for recommending the correction of
Ignoring Status Code antipattern, we implement the status
code list in the correction definition of Ignoring Status Code

/1/account/info
/2/users/get_current_account
/video/rate
recordingDetails.locationDescription
recordingDetails.locationDescription
recordingDetails.location.latitude
recodingdetail.location.longitude
/video/rate
/video/rate
alt-svc
/activities
/playtimes
/guidecategories
/activities
/playtimes
/guidecategories

11

antipattern and applied the add() correction on the response
header field that helps clients to identify the correct status
for HTTP calls. It is also possible to have the wrong status
description, which, if found, is corrected after applying the
replace() method. We do this by removing the improper
‘error description’ with the proper description. All the cor-
rections are implemented in SOCAR for the correction of
REST antipatterns.

We develop correction definitions after a detailed anal-
ysis of the attributes in HTTP requests and responses col-
lected from the trace history of REST APIs.

We implement different operations in SOCAR for the
corrections of REST antipatterns in REST APIs, as shown in
Table 5. We add missing attributes using evolution history
in the HTTP request and response to correct antipatterns.
Table 6 reports the correction rules applied for each antipat-
tern related to their associated properties.

TABLE 5: SOCAR Corrections/Recommendations

Operations Name Changes Required Descriptions

Fixing error code Response API’s response status change

Enhancement Request, Response, Body API changes its version or domain

New feature Request, Response API has an additional functionality

Correction Response Correction of Response through
changes to attributes

Based on the recommended corrections in Table 6, we
proposed correction heuristics. Algorithms 1 and 2 show the
correction heuristics for Ignoring MIME Types and Forgetting
Hypermedia antipatterns, respectively; the most common
REST antipatterns in REST APIs [12], [73].

Input: request-metadata, response-metadata
Output: Content Type Design Pattern
request-metadata←− xml, json, pdf, html, ...;
response-metadata←− xml, json, pdf, html, ...;
if request-metadata.containskey()= ”accept” then

if request-metadata 6= response-metadata then
response-metadata.add (request-metadata);
“Ignoring MIME Types Corrected based on Client
Request”

end
“Ignoring MIME Types Instances Removed”

end
“Content Negotiation Pattern Detected”

Algorithm 1: Correction of Ignoring MIME Types REST
Antipattern.

In Algorithm 1 for Ignoring MIME Types antipattern,
the heuristic is checking whether the accept field is present
in the request header. In the case of presence, if the re-
sponse header does not match the request header, i.e., the
responded MIME type is not the same as the MIME type
request by the client, the response header is recommended
to be updated with an appropriate MIME type. The appro-
priate MIME type here one that is requested by the client in
the request header. The correction for Ignoring MIME Types
antipattern introduces the Content Negotiation REST pattern,
which is a good design practice in REST.

Input: HTTP Method, Format, Location
Output: Entity Link Design Pattern.
HTTP Method←− GET, PUT, POST, DELETE;
Format←− XML, JSON, PDF, RDF, HTML, ...;
URI←− HTTP Method + Location + Format;
response←− Access URI;
if response.getstatus()=”4K” or
response.getstatus()=”5K” then

Remove from detection and correction;
end
if response.getBody() and response.getmetadata() 6= Null

then
if checkLinksBody()←− XML, JSON, PDF, RDF

then
if checkLinkMetaData()←− URI then

Link detected ; if
checkLinkMetaData().contains 6= URI then

linkmetadata.add(URI);
“Addition of link in Response meta
data”

“Forgetting Hypermedia Antipattern
Correction”

end
end

end
end
“Entity Linking Pattern detected”

Algorithm 2: Correction of Forgetting Hypermedia REST
Antipattern.

We cannot change the MIME-Type on the server because
we do not have access to source code and data. Also, pro-
fessional developers are divided on the use of MIME type,
either JSON or XML. Therefore, we build a parser that first
identifies and then parses the response and then converts it
into the appropriate MIME type, following a client’s request,
either in JSON or XML. Table 6 also provides options for the
correction of the IMT antipattern based on a client’s choice.

The heuristic in Algorithm 2 for Forgetting Hypermedia
antipattern checks for the absence of resource links in the
response body or response header. In the absence of such
links, e.g., the response header does not have a location
field, the heuristic recommends to add a resource URL to
the response header. This correction introduces the Entity
Linking REST pattern, which is another good design practice.

4.2 Step 2: SODA-R to Detect REST Antipatterns

Input: REST APIs for their dynamic invocation via client
requests.
Output: Detected instances of REST design patterns and
antipatterns from the client- and service meta-data.
Description: The SODA-R approach [12], proposed by
Palma et al., checks the instances of antipatterns in REST
APIs. SODA-R implements the detection heuristics of eight
REST antipatterns and performed their detection from pop-
ular REST APIs like Facebook, YouTube, and Dropbox.
There is a need to check the antipattern instances before
implementing their correction heuristics. This step also
helps us study the evolution of REST antipatterns, i.e., if

12

TABLE 6: Antipatterns Correction Rules.

Anti-
patterns Properties Recommendations Recommendations Consensus Effect

From Literature From Practice Applied

IMT Accept, Content Type json,xml [64] Prefer json Content selection as
per user choice

Content Negotiation
Pattern

IC Cache-Control, ETag
Add Cache Control, Gener-
ate Unique E-Tag for Re-
quest [61]

Cache control=’no
cache’

Content selection as
per user choice

Response Caching
Pattern

FH http-methods, entity
link, location

add links, metadata info,
status code [61]

dynamic link as per de-
veloper choice

Content selection as
per user choice Entity Link Pattern

BSD request and response
header field

Remove non-standard
headers from Response [60]

follow IETF guideline
[56] Consensus matched Antipattern

removed

ISC
http method, status,
standard status code
description,

Status code number and
description change, replace
method for code description
and number [61] [62]

Follow complete
description of Status
Code [56]

Consensus matched Antipattern
removed

MC Cookie, Set Cookie
Remove Set-Cookie, cookie
from response metadata
[61] [62]

Set-Cookie as per com-
pany policy

Content selection as
per user choice

Antipattern
removed

TTP http-method, request-
URI

remove access, update and
delete from resource URI
[61]

Follow guidelines using
POST [72] [59] Consensus matched Antipattern

removed

TTG http-method, request-
URI

remove access, update
and delete from resource
URI [61]

Follow the guidelines
using GET [72] Consensus matched Antipattern

removed

antipatterns have increased or decreased from the recent
studies. Furthermore, this may help us to check changes in
instances of antipatterns associated with each REST API.

SODA-R provides detection results for design patterns
and antipatterns and the trace history to check the attributes
in HTTP requests and responses for REST APIs. The correc-
tion mechanism requires proof that services are improved
and that the number of antipatterns instances is either
decreased or equal to zero. A study showed the relationship
between code smells and design patterns: if the services
are improved, then the total number of design patterns
for a specific Web service increases after the correction of
antipatterns [74].

4.3 Step 3: SOCAR to Provide/Apply Heuristics

Input: Correction recommendations.
Output: The recommended REST design pattern instances
and the related REST antipatterns that are removed.
Description: REST APIs evolve rapidly, which is evident
from their online change history available in Table 1. The
algorithms of correction heuristics are applied based on the
data collected from trace history along with the recommen-
dation from developer forums. Table 6 reports the results
along with properties collected from trace history and cor-
rections suggested by academia along with the consensus
of the developer forum. In Table 6, the Recommendation from
Literature column provides information regarding the defi-
nition of antipatterns proposed by academia. The column
Recommendations from Practice shows the developer views
regarding the correction definition for antipatterns removal.
The column Consensus Applied shows the SOCAR imple-
mentation for each REST antipattern correction approach.
Corrections are also performed for client in case changes
are required in the Response. The SOCAR approach uses the
recommendation of academia and professional developer
and in case the consensus is not matched, then the client

developer has the right to apply the definition of correction
heuristics proposed by the industry or academia. We name
this selection as Content Selection as per User Choice.

SOCAR recommends corrections for Ignoring Mime
Type and Ignoring Status Code by parsing the response,
modifying it, and sending the modified on to the client. We
developed a parser to parse the MIME type and provide
input text file to map the status code of response and
replace with correct status code as per IETF guidelines.
We provide correction recommendations to Breaking Self-
Descriptiveness, Misusing Cookies, Cache Control, and Tun-
neling because they cannot be simply fixed for the client.
(Corrections/Recommendation of corrections are available
on-line in the companion Web site1.

The Pa�ern Response Caching is Detected
===
Service name: ca.uqam.sofa.youtube.api.Youtube
Method name: youtube_ac�vi�es_list
Path: /ac�vi�es

Response:
Header: {cache-control=[private, max-age=0, must-revalidate, no-transform]

Body: { },

Request:

Header: {cache-control=[no-cache]}

Fig. 5: Traces of Design Pattern Response Caching.

Figure 5 shows a trace collected from YouTube and that
shows a Response Caching design pattern, with max-age
and re-validate attributes. However, developers from the
industry and academia have different opinions on caching
and also suggest using No-Cache, thus, the SOCAR ap-
proach allows the client developers to choose the correction
heuristic for Ignoring Caching antipattern between setting
“cache-control” as “no-cache” or setting “cache-control” as
“public” or “private” and “max-age” as zero.

13

5 EXPERIMENTS

We performed a series of experiments using our recom-
mended corrections in Table 6. As objects, we consider the
11 REST APIs in Table 1. The eight REST antipatterns that
we consider as subjects are listed in Section 3.1. Through
the experiments, we want to show the accuracy of the
SOCAR approach in terms of precision of the corrections,
i.e., how many of the detected antipattern instances could
be corrected.

5.1 Process

We analysed the complete trace history of each REST API
from 2014 to 2020. We investigated the changes in the occur-
rences of each antipattern. Each API shows the introduction
or removal of antipatterns based on different attributes
collected from trace history.

For the experiments, first, we invoke the client API re-
quests for the REST APIs based on the required information
for calling a specific function, e.g., using profile API of
Facebook or rating video using YouTube API. As a client,
we receive requests with multiple attributes representing
the resource information from API providers. The requests
are analysed based on the definition of design REST antipat-
terns. SOCAR checks the requests invoked by the client and
responses received from the API providers. We then analyse
the requests and responses based on the corrections for each
antipattern in Table 6. The corrections also consider the
recommendation collected from the observations. The cor-
rections are recommended based on the definition reported
in the literature [12], [13], and collected from developers’
forums as in Section 4. After applying the recommended
correction, SOCAR provides the instances of the corrected
antipatterns.

In the following, we discuss the recommended correc-
tions for two antipatterns that we apply during our ex-
periments, namely for Ignoring MIME Types and Forgetting
Hypermedia. We choose these two antipatterns because they
are the most common REST antipatterns in REST APIs [12],
[73].

5.2 Corrections for Ignoring MIME Types Antipattern

In Algorithm 1, we apply the heuristic for the correction
of Ignoring MIME Types REST antipattern. Figure 6 shows
the evolution of Ignoring MIME Types antipattern along
with recommendation of corrections applied by SOCAR for
Alchemy API. We also obtain similar traces for Facebook
regarding their policy of migration from one version to an-
other. However, no such information is found for Dropbox
in its HTTP response body. Instead, they show such infor-
mation on their developer page. Also, no such information
for YouTube was available as they are running version 3
for the last four years with a large set of change history, as
reported in Table 1.

We remove the Ignoring MIME Types REST antipattern
by modifying the response as per the client’s request. In
Algorithm 1, to remove the Ignoring MIME Types antipattern,
we examine the client’s request and match the response
after adding the resource representation dynamically to the
response, as per the client’s request. For example, if a client

Response:
Request:
Header:=content-type=[application/xml],
Connection=[keep-alive],
Information: [application/xml] acceptable by client:
[[application/xml]]

Path: /calls/url/URLGetTextSentiment

Method name: URLGetTextSentiment

Service name: ca.uqam.sofa.alchemy.api.Alchemy

Response:
Request:
Header: content-type=[application/xml], connection=[keep-alive],
Information: [text/html] is not acceptable by client: [[application/xml]]

Path: /calls/url/URLGetTextSentiment

Method name: URLGetTextSentiment

Service name: ca.uqam.sofa.alchemy.api.Alchemy

Response:
Request:
Header:=content-type=[application/xml],
Connection=[keep-alive],
Information: [text/html] is not acceptable by client: [[application/xml]]

Path: /calls/url/URLGetTextSentiment

Method name: URLGetTextSentiment

Service name: ca.uqam.sofa.alchemy.api.Alchemy

Detection of Ignoring MIME Types Antipattern in 2015 (using SODA-R)

Detection of Ignoring MIME Types Antipattern in 2016 (using SODA-R)

Removal of Ignoring MIME Types Antipattern (using SOCAR)

Fig. 6: Evolution of Ignoring MIME Types REST Antipattern.

demands content type in the XML format and the server
has the content type in JSON format, then SOCAR must
add the content type XML dynamically into the response to
fulfill the client’s request. SOCAR analyses HTTP requests
based on the definitions of antipatterns and the corrections
suggested in Table 6.

5.3 Corrections for Forgetting Hypermedia Antipattern

Algorithm 2 shows the algorithm used for the correction of
the Forgetting Hypermedia antipattern, which occurs in the
absence of URL links in the HTTP response and restricts
the usability of the REST APIs. Hypermedia is the concept
of linking resources, i.e., a set of connected resources when
applications move from one state to another [59]. The links
can point to HTML pages, files, or images [56], on which it
is safe for the clients to fall back. API developers design and
rely on resource URIs but the client might not receive and
follow such links because the server never exposes them
in its responses. The correction of the Forgetting Hypermedia
antipattern also does not work if the server provides status
code in the 4xx and 5xx series, i.e., the absence of URL links
does not matter if the service is temporarily unavailable.
Ideally, REST developers must provide at least one URL link
to avoid this antipattern.

Client developers can ask for resources or links in var-
ious forms, including JSON, XML, or HTML pages. The
responses provided by the server may combine certain
attributes like meta-data or location of links. While process-
ing the response, client developers check each link and its
resource types. The evolution of this antipattern shows the

14

changes in responses in terms of changes in location attribute
or formats in the links provided by the API providers.

5.4 Results

We now discuss the results after applying the SOCAR rec-
ommended corrections for the eight REST antipatterns on 11
REST APIs. For each REST API and analysed URI, we report
(1) the Precision (P) as the total number of validated true
antipatterns with respect to the total number of corrected
antipatterns, i.e., the number of correction recommendations
that are correct and (2) the Recall (R) as the total number of
corrected true antipatterns with respect to the total number
of existing true antipatterns, i.e., the cases where SOCAR
recommended a correction but should not or should have
recommended another correction.

We manually validated every occurrence of the antipat-
terns. The manual validation for the correction of true an-
tipatterns of 204 URIs is effort-prone. Therefore, we choose
a sample size of 134 (70% of the URIs) from 2014 and 2020
to calculate the average precision and recall of SOCAR.

Table 7 reports the URIs analysed for each REST API on
which we applied SOCAR for the correction of antipatterns
for 2014, 2017, and 2020, respectively. It also reports the
numbers of each corrected antipatterns by SOCAR based
on the selected sample data set. Tables 8 and 9 report
the total numbers of antipattern detected by SODA-R and
corrected by SOCAR. Detection(D) ration with respect to the
correction ratio is also reported. SOCAR report an average
precision of 75.90% and recall of 67.72%based on manual
validation.

SOCAR corrected most of the reported antipatterns
based on the operations reported in Table 6. For example,
we collected the correction approach of Ignoring Status Code
antipattern from Bitly and Dropbox. Similarly, the Charlie
Harvey API reports the removal of Ignoring MIME Types
antipattern instances. We did not detect any instances of
Tunneling through GET antipattern in Facebook and YouTube
that helps to refine the correction definition of antipatterns
reported in [59]. We could not find any relative change in
the tunneling antipatterns. The total number of instances
for tunneling antipattern for Facebook and YouTube remain
the same for 2017. In contrast, for Music Graph, Bitly in the
2014 and 2020, the total number of instances for tunneling
antipatterns increased. We studied the trace histories of
Facebook, Ohloh, and YouTube for the corrections of the
Tunneling antipatterns and implemented their corrections
in SOCAR.

SOCAR performs the correction for antipatterns by
adding missing attributes. For example, the Ignoring MIME
Types antipattern is based on a single representation of a
MIME type. If some resources have a single representation,
SOCAR adds other MIME types after analysing the response
dynamically. For example, we add one more resource repre-
sentation, like JSON, if only the XML were used. However,
we do not have physical access to the resources of REST
APIs providers, for which we only can get data from the
response and add a resource representation. Then, we show
this to the client if asked different resource format. For
example, if a client of Facebook API requests MIME type
in XML format but the Facebook API only returns MIME

type in JSON, it is directed to the Ignoring MIME Types
antipattern.

SOCAR corrects all available antipatterns, the results of
which are reported in Table 6. As reported in Table 6, the
correction heuristics used by SOCAR increases the instances
of the Entity Linking, Response Caching, and Content Negotia-
tion design patterns. The complete trace histories of StackEx-
change and YouTube also help in knowing the best practices
used by prominent API providers, and, for example, they
helped us to remove the 12 instances of the FH antipattern in
Dropbox. The recommendations by academia and industry
are also helpful with the use of HTTP methods GET and
POST. Some of the API providers changed the methods used
to call some of their URIs, e.g., from GET to POST, which are
also reflected in our tool.

The instances of IMT antipattern are not corrected by
SOCAR for Facebook and Dropbox. Bitly provide IMT as
XML too, but SOCAR cannot parse the response as per
the client request. Moreover, some of the antipatterns like
BSD are also not corrected because REST API providers
continuously change their changelog and tool need to be
updated for each URI as per the information updated by
the REST API providers. SOCAR must update its catalog of
standardised headers for few URIs, updated in 2020.

6 VALIDATION

We now validate the corrections recommended by SOCAR
with the help of professionals actively involved in develop-
ing REST APIs. We use a questionnaire for this validation.
We discuss in the following the data gathering process,
the online survey and professional developers’ forums, the
developers’ feedback, and the results of the validation.

6.1 Study Design
We prepared an online questionnaire9 to gather and analyse
the developers’ opinion on REST antipatterns. The question-
naire mainly focuses on developers’ needs and understand-
ing of the use of different practices to design REST APIs,
as reported in Table 4. Therefore, the questionnaire seeks
opinion on whether the professional developers support the
proposed definitions while we discuss threats to its validity
in Section 7.4. The final questionnaire contains:

1) An example of each antipattern and its recom-
mended correction along with an example of the
applied correction;

2) A question about the correction definition and its
applied correction to collect whether participants
agree with them;

3) Participants were asked to provide a proposed so-
lution if they did not agree with the proposed
recommendation.

We choose the examples by following the guidelines
presented in Murphy et al.’s book [62]. The survey provides
four key components: (1) problem definition of each antipat-
tern; (2) examples associated to each antipattern; (3) known
implementations in the industry; and, (4) correction rules
implemented in SOCAR. Results are collected and available
online1 with detailed information.

9https://www.surveymonkey.com/r/7VF7NR5

15

TABLE 7: Corrections for the Eight REST Antipatterns.

API Names URIs BSD FH IMT ISC IC MC TTG TTP Precision(P) Recall (R)
Alchemy 9 9 1 2 1 7 0 4 5 29/29 29/29
Bitly 15 14 0 14 0 0 0 2 2 30/32 18/32
Charlie Harvey 12 12 0 0 0 0 0 0 0 12/12 12/12
Dropbox 17 17 14 0 0 8 0 2 4 43/45 31/45
Facebook 21 21 21 21 0 4 0 0 0 46/67 46/67
StackExchange 51 24 0 51 0 0 0 0 0 24/75 22/75
YouTube 17 12 0 14 0 3 0 0 0 12/29 14/29

Avg(P) 75.90% Avg(R) 67.72%

TABLE 8: Antipattern Corrections by SOCAR for 2017.

API URIs Antipatterns Antipatterns D/C
Names Analysed Detected(D) Corrected(C) ratio
Alchemy 9 31 31 100%
Bitly 15 24 24 100%
Charlie Harvey 12 12 12 100%
Dropbox 17 45 45 100%
Facebook 21 64 64 100%
MusicGraph 19 40 40 100%
Ohlo 7 7 7 100%
StackExchange 150 231 231 100%
Twitter 24 78 78 100%
YouTube 14 37 37 100%
Zappos 9 10 10 100%
Total 297 579 579
Detected and Corrected by as per SOCAR recommendations 100%

TABLE 9: Antipattern Corrections by SOCAR for 2020.

API URIs Antipatterns Antipatterns D/C
Names Analysed Detected (D) Corrected (C) ratio
Bitly 10 36 36 100%
Charlie Harvey 12 12 12 100%
Dropbox 5 23 23 100%
Facebook 21 71 71 100%
StackExchange 150 231 231 100%
Twitter 24 22 22 100%
YouTube 14 22 22 100%
Zappos 9 10 10 100%
Total 245 427 427
Detected and Corrected by as per SOCAR recommendations 100%

6.2 Participants

We invited practitioners, e.g., API developers, of major
REST API providers working with REST APIs as well as
students who use, develop, or research REST APIs. We
invited these practitioners by email. We also shared a link
to our questionnaire on known developers forums and on
social media platforms used by the Facebook10, LinkedIn11,
and Twitter12 and even in YouTube, e.g., used by Zappos
and Twitter APIs to reach their developers’ community.

In total, 24 participants completed our questionnaire.
Out of these 24 participants, two are graduate students and
22 are professional REST developers. The survey partici-
pants were also asked to provide their working experience
on software development and REST APIs as depicted in
Figure 7. The complete information on participants and their
responses are also available on our Web site1.Most of the
participants have experience less then 4 years and only four
of the participant have experience grater then 6 years.

10https://developers.facebook.com/community/
11https://www.linkedin.com/company/project-developer-forum-

ltd
12https://developer.twitter.com/en/community

Fig. 7: Participants’ Experience with REST APIs.

1-3 Year

58.33%

4-6 Year

25% 6-10 Year

16.67%

6.3 Results

TABLE 10: Evaluation of the SOCAR based on the Survey.

Antipatterns Agreed Not Agreed Agreement Ratio %
ISC 23 1 95.83%
MC 20 4 83.33%
BSD 22 2 91.66%
FH 23 1 95.83%
IC 22 2 91.66%
TTP 21 3 87.50%
TTG 22 2 91.66%
IMT 22 2 91.66%

Average Agreement Ratio 91.12%

Table 10 reports the average agreement ratio on REST an-
tipatterns correction definitions based on the questionnaire.
The results of the questionnaire are also available online1.

Four professional developers disagreed with the correc-
tion proposed for Misusing Cookies antipattern. They do not
agree with the idea of removing the set-cookie parameters.

Two participants disagreed with our proposed correction
for Breaking Self-Descriptiveness. The reason for using a
standardised header may force the professional developer
to focus on a specific list of headers. This list can be updated
and the client developers need to update the code too. This
increases the maintenance cost associated with the API.

Two of the participants also reported not using “cache-
Control” as “no-cache”. These results match Observation 2,
as the use of Ignoring Caching post has more than 43 thou-

16

sand views on the Stack Overflow. The developers argued
to use the values “private” or “public” with a maximum age
and a specific ETag value.

Four of the Professional developers also did not agree
on the definition of Misusing Cookies as antipatterns to avoid
using cookies in session state. Cookies are used by most of
the major REST API providers by showing the message
based on the the opinion to accept Cookies, but this is
recommended to be used on client system for specific time
interval as per standard guidelines [60].

Two of the participants also prefer to use GET method for
Tunneling Through GET for all sort of actions like creating
,deleting and updating resources. However, for the defini-
tion of Tunneling Through Post, three of developers prefer to
use POST method for server side request for updating and
retrieving resources.

Two professional developers from LinkedIn, YouTube,
and Facebook also did not agree on the use of multiple
MIME types. We get a 91.12% agreement ratio for SOCAR
approach based on the results of survey participants. The
results of the case study provide developers views about
recommended strategies for the correction of REST APIs.
Their feedback also provides evidence that professional
developers recommendations are handled accurately for the
development of SOCAR.

7 DISCUSSIONS

In this section, we further discuss our detection, recommen-
dations for correction, results of their applications, and the
threats to the validity of our results. The following sections
focus on Alchemy, Bitly and YouTube for the following
reasons:

• Some of the APIs do not make available multiple
version history and provide only a single version
running at a time, like Alchemy and YouTube. If
multiple version history is not available, we checked
the online change-logs of the APIs, for example, for
Alchemy, Bitly and YouTube.

• We also want to check whether there is a change in
antipattern instances, especially during a migration
phase or in a new release of some APIs. For example,
the Alchemy API migrated in 2017 from Alchemy to
IBM.

• YouTube has a single version running in the last three
years. The change-log and trace history of YouTube
help to understand the evolution of antipatterns from
2015 to 2020.

7.1 About the Quantitative Study
The quantitative study, and subsequently the SOCAR ap-
proach, depends on the validity and relevancy of the REST
antipatterns. We were interested in observing whether or
not the antipatterns defined in the SOFA framework (SODA-
R) were still relevant and present in recent (versions of)
REST APIs.

Our observational study, through Observation 1, shows
that the eight considered REST antipatterns are still present
in recent versions of REST APIs, as shown in Table 3, in
particular in the rows corresponding to the year 2020.

Yet, the presence of occurrences of these REST antipat-
terns does not mean, per se, that they are still relevant
because developers’ practices have evolved. Observation 2
and Table 4 show that, for the year 2020, StackOverflow con-
tains questions/answers regarding these REST antipatterns,
which seems to show that they are still relevant today.

We did not perform a search for new REST antipatterns
or for updated versions of existing REST antipatterns. For
example, the Ignoring MIME Type antipattern may be cur-
rently becoming obsolete with the advent of JSON and could
be deprecated in favour of a new Non-JSON MIME Type
antipattern “enforcing” the use of JSON as good practice.

Observations 1 to 3 show that the REST antipatterns
considered in this study were still relevant in 2020. Con-
sequently, we leave for future work the identification, defi-
nition, and study of novel REST antipatterns.

7.2 About the Qualitative Study
We validate our correction recommendations with the help
of practitioners who have experiences in developing REST
APIs. In particular, practitioners had the highest concern
regarding the Ignoring MIME Types antipattern. Practitioners
prefer to use a single resource presentation type, JSON.
This dependence on a single resource representation reduces
the accuracy of SOCAR for the correction of the Ignoring
MIME Types antipattern because two of the practitioners
did not consider multiple MIME types important. They also
suggested that client developers should rely on the MIME
types set by the server. They also raised an issue on using
multiple MIME types in multiple formats, as it burdens
server-side developers. We can interpret this as: some an-
tipatterns are actually not antipattern in practice because
developers balance guidelines and costs to implement those
guidelines.

The survey participants also suggested using caching.
However, they did not agree on the recommendation to
set the cache-control attribute to public or private. The
cache-control attribute used in SOCAR comes from the lit-
erature [59]. We also found a difference of opinions for
Tunneling through GET/POST antipattern, which suggests
using HTTP GET request for accessing resources and not to
modify them. Respondents of the survey also left this option
open for API providers and suggested forcing client devel-
opers to use tunneling options based on what is provided
by the servers.

7.3 About the SOCAR Approach
We presented the SOCAR approach to recommend some
corrections or apply other corrections to remove occurrences
of REST antipatterns in REST APIs. We build our approach
on the assumption that we do not have access to the actual
source code of the REST APIs. SOCAR either recommend
corrections that could be implemented by the REST API
developers or perform corrections on responses to protect
clients from the negative impact of these antipatterns.

Hence, SOCAR is really a “shield” against the negative
impact of REST antipatterns for REST API clients and,
when a correction is not feasible on the clients’ sides, a
recommendation system to support REST API developers
in removing some REST antipatterns.

17

SOCAR is but a first step towards the systematic detec-
tion and correction of REST antipatterns in REST API on
the providers’ side. It shows that it is possible to identify
relevant corrections from the detection and evolution of
REST antipatterns and from the community discussions.
It also shows that some REST antipatterns can even be
corrected on the clients’ sides.

We did not apply SOCAR on open-source REST
APIs whose source code is available to correct con-
cretely because we wanted first to assess whether correct-
ing/recommending corrections to REST antipatterns was
feasible and with good precision 75.90% and recall 67.72%.
Section 6 showed that developers mostly agree (at 91.2%)
with the recommendations of SOCAR.

Based on SOCAR, we humbly believe that the commu-
nity interested in improving the quality of REST APIs could
continue collecting corrections to the REST antipatterns
studied in this paper and to other antipatterns. It could then
propose corrections to these antipatterns on both the clients’
and providers’ sides (when possible). It could also curate a
list of open-source REST APIs and use some of these APIs
to validate the corrections on the providers’ sides.

7.4 Threats to Validity
To ensure the reproducibility of our study, we share the
requests, responses, developers’ answers along with all the
definitions of the antipatterns on our Web site1. The survey
is also available online9. The accuracy of SOCAR depends
on the trace histories and the accuracy of SODA-R when
detecting antipatterns.

Construct Validity: Threats related to construct va-
lidity concern the relationship between theory and obser-
vations and the accuracy of the experiment performed to
answer our research questions. To minimise this threat
globally, we applied a mixed-method analysis, i.e., a com-
bination of quantitative and qualitative study.

Quantitatively, we analysed the evolution of 11 REST
APIs by performing the detection of REST antipatterns.
Qualitatively, we analysed developers’ forums and reported
that developers are concerned with the evolution and qual-
ity of their REST APIs.

We relied on SODA-R [12] for the detection of antipat-
terns and for the extraction of traces, which was already
used in 2014 to study traces and antipattern evolution. It
has an average precision of 89.4% and an average recall of
94% for the detection of REST antipatterns.

Construct validity may also be negatively impacted by
the design and administering of our survey, which may have
led participants to agree with our statements for simplicity
and desirability. We must accept this threat and future work
should include a more sound survey, e.g., using Likert
scales, send to more participants.

Internal Validity: Threats to internal validity concern
the factors that may affect our results. We based the defini-
tion of the antipatterns and their corrections on the litera-
ture, both from the academic and developers’ forums.

We also mitigated this threat by asking developers’
opinions about alternative corrections for each antipattern.
However, we understand but must accept that developers’
opinions are subjective and vary with their experiences and
other factors beyond our control.

We use the most relevant tag to extract the developer
opinion from Stack Overflow. There might be a possibility
that some of the problems are also posted with other tags.
We tried to mitigate this threat by studying the latest ques-
tion or posts from StackOverflow about REST [72].

In addition, SOCAR allows users full freedom to change
the correction definitions and–or define their own correc-
tions for specific antipatterns.

External Validity: Threats to external validity concern
the generalisability of the validation results. We recom-
mended corrections for all instances of the detected REST
antipatterns and implemented real-time corrections for com-
mon APIs like Facebook, StackExchange, or YouTube.

SOCAR corrections are based on calls to URIs. Changes
to the URIs or their responses may affect the number of
instances corrected for each REST antipattern. REST API
providers information might also affect the results and accu-
racy of SOCAR. We tried to mitigate this threat by providing
guidelines to run the tool, available on our Web site1.

8 CONCLUSION AND FUTURE WORK

Application Programming Interfaces (APIs) are the soft-
ware, programmatic interfaces that help applications and
databases share different functionalities and data [1]. Web
giants, like Facebook, Google, Twitter, or YouTube, provide
REST APIs to provide access to their resources [2]. Poor de-
sign practices, i.e., antipatterns (as opposed to design patterns)
could be introduced due to API evolution to meet the needs
of both service providers and consumers.

We applied a mixed-method analysis to understand the
evolution of REST APIs and REST antipatterns. Quantita-
tively, we analysed the evolution of 11 REST APIs, including
Facebook, Twitter, and YouTube over five years by comput-
ing changes in request/response data and occurrences of
eight REST antipatterns. Through the quantitative study, we
showed that (1) REST APIs and REST antipatterns evolve
over time. We noticed a high relative change for antipatterns
in APIs from the year 2015 until 2020. For example, there is
an increase in Ignoring MIME Types antipatterns for most
of the APIs since API providers now intend to rely on a
single resource representation, e.g., JSON. Qualitatively, we
analysed developers’ forums and reported that developers
are concerned with the evolution and quality of REST APIs.
Numerous issues related to poor and best REST design
and development practices are reported on professional
developer forums. Thus, there is a need to tackle REST
antipatterns and, thus, assist developers in designing APIs
free of antipatterns.

We developed a tooled approach, SOCAR (Service Ori-
ented Correction of Antipatterns in REST), to recommend
corrections to REST antipatterns, and, where applicable,
remove REST antipatterns in REST APIs. We manually
validated our results based on the instances of detected
antipatterns as compared to the corrected antipatterns. We
also conducted an online survey to mitigate the threat of our
approach and know the opinion of the professional REST
API developers. Most participants agreed on the definitions
of Ignoring Status Code and Forgetting Hyper Media antipat-
terns. Survey results are promising with an agreement ratio
of 91.12%. The opinion from the practitioners and academics

18

involved in REST development helped us to improve the
correction of REST antipatterns in SOCAR with an average
precision of 75.90% and recall of 67.72%.

Work in progress includes mining the trace history of
each change in some REST APIs and create a repository for
these changes. Another work in progress is a study of the
problems faced by client APIs.

Future work includes surveying developers about REST
antipatterns. We want to investigate the number of changes
for each REST URI and analyse which APIs survived for
a longer period. We will use collections of errors reported
for specific REST APIs to correlate changes with antipat-
terns. Using developers’ feedback, we plan to improve our
correction algorithms to fit developers’ expectations. We
will also to add an automated feedback recommendation
and correction system that helps developers to design REST
APIs free from antipatterns and refactor antipatterns auto-
matically. We are also interested in reporting a benchmark
for HTTP status codes and descriptions after collecting
data from different API providers. Future works includes
also identifying novel REST antipatterns, relevant to recent
developers’ practices.

ACKNOWLEDGMENT

The authors thank the professional REST developers who
answered our survey. We also thank the many REST de-
velopers who asked and–or answered questions publicly
on developers’ forums. We are grateful to the graduate
students who manually validated REST APIs requests and
responses. This work was supported by the International
Research Support Initiative Program (IRSIP) and funded by
the Higher Education Commission (HEC), Pakistan. It was
also partly funded by the Canada Research Chair program.

REFERENCES

[1] D. Jacobson, D. Woods, and G. Brail, APIs: A strategy guide. ”
O’Reilly Media, Inc.”, 2011.

[2] D. Bermbach and E. Wittern, “Benchmarking web API quality,” in
16th International Conference on Web Engineering (ICWE). Springer,
2016, pp. 188–206.

[3] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating
Web APIs on the World Wide Web,” in 8th IEEE European Con-
ference on Web Services. IEEE, 2010, pp. 107–114.

[4] D. Renzel, P. Schlebusch, and R. Klamma, “Today’s top” RESTful”
services and why they are not RESTful,” in 13th international
conference on Web Information Systems Engineering, 2012, pp. 354–
367.

[5] F. Bülthoff and M. Maleshkova, “RESTful or RESTless–Current
state of today’s top Web APIs,” in 11th International Conference on
the Semantic Web. Springer, 2014, pp. 64–74.

[6] J. Kopeckỳ, P. Fremantle, and R. Boakes, “A history and future of
Web APIs,” it-Information Technology, vol. 56, no. 3, pp. 90–97, 2014.

[7] A. Demange, N. Moha, and G. Tremblay, “Detection of SOA
Patterns,” in 11th International Conference on Service-Oriented Com-
puting(ICSOC). Springer, 2013, pp. 114–130.

[8] T. Erl, SOA Design Patterns . Pearson Education, 2008.
[9] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, SOA

with REST: Principles, Patterns & Constraints for Building Enterprise
Solutions with REST. Prentice Hall Press, 2012.

[10] D. Bán and R. Ferenc, “Recognizing antipatterns and analyzing
their effects on software maintainability,” in 14th International
Conference on Computational Science and Its Applications(ICCSA).
Springer, 2014, pp. 337–352.

[11] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An em-
pirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension,” in 15th European conference on
Software maintenance and reengineering (CSMR). IEEE, 2011, pp.
181–190.

[12] F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc, “Detection of
REST patterns and antipatterns: a heuristics-based approach,” in
12th International Conference on Service-Oriented Computing(ICSOC).
Springer, 2014, pp. 230–244.

[13] F. Palma, J. Gonzalez-Huerta, N. Moha, Y.-G. Guéhéneuc, and
G. Tremblay, “Are RESTful APIs well-designed? Detection of
their linguistic (anti) patterns,” in 13th International Conference on
Service-Oriented Computing (ICSOC). Springer, 2015, pp. 171–187.

[14] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Towards a
REST Cloud Computing Lexicon,” in 7th International Conference
on Cloud Computing and Services Science (CLOSER), 2017.

[15] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are REST
APIs for cloud computing well-designed? An exploratory study,”
in 13th International Conference on Service-Oriented Computing (IC-
SOC). Springer, 2016, pp. 157–170.

[16] G. Uddin and M. P. Robillard, “How API documentation fails,”
IEEE Software, vol. 32, no. 4, pp. 68–75, 2015.

[17] L. Li and W. Chou, “Design and describe REST API without vio-
lating REST: A Petri net based approach,” in 9th IEEE International
Conference on Web Services (ICWS). IEEE, 2011, pp. 508–515.

[18] C. Rodrı́guez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco,
L. Canali, and G. Percannella, “REST APIs: a large-scale analysis
of compliance with principles and best practices,” in 16th Interna-
tional Conference on Web Engineering (ICWE). Springer, 2016, pp.
21–39.

[19] F. Haupt, F. Leymann, A. Scherer, and K. Vukojevic-Haupt, “A
Framework for the Structural Analysis of REST APIs,” in IEEE
International Conference on Software Architecture (ICSA). IEEE, 2017,
pp. 55–58.

[20] M. Athanasopoulos and K. Kontogiannis, “Extracting REST re-
source models from procedure-oriented service interfaces,” Journal
of Systems and Software, vol. 100, pp. 149–166, 2015.

[21] F. Palma, J. Gonzalez-Huerta, M. Founi, N. Moha, G. Tremblay,
and Y.-G. Guéhéneuc, “Semantic Analysis of RESTful APIs for the
Detection of Linguistic Patterns and Antipatterns,” International
Journal of Cooperative Information Systems, p. 1742001, 2017.

[22] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory
study of the impact of code smells on software change-proneness,”
in 16th Working Conference on Reverse Engineering (WCRE). IEEE,
2009, pp. 75–84.

[23] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of
lexicon bad smells on concept location in source code,” in 11th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM). Ieee, 2011, pp. 125–134.

[24] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based
refactoring,” in 5th European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 2001, pp. 30–38.

[25] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change-
and fault-proneness,” Empirical Software Engineering, vol. 17, no. 3,
pp. 243–275, 2012.

[26] C. Mills, E. Parra, J. Pantiuchina, G. Bavota, and S. Haiduc, “On
the relationship between bug reports and queries for text retrieval-
based bug localization,” Empirical Software Engineering, vol. 25,
no. 5, pp. 3086–3127, 2020.

[27] A. Rathee and J. K. Chhabra, “Mining Reusable Software Compo-
nents from Object-Oriented Source Code using Discrete PSO and
Modeling Them as Java Beans,” Information Systems Frontiers, pp.
1–19, 2019.

[28] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering ap-
proach for code-smells detection,” IEEE Transactions on Software
Engineering, vol. 40, no. 9, pp. 841–861, 2014.

[29] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and
K. Deb, “A robust multi-objective approach to balance severity
and importance of refactoring opportunities,” Empirical Software
Engineering, vol. 22, no. 2, pp. 894–927, 2017.

[30] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, “A
recommendation system for repairing violations detected by static
architecture conformance checking,” Software: Practice and Experi-
ence, vol. 45, no. 3, pp. 315–342, 2015.

19

[31] R. Terra, M. T. Valente, S. Miranda, and V. Sales, “JMove: A novel
heuristic and tool to detect move method refactoring opportuni-
ties,” Journal of Systems and Software, vol. 138, pp. 19–36, 2018.

[32] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to prior-
itize code smells for refactoring,” Automated Software Engineering,
vol. 23, no. 3, pp. 501–532, 2016.

[33] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and Why Your Code
Starts to Smell Bad (and Whether the Smells Go Away),” IEEE
Transactions on Software Engineering, 2017.

[34] H. Liu, X. Guo, and W. Shao, “Monitor-based instant software
refactoring,” IEEE Transactions on Software Engineering, vol. 39,
no. 8, pp. 1112–1126, 2013.

[35] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring sugges-
tions based on historical volatility,” in 15th European Conference on
Software Maintenance and Reengineering (CSMR). IEEE, 2011, pp.
25–34.

[36] T. Mens, G. Taentzer, and O. Runge, “Analysing refactoring de-
pendencies using graph transformation,” Software and Systems
Modeling, vol. 6, no. 3, p. 269, 2007.

[37] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “RefBot:
Intelligent Software Refactoring Bot,” in 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2019, pp. 823–834.

[38] C. Pautasso, “Some REST Design Patterns (and Anti-Patterns),”
2009.

[39] J. Purushothaman, RESTful Java Web Services. Packt Publishing
Ltd, 2015.

[40] J. Sandoval, Restful java web services: Master core rest concepts and
create restful web services in java. Packt Publishing Ltd, 2009.

[41] S. Allamaraju, Restful web services cookbook: solutions for improving
scalability and simplicity. ” O’Reilly Media, Inc.”, 2010.

[42] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly Media,
Inc.”, 2008.

[43] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing
pains: Loosely coupled yet strongly tied,” Journal of Systems and
Software, vol. 100, pp. 27–43, 2015.

[44] R. Daigneau, Service Design Patterns: fundamental design solutions
for SOAP/WSDL and restful Web Services. Addison-Wesley, 2011.

[45] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Revising
wsdl documents: Why and how, part 2,” IEEE Internet Computing,
vol. 17, no. 5, pp. 46–53, 2013.

[46] C. Mateos, J. M. Rodriguez, and A. Zunino, “A tool to improve
code-first web services discoverability through text mining tech-
niques,” Software: Practice and Experience, vol. 45, no. 7, pp. 925–948,
2015.

[47] J. L. Ordiales Coscia, C. Mateos, M. Crasso, and A. Zunino, “Anti-
pattern free code-first web services for state-of-the-art Java WSDL
generation tools,” International Journal of Web and Grid Services,
vol. 9, no. 2, pp. 107–126, 2013.

[48] G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, “Towards
a computer assisted approach for migrating legacy systems to
SOA,” Computational Science and Its Applications(ICCSA) 2012, pp.
484–497, 2012.

[49] J. L. O. Coscia, C. Mateos, M. Crasso, and A. Zunino, “Refactoring
code-first web services for early avoiding wsdl anti-patterns:
Approach and comprehensive assessment,” Science of Computer
Programming, vol. 89, pp. 374–407, 2014.

[50] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Discov-
erability anti-patterns: frequent ways of making undiscoverable
web service descriptions,” in Proceedings of the 10th Argentine
Symposium on Software Engineering (ASSE), 2009, pp. 1–15.

[51] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Revis-
ing WSDL documents: Why and how,” IEEE Internet Computing,
vol. 14, no. 5, pp. 48–56, 2010.

[52] A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, “Search-
based web service antipatterns detection,” IEEE Transactions on
Services Computing, vol. 10, no. 4, pp. 603–617, 2015.

[53] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi,
“Improving multi-objective code-smells correction using develop-
ment history,” Journal of Systems and Software, vol. 105, pp. 18–39,
2015.

[54] H. Wang and M. Kessentini, “Improving Web Services Design
Quality Via Dimensionality Reduction,” in 15th International Con-
ference on Service-Oriented Computing. Springer, 2017, pp. 499–507.

[55] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-
B. Stefani, “A Component-Based Middleware Platform for Recon-

figurable Service-Oriented Architectures,” Software: Practice and
Experience, vol. 42, no. 5, pp. 559–583, May 2012.

[56] F. . Reschke, “Hyper Text Transfer Protocol.” [Online]. Available:
https://tools.ietf.org/html/rfc7230#section-6.1

[57] U. Souichi, “Information processing apparatus and method of
acquiring trace log,” June 2014, uS Patent 8,745,595.

[58] M. Terpolilli, “Trace log rule parsing,” Mar. 26 2013, uS Patent
8,407,673.

[59] S. Tilkov, “Rest anti-patterns.” [Online]. Available: https:
//www.infoq.com/articles/rest-anti-patterns

[60] Saint-Andre, “Best current practises.” [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6648

[61] M. Masse, REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. ” O’Reilly Media, Inc.”, 2011.

[62] L. Murphy, T. Alliyu, A. Macvean, M. B. Kery, and B. A. Myers,
“Preliminary Analysis of REST API Style Guidelines,” Ann Arbor,
vol. 1001, p. 48109, 2017.

[63] S. Sohan, F. Maurer, C. Anslow, and M. P. Robillard, “A study of
the effectiveness of usage examples in REST API documentation,”
in IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC). IEEE, 2017, pp. 53–61.

[64] E. Ozdemir, “A General Overview of RESTful Web Services,” Ap-
plications and Approaches to Object-Oriented Software Design: Emerg-
ing Research and Opportunities, pp. 133–165, 2020.

[65] B. De, “Api management,” in API Management. Springer, 2017,
pp. 15–28.

[66] M. S. Faisal, A. Daud, A. U. Akram, R. A. Abbasi, N. R. Aljohani,
and I. Mehmood, “Expert ranking techniques for online rated
forums,” Computers in Human Behavior, vol. 100, pp. 168–176, 2019.

[67] L. Guerrouj, S. Azad, and P. C. Rigby, “The influence of app churn
on app success and stackoverflow discussions,” in 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 321–330.

[68] P. Arora, D. Ganguly, and G. J. Jones, “The good, the bad and their
kins: Identifying questions with negative scores in stackoverflow,”
in 7th IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). IEEE, 2015, pp. 1232–
1239.

[69] A. Wingkvist and M. Ericsson, “Asked and answered: Communi-
cation patterns of experts on an online forum,” in 36th Information
Systems Research Seminar in Scandinavia, 2013.

[70] Roy-Fielding, “Best current practises.” [Online]. Available:
https://https://datatracker.ietf.org/doc/html/rfc2616

[71] M. Nottingham, “Best current practises.” [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6585

[72] J. Au-Yeung, “Best practices for rest api design.”
[Online]. Available: https://stackoverflow.blog/2020/03/02/
best-practices-for-rest-api-design/

[73] F. Palma, N. Moha, and Y. Guéhéneuc, “UniDoSA: The Unified
Specification and Detection of Service Antipatterns,” IEEE Trans-
actions on Software Engineering, vol. 45, no. 10, pp. 1024–1053, 2019.

[74] B. Walter and T. Alkhaeir, “The relationship between design
patterns and code smells: An exploratory study,” Information and
Software Technology, vol. 74, pp. 127–142, 2016.

https://tools.ietf.org/html/rfc7230#section-6.1
https://www.infoq.com/articles/rest-anti-patterns
https://www.infoq.com/articles/rest-anti-patterns
https://datatracker.ietf.org/doc/html/rfc6648
https://https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6585
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/

	Introduction
	Related Work and Background
	Studies on REST Web Services
	Correction of Antipatterns in OO Systems
	Correction of Antipatterns in Web services

	SOFA Framework and SODA-R
	APIs, URIs, Traces, and Trace Histories

	Observational Study
	Subjects of the Study
	Objects of the Study
	Observation 1: REST Antipatterns Exist and Their Numbers of Occurrences Increase with Time
	Observation 2: REST Antipatterns Do Worry API Developers
	Observation 3: REST Antipatterns Are Corrected by Their API Developers
	Alchemy API
	Bitly API
	Dropbox API
	Facebook API
	YouTube API

	SOCAR Approach
	Preliminary Step: Definition of the Corrections
	Step 2: SODA-R to Detect REST Antipatterns
	Step 3: SOCAR to Provide/Apply Heuristics

	Experiments
	Process
	Corrections for Ignoring MIME Types Antipattern
	Corrections for Forgetting Hypermedia Antipattern
	Results

	Validation
	Study Design
	Participants
	Results

	Discussions
	About the Quantitative Study
	About the Qualitative Study
	About the SOCAR Approach
	Threats to Validity

	Conclusion and Future Work
	References

