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Abstract—Typical object-oriented (OO) systems implement several functional features that are interwoven into class hierarchies. In the
absence of aspect-oriented techniques to develop and compose these features, developers resort to object-oriented design and
programming idioms to separate features as well as possible. Given a legacy OO system, discovering existing functional features helps
understand the design of the system and extract these features to ease their maintenance and reuse. We want to discover candidate
functional features in OO systems. We first define functional features and then discuss the footprints that such features are likely to
leave in an OO system. We identify three such footprints: (1) multiple inheritance, (2) delegation, and (3) ad-hoc. We develop a set of
algorithms for identifying such footprints in OO code and implemented them for the Java language using Eclipse JDT. In this article, we
present the algorithms, and the results of applying the corresponding tools on five open-source systems: FreeMind, JavaWebMail,
JHotDraw, JReversePro, and Lucene. Our experimental results show that: (1) the different algorithms can identify interesting and useful
candidate functional features in OO systems, (2) they can identify opportunities for refactoring, and (3) they are complementary and
could help developers.

Index Terms—Functional feature, feature discovery, multiple inheritance, delegation, formal concept analysis.

F

One who can do more can do less.
—Aristotle

1 INTRODUCTION

NONTRIVIAL software systems typically implement
many functional requirements. For example, a

personnel-management system might include a payroll func-
tionality, dealing with salary scales and hours worked, and
a production-planning functionality, dealing with qualifica-
tions and availability. Object-oriented programming (OOP),
which modularises functionality around the data, would
lead to these two functionalities being interwoven in the
same classes. Indeed, if techniques to declare and com-
bine cross-cutting concerns (CCCs), i.e., aspect-oriented pro-
gramming (AOP), are not used, then a single class, e.g.,
Employee, would include separate attributes and methods
to support both payroll and production planning.

Given an OO legacy system, developed pre-CCC tech-
niques, it is necessary to (re)discover features that are inter-
woven in the same class hierarchy (1) to understand the
system, (2) to evolve the system, and–or (3) to migrate the
system to new technologies, possibly using CCC techniques.
We focus on functional features, which are functionally-cohesive
and (relatively) self-contained domain functionalities. The func-
tional features of interest are similar to subjects in Harrison
and Ossher’s subject-oriented programming [1] because they
pertain to the user domain. They are different from im-
plementation CCCs, which can be implemented using AOP
techniques, such as AspectJ for Java [2], because these
pertain to the implementation, e.g., logging.

A functional feature can be defined as a triple 〈 name,
intension, extension 〉 [3, 4], in which name is a shorthand
for the feature (e.g., payroll), intension is some more or less
precise description of the feature, e.g., formal specifications

or textual description (e.g., a feature request or bug report),
and extension is the set of program elements, e.g., fields, and
methods that implement that feature.

Most existing feature-identification approaches deal
with locating a feature extension given its intension and
locating a feature can be seen as the function: intension →
extension [4]. They use various analysis techniques ranging
from static analysis to dynamic analysis to natural lan-
guage processing, or a combination thereof. Each of these
techniques has limitations [5], among which: (1) they need
developers’ inputs, (2) they require custom parameterisation
and (3) many focus on implementation CCCs.

Our work deals with discovering potential functional
features in existing systems: identifying a potential exten-
sion in the source code and finding its intension, which
can be seen as the function extension → intension. To avoid
shortcomings of analysis techniques, we use static code
analysis but rely solely on class and method signatures
to discover features. Thus, our approach does not require
developers’ input and complex method-call analyses.

Our approach to discovering functional features in OO
legacy systems includes five steps:

1) Define the OO idioms that developers typically use to
implement functional features.

2) Characterise the footprints of these idioms in OO
source code.

3) Develop algorithms that can identify these footprints
in some Java source code.

4) Apply these algorithms to a sample of OO systems
with different sizes, quality and maturity.

5) Assess manually whether the uncovered footprints
correspond to functional features in the systems.

In Step 1, we distinguish between deliberate and ad-
hoc OO idioms for implementing functional features. De-
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liberate idioms correspond to the case in which developers
(1) recognised a cohesive set of program elements as a
functional feature, (2) packaged this feature in distinct OO
package-level constructs, i.e., classes and interfaces, and (3)
used OOP techniques to integrate it with the rest of the
code—typically using various flavours of inheritance and
delegation. The footprints of deliberate idioms are relatively
easy to characterise (in Step 2) and recognise (in Step 3),
although results of Steps 4 and 5 show that they are not as
straightforward as they might first appear.

Ad-hoc idioms correspond to the more interesting case in
which developers missed or failed to recognise either the
functional cohesion of a set of program elements or their
reuse potential, which would warrant separate packaging.
The idioms describe sets of program elements at the class
level, i.e., fields and methods, that appear together in multiple
locations in the system. The presence of such an idiom, given
proper definitions of togetherness and multilocation (in Step
2) is an indication of the presence of a functional feature.

In Step 2, we describe the footprints of deliberate and ad-
hoc idioms in OO source code. We choose to consider only
class definitions, i.e., field and method declarations, excluding
method bodies for theoretical and practical reasons. Theoret-
ically, functional features should not depend on particular
implementation details, i.e., method bodies, but only on the
implemented concepts, i.e., method signatures. Practically,
we reduce the complexity and increase the applicability of
our approach by considering only method signatures: we
reduce the “search space” (possibly at the cost of precision,
see Section 9), while increasing applicability to systems for
which source code is unavailable, in one format or another
(text or bytecode).

In Step 3, we propose algorithms to identify occurrences
of deliberate and ad-hoc idioms. While some idioms are
quite straightforward to identify, others require the use
of Formal Concept Analysis (FCA) with which we define
togetherness, as belonging to the same class sub-hierarchy
and multilocation, as being two or more locations that are
not hierarchically related. We present the definitions of FCA
and our encoding of class hierarchies in concept lattices in
Section 2 and our use of these concept lattices to discover
functional features in Section 6.

In Steps 4 and 5, we apply our algorithms to a sample
of OO legacy systems. Our results (Sections 7 and 8) show
that:

• Our algorithms can identify all of the occurrences of
deliberate idioms.

• Our algorithms can identify occurrences of the ad-
hoc idiom and thus discover functional features that
developers missed, including in mature Java sys-
tems, such as JHtotDraw.

• Our algorithms provide valuable insights into the
implementation of the analysed systems, no matter
the quality or importance of the discovered features.
These insights represent refactoring opportunities to
improve the local designs of the legacy systems if not
their global designs [6].

Section 2 describes and compares related work, intro-
duces FCA, and presents an encoding of class hierarchies
in concept lattices. It also introduces the systems on which

we apply our algorithms. Section 3 illustrates and contrasts
three main idioms to discover functional features, called
multiple inheritance, delegation, and ad-hoc. Sections 4, 5, and 6
describe our approaches to detect these idioms. They follow
Steps 1 to 5 of our approach, with matching subsections.
Sections 7 and 8 describe the qualitative and user validations
of our approach and tool. Section 9 discusses our definitions,
algorithms, and detection results as well as threats to their
validity. Section 10 concludes with future work.

2 BACKGROUND

We now discuss previous work and briefly introduce FCA
before describing our encoding of OO source code into
concept lattices, used in Section 6.

2.1 Related Work
Large software systems typically implement a tangled web
of functional features and maintaining such systems is no-
toriously difficult. Researchers have long been interested in
helping developers identify these features and, when those
features are known, circumscribe them in the source code.
Work on code slicing (e.g., [7]), feature identification (e.g.,
[8]), concept assignment (e.g., [9]) has been ongoing for over
to thirty years (see e.g., [4, 5]).

Work on features can be divided into many ways. For
this article, we observe two major categories:

1) Feature Location: work that aims at locating known
features that a system is known to have (e.g., [9,
10, 11, 12]). The intension of a feature is known, its
name may/may not be known but is not relevant,
and the purpose is to find its extension. It can be
seen as the function: intension→ extension [4].

2) Feature Discovery: work that aims at discovering
unknown features in a system (e.g., [13]). The ex-
tension of a feature is available, if identified, in the
source code and the purpose is to find its intention
and possibly give it a name. It can be seen as the
function: extension→ intension.

Many feature-identification works deal with the first
problem. Our work fits in the second category: discovering
potential functional features in existing systems.

2.1.1 Feature Location
Works on feature location and feature discovery used one of
the following analyses or combinations thereof:

• Static analysis of the source code of systems, see
e.g., [14]: it assumes that the program elements that
implement a feature are functionally- and control-
dependent (one element calls, or references, another).
Thus, given an element known to participate in a
feature, sometimes referred to as a seed, forward or
backward references provide most program elements
participating in the feature.

• Dynamic analysis of execution traces of systems, see
e.g., [10, 12, 15, 16, 17]: it recognises that finding a
seed program element is difficult and that, given a
seed, static analysis returns more program elements
than are really exercised when executing a feature.
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An execution trace contains the program elements
really needed for a feature, including those without
statically-analysable references.

• Natural language processing techniques on the arte-
facts composing a system, see e.g., [12]: they assume
that developers choose program identifiers reflecting
the features. They match textual descriptions of an in-
tension with textual information from the source code
possibly implementing this intension. They expect
that the function of program elements is reflected in
their identifier and comments.

Each one of these techniques has its limitations [5].
Modern programming languages, with late or dynamic
binding, reflection, and frameworks make the static analysis
of systems difficult [18]. Execution traces are complicated to
obtain [4], especially in multi-tier systems [17], and depend
on user inputs. Natural language processing techniques
suffer from the ambiguities of natural languages and incon-
sistencies in choosing identifiers [12].

Many feature-location works use a combination of tech-
niques, which were shown to yield better results than single
techniques alone, e.g., [4, 19]. They require varying degrees
of developers’ input, especially when addressing feature
location, i.e., intension→ extension.

Recent work has addressed feature location in relation to
the identification of services and microservices. Jin et al. [20]
proposed Functionality-oriented Service Candidate Identi-
fication (FoSCI), an approach that uses mainly execution
traces to discover functional features. While execution traces
can reflect precisely a system usage, they cannot completely
reflect the system due to the (usually) small coverage of any
scenario. Therefore, we choose to use the source code of
systems rather than execution traces.

2.1.2 Feature Discovery
Feature discovery has been the topic of less research work
than feature location. Some works have been proposed
in relation to software product lines, to create such lines
from a set of systems, e.g., [21], albeit manually. They also
considered the recovery of feature models, e.g., [22]. However,
to the best of our knowledge, all these works use manual
approaches to discover features in some related systems
[23]. (Semi-)Automated approaches all use some form of
clustering techniques, e.g., [24, 25].

Yet, other works discussed or proposed feature discov-
ery in the context of legacy systems and software mod-
ernisation, e.g., challenges of extracting business rules [26]
or using slicing to identify components [27, 28]. They also
propose to combine existing static and dynamic techniques
with visualisation techniques [29]. Yet, our recent survey
of service identification in legacy systems showed that
such approaches are still in their infancy and that novel
approaches are needed [30].

In a preliminary work [31], we tried static slicing to
extract self-contained code slices within class hierarchies but
obtained mixed results. Notwithstanding the inherent diffi-
culties of inter-procedural flow analysis within the context
of object-oriented languages with reflective capabilities such
as Java, the quality of the slices depended almost entirely on
the difficult, subjective selection of program entry points.

In another preliminary work [32], we studied the dis-
covery of features that should have been implemented via
multiple inheritance but could not due to the program-
ming languages of the legacy systems, e.g., Java. We also
considered features implemented via aggregation and state
multiplication. We proposed tailored algorithms to discover
associated features and applied them to three Java systems.
We showed that it is possible to discover some features but
that a more thorough study of their footprints and more
systematic algorithms are necessary. We propose such a
study and algorithms in the following.

2.2 Formal Concept Analysis

FCA is an automatic classification technique that has been
used extensively for feature discovery, e.g., [10, 16, 33, 34, 35,
36, 37]. We briefly present it in the following and interested
readers can refer to previous work [38, 39, 40] for in-depth
explanations. FCA allows the construction of conceptual
abstractions, or (formal) concepts, out of a collection of
individual elements, described by their properties.

Concepts emerge from a (formal) context K = (E,P, I)
where E is the entity set (formal objects), P the property set
(formal attributes), and I (the incidence relation) associates
E to P : (e, p) ∈ I when entity e has property p. Figure 1
provides an example of a context, on the right, where enti-
ties are classes (listed vertically) and properties are methods
(listed horizontally) from the class diagram shown on the
left. Pairs that belong to the incidence relation are denoted
by a × otherwise they are empty.

Any entity set X ⊆ E has an image in P defined by
XI = {p ∈ P | ∀e ∈ X, (e, p) ∈ I}. Symmetrically, any
property set Y ⊆ P has an image inE defined by Y I = {e ∈
E | ∀p ∈ Y, (e, p) ∈ I}. In the example, if X = {c1, c4} then
XI = {m1}, i.e., m1 is the only common method to both c1
and c4. However, for Y = {m1}, Y I = {c1, c2, c3, c4}, i.e.,
m1 is shared by all of c1, c2, c3, and c4.

A concept is a pair (X,Y ) where X ⊆ E, Y ⊆ P
are such that XI = Y and Y I = X . Intuitively, (X,Y )
is a concept if Y is the set of all properties that are
common to the elements of X , and if there are no other
objects outside of X that has all the properties in Y .
In Figure 1, ({c1, c3}, {m1,m2}) is a concept, and so is
({c2, c4}, {m1,m3}) but not ({c1, c4}, {m1}). X and Y are
called the extent and the intent of the concept, respectively,
denoted, for a concept c by ext(c) and int(c).

The specialisation between concepts corresponds to ex-
tent inclusion or, conversely, intent containment. It is a
partial order that, furthermore, represents a complete lattice,
the concept lattice L of the context. Figure 2 (on the left)
shows the concept lattice of the context from Figure 1.
In that lattice, the concept ({c1, c3}, {m1,m2}) (Node 4©)
specialises the concept ({c1, c3, c6}, {m2}) (Node 1©).

Given the choice of the incidence relationship in the exam-
ple, which associates to each class its methods, the “clus-
tering” provided by the concept lattice groups together the
classes that define the same sets of methods. In the example
in Figure 1, several methods are defined by multiple classes
and, to the extent that their implementations are similar
or identical, the resulting clustering may suggest a more
efficient organisation.
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`````````̀Classes
Methods

m1() m2() m3() m4() m5()

C1 × × ×
C2 × × ×
C3 × ×
C4 × ×
C5 ×
C6 ×

Fig. 1. Left: Classes and their methods. Right: Context of classes × methods.

I={} 
E={C1, C2, C3, C4, C5, C6}

I={m2()} 
E={C1, C3, C6}

I={m1()} 
E={C1, C2, C3, C4}

I={m3()} 
E={C2, C4, C5}

I={m1(), m2()} 
E={C1, C3}

I={m1(), m3()} 
E={C2, C4}

I={m1(), m2(), m4()} 
E={C1}

I={m1(), m3(), m5()} 
E={C2}

I={m1(), m2(), m3(), m4(), m5()} 
E={}

1 2 3

4 5

6 7

I={} 
E={C1, C2, C3, C4, C5, C6}

I={m2()} 
E={C1, C2, C3, C6}

I={m1()} 
E={C1, C2, C3, C4}

I={m3()} 
E={C1, C2, C4, C5}

I={m1(), m2()} 
E={C1, C2, C3}

I={m1(), m3()} 
E={C1, C2, C4}

I={m1(), m2(), m3()} 
E={C1, C2}

I={m1(), m2(), m3(), m4(), m5()} 
E={}

9 5 8

4 6

7

2

I={m1(), m2(), m3(), m4()} 
E={C1}

I={m1(), m2(), m3(), m5()} 
E={C2}

0 3

1

Fig. 2. The concept lattices of the contexts in Figure 1 (on the left) and Figure 3 (on the right).

For example, the method m1 is defined in c1, c2, c3, and
c4. Node 2© in Figure 2 captures this “sharing” and sug-
gests creating a class with just m1, which would have two
“subclasses”, Node 4© and Node 5©, inheriting methods m2
and m3, respectively, from Node 1© and Node 3©. Thus, the
lattice in Figure 2 suggests reorganising the class hierarchy
in Figure 1 into seven classes, represented by Node 1© to
Node 7©, in which the five methods are declared only once.

This example illustrates the application of FCA to class
hierarchy refactoring [39], [40]. FCA has been used exten-
sively in software-engineering research (see e.g., [10, 16, 35]).
In particular, FCA has been used to detect features within
variants of a software product line, e.g., [36, 37].

2.3 FCA Encoding of Program Elements

The example of the previous section showed one potential
“encoding” of a class hierarchy, i.e., associating each class
with its methods. It illustrated the use of the resulting lattice
for maximal refactoring. Another FCA-based method could
exploit a different relationship within the class hierarchy to
draw different inferences useful to another application.

In our study, we use FCA to detect occurrences of the
ad-hoc idiom to further discover functional features from hi-
erarchies, where several of those are interwoven. This idiom
is a symptom of developers failing to recognise a functional
feature, defined as a cohesive set of code elements.

In the following, we choose to consider public methods
and attributes as the elements of interest, which we encode
using parts of their declarations. For a method, we use its

name, and a list of the types of its arguments in order of
appearance (together called its signature). For an attribute,
we use its type and name.

We define togetherness to mean “occurring within the
same class sub-hierarchy” and multilocation as “occurring
in two sub-hierarchies that are not hierarchically related”,
i.e., such that one sub-hierarchy is not included in the other.
We provide justifications for these definitions of togetherness
and multilocation in Section 6.

For now, we show the context and the lattice correspond-
ing to these definitions of togetherness and multilocation
and of a relationship that we call reverse inheritance. Figures 3
and 2 show the reverse-inheritance context and lattice, re-
spectively, for the class hierarchy in Figure 1. Rows denote
class sub-hierarchies with root c as opposed to class c.
Consequently, rows for c1 and c2 now include m3, from c5,
and m2, from c6, respectively. Figure 2 puts side-by-side the
lattices obtained from the relation defined in the previous
Section 2.2 and from the relation of reverse-inheritance.

In the reverse-inheritance lattice, in Figure 2 on the
right, we identify {m1, m2, m3}, {m1, m2}, {m1}, {m1, m3},
{m3} and {m2} as candidate functional features because the
extents of the corresponding concepts, Node 2©, Node 4©,
Node 5©, Node 6©, Node 8© and Node 9©, each have
more than two hierarchically-unrelated classes, as further
explained in Section 6.1. We also discuss in Sections 6 and 9
whether a method, declared in many classes, is an interesting
functional feature.
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`````````̀Classes
Methods

m1() m2() m3() m4() m5()

C1 × × × ×
C2 × × × ×
C3 × ×
C4 × ×
C5 ×
C6 ×

Fig. 3. Reverse-inheritance context, whose lattice is shown in Figure 2
(on the right).

2.4 Subject Systems

In the rest of this article, we use the following systems
to evaluate and validate our algorithms. We choose these
systems because they are old and with diverse histories,
thus mimicking legacy systems. They have been used in
previous works, e.g., by Meng et al. [41], Wen et al. [42], or
Molnar and Motogna [43], and included in datasets, e.g., the
Qualitas Corpus [44]. They have different maturity levels
and design quality1, going from version 0.7.1 for FreeMind
to version 5.2 for JHotDraw. They cover a wide range of
domains: a graphical editing framework (JHotDraw), a Java
reverse-engineering tool (JReversePro), a Web-mail client
(JavaWebMail), a free-text search (Lucene), and a mind-
mapping software (FreeMind).

JHotDraw is a graphical user interface framework that
was developed by Erich Gamma and Thomas Eggen-
schwiler based on the Smalltalk original developed by Brant
[46]. From its inception in Smalltalk, through its porting to
Java by Gamma and Eggenschwiler, and its current evolu-
tion as an open-source project, one of the main objectives of
JHotDraw has been to serve as an exercise in good object-
oriented design. Consecutive versions of JHotDraw added
functionalities to the framework, included new applica-
tions based on the framework, and also involved regular
refactorings. We use version 5.2, which contains about 160
compilation units (Java files) and 170 types (user-defined
classes and interfaces).

JReversePro is a Java program for reverse engineering
compiled Java code. It takes as input a Java classfile and
produces one of three outputs, depending on the call param-
eters: (1) the class constants pool, (2) the class disassembly,
and (3) the class decompilation. JReversePro is relatively
small with 85 classes and interfaces, and about 12,000 lines
of code. It does not use outside libraries, except for the
standard Java library. Unlike JHotDraw, which has seen the
contribution of many designers, JReversePro appears to be
essentially the work of its creator.

JavaWebMail is a servelet-based Java Web e-mail client
that can connect to IMAP or POP e-mail boxes. The version
that we use, JavaWebMail 0.7, dates back to 2002. The next
version (1.0.1) was released in October 2008 and seems to be
the work of a single developer. The system was later rewrit-
ten completely in 2014 (version 2.0 and beyond), with minor
versions coming out regularly since. Like JReversePro, Java
WebMail 0.7 seemed to be the work of its creator(s).

Lucene is a Java-based text-search engine library devel-
oped under the Apache Foundation. Lucene is used by

1. Although version numbers are somewhat arbitrary, others noted
that increasing numbers should reflect increasing maturity, e.g., [45].

hundreds of open-source projects, Web applications, com-
mercial products, and Web sites, including AOL, Apple,
CodeCrawler, Comcast, Eclipse, IBM, and JIRA. The latest
release, 8.7.0, was released in November 2020. The version
that we use in our experiments is version 1.4 from 2004.

FreeMind is a mind mapping tool. A mind map is a
graph whose nodes represent concepts or ideas, and whose
links represent associative relationships between those con-
cepts/ideas; a sort of an informal semantic network. Mind
maps, and FreeMind, evolved over the years to include
search functionality, links to other sources, etc. We use ver-
sion 0.7.1. The latest production version, 1.0.1, dates back to
April 2014. FreeMind appears to have five main developers,
with many other contributors.

Table 1 provides some quantitative data about these sys-
tems. Column “Comp. Units” is the number of compilation
units, i.e., Java source files. Column “Types” contains the
numbers of distinct classes and interfaces. The authors of
FreeMind used extensively member/local classes, hence, the
number of types greatly exceeds that of compilation units.

TABLE 1
Some metrics for the chosen OO systems.

Systems #LOCs #Comp. Units #Types #Methods
FreeMind 0.7.1 65,490 92 198 4,785
JavaWebMail 0.7 10,707 111 115 1,079
JHotDraw 5.2 9,419 160 171 1,229
JReversePro 1.4.1 9,656 83 87 663
Lucene 1.4 15,480 160 197 1,270

3 PROBLEM FORMULATION AND EXAMPLES

In the absence of programming language-level constructs
to represent functional features in program units that can
be developed, maintained, and composed at will (aspect-
oriented programming languages propose such constructs,
e.g., static or dynamic aspects [2]), developers will resort
to traditional OO design idioms to package and compose
functional features. Thus, we want to discover such func-
tional features in the source code of object-oriented software
systems, using static analyses and FCA, independently of
whether developers (1) knew about these functional features
and (2) implemented them separately from one another.

Based on our review of the literature and experience
with the development and analyses of software systems,
we identified three scenarios that developers follow when
implementing functional features:

• Scenario 1: multiple inheritance, whereby each func-
tional feature is represented using its own class hier-
archy, and a class combining several features inherits
from the corresponding class hierarchies.

• Scenario 2: delegation, in which a separate class hier-
archy represents each functional feature, which are
combined by aggregation and called by delegation.

• Scenario 3: ad-hoc implementation, when developers
have missed useful/reusable functionalities, for ex-
ample when the same functionality was, inadver-
tently, coded several times in a system.

In Scenarios 1 and 2, developers took care to (1) develop
and package functional features as classes or interfaces, with
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their own class or type hierarchies and (2) compose them
with other features, where needed, using either multiple
inheritance or aggregation. Recognising such classes and
interfaces in legacy code is useful, to identify reusable pieces
of code and report existing functional features. However,
most OO programming languages–including Java–do not
support multiple inheritance, or delegation in the true sense
(only the Self2 language supports true delegation). Conse-
quently, we resorted to emulations of multiple inheritance
and delegation with the constructs of Java language (see
Sections 3.1 and 3.2).

In Scenario 3, developers, possibly novices/possibly due
to lack of time, failed to (1) recognise a set of related pro-
gram elements as being a distinct functional feature and (2)
package them so that they can be composed. This scenario
is similar to code cloning, in which a subset of program
elements is copied and used in a different context [47, 48].
Yet, it differs from code cloning in granularity: instead
of cloning statements across methods or methods across
classes, it pertains to “cloning” sets of related program ele-
ments across classes/packages. This scenario describes the
ad-hoc implementation of functional features. It is recognised
by the multiple occurrences of a set of program elements
scattered in different parts of a legacy system.

When analysing legacy systems, we do not know be-
forehand which of the above scenarios were used by de-
velopers to embody functional features. However, both the
deliberate emulations (multiple inheritance and delegation)
and the non-deliberate implementation (ad-hoc) of functional
features have a recognisable footprint at the interface level
of a class, i.e., visible without parsing method bodies. We
hypothesised that the occurrence of such footprints in legacy
code may be indicative of the presence of reusable func-
tional features (candidate features). Consequently, both the
presence of distinct functional features and the techniques
(emulations) used to compose them are hypotheses to be
tested by applying our algorithms.

Different functional features within the same legacy
system may have different maturity levels: the mature
ones may have been implemented in separate abstractions
(classes and interfaces) whereas the less mature/emerging
ones appear as multiple occurrences of the same sets of
program elements. Thus, functional features are worth iden-
tifying, both for; a) deliberate ones to gain a better un-
derstanding of the structure of the code, and b) ad-hoc
ones to suggest refactorings that will enhance the program
maintainability.

To validate our hypotheses, we:

• Develop algorithms that help recognise the foot-
prints in legacy software.

• Evaluate the candidate features identified by the
algorithms for their relevance using three methods:

1) Our own evaluation, by studying thoroughly
a sample of the tested software systems (JHot-
draw, JReversePro).

2) A user evaluation, by conducting a controlled
experiment with independent users.

3) A comparison of our candidate features with
those of a comparable technique.

2. https://selflanguage.org/

We now illustrate the three scenarios with simple exam-
ples. In these examples, we use three relationships: class
inheritance (white triangle, solid line), type implementa-
tion (white triangle, dashed line), and aggregation (white
diamond, solid line). Among the possible use relationships
[49] of association, aggregation, and composition, we use
aggregation relationships to illustrate that developers may
want to express conceptually a composition but that they can
only implement practically an aggregation.

3.1 Scenario 1: Multiple Inheritance

Fig. 4. Implementing functional features using multiple inheritance.

An object-oriented technique for composing reusable
features is multiple inheritance. If a developer wants to
develop a class MyClass that combines, uses, and–or offers
two independent functional features, implemented by two
classes C and E, then she makes MyClass an extension of
classes C and E, as illustrated in Figure 4.

However, for many reasons outside of the scope of
this article, e.g., [50, 51, 52], few OO languages support
implementation/class-level multiple inheritance, e.g., C++, as
opposed to type-level multiple inheritance, e.g., Java. Many
OO languages choose to offer single-class inheritance and
interface multiple inheritance, like Java with its interfaces
to specify that a class implements several, hierarchically-
independent types (which is the language of the subject
systems presented in Section 2.4).

Developers nonetheless think in terms of multiple in-
heritance because it is often natural with respect to the
application domain, for example, a PartTimeStudent con-
ceptually is a Student and a Worker. However, developers
must implement the domain concepts using single-class
inheritance and multiple interface inheritance, which are the
scenarios that we want to identify.

Regarding feature discovery, this scenario is less interest-
ing because, in Java, it corresponds to the use of interfaces to
describe and compose features. We only succinctly discuss
this scenario in the following.

3.2 Scenario 2: Delegation
This scenario corresponds to a situation where a class A,
which must implement two functional features embodied
in classes B and C , references an instance of each class, to
which it delegates the corresponding behaviour. Delegation
in OO programming languages has a precise meaning: the
delegate/component executes its methods in the context of



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

the delegator/aggregate. However, some programming lan-
guages, like Java, have limited support for true delegation,
which may lead to the fragile-base class problem [53]. In
the following, we use delegation to mean a combination of
aggregation and method forwarding.

Figure 5 shows two idioms for composing functional
features with delegation. We implement the behaviour
of a part-time, immigrant, student as an aggregation of
the behaviours of student, immigrant, and worker. In Fig-
ure 5a, the class ImmigrantPartTimeStudent delegates
to both WorkerImp and ImmigrantImp through its at-
tributes worker of type Worker and immigrant of type
Immigrant and its implementations of the methods of
interfaces Worker and Immigrant.

Figure 5b shows an “undisciplined” or partial use of
delegation. Class ImmigrantPartTimeStudent imple-
ments the behaviour of classes Worker or Immigrant
implicitly, because it does not implement interfaces
Immigrant or Worker, and partially, because the method
isAuthorizedToStudy() from Immigrant is not imple-
mented by ImmigrantPartTimeStudent.

The idiom in Figure 5a is identified by our algorithms
for detecting instances of multiple inheritance in the pre-
vious Section 3.1. Also, other idioms exist for delegation.
We present our algorithm for the discovery of functional
features implemented using delegation in Section 5.

3.3 Scenario 3: Ad-Hoc Scenario

This scenario happens when a developer did not recognise
that a set of program elements forms a cohesive whole that
implements a distinct functional feature and, thus, did not
package them in a construct offered by the OO program-
ming language—interfaces and classes. The program ele-
ments, methods and attributes that implement the feature,
are defined and duplicated in all the classes that support
that functional feature.

We recognise, as explained in further detail in Section 6,
that sets of program elements scattered throughout class
hierarchies contribute to the same functional feature using
togetherness and multilocation: (1) if some program ele-
ments together provide a functional feature, then they are
likely to be defined in the same class and–or its siblings and
(2) if they represent a useful and reusable/reused functional
feature, they are likely to occur in multiple locations in the
class hierarchies of a system.

Figure 6a shows the example of a hierarchy of resources.
This hierarchy divides into two sub-hierarchies containing,
respectively, classes Machinery and ShopFloorStaff,
which both offer some capabilities and a schedule as well
as resources pertaining to machines, stocks, and drivers, be
them machines, items, or people. We want to recognise such
a scenario and discover the functional feature “manufactur-
ing resource” that has some capabilities and a schedule.

The example in Figure 6a, albeit simple, is realistic be-
cause developers could implement such hierarchy without
seeing the commonalities between the two sub-hierarchies
for many reasons: (1) a large/poorly documented class
hierarchy difficult to grasp by any developer, (2) different
developers working on the different sub-hierarchies, pos-
sibly at different times, (3) urgent maintenance requests

precluding refactoring, or (4) novice developers with limited
understanding of the whole hierarchy.

However, it is indeed unlikely to find methods and
attributes with this level of regularity in several sub-
hierarchies of legacy systems, i.e., two homomorphic hierar-
chical slices. We show in Section 6 more realistic examples
and algorithms to discover less regular functional features,
using the FCA encoding introduced in Section 2.3.

4 SCENARIO 1: MULTIPLE INHERITANCE

The identification of candidate features using idioms related
to multiple inheritance was the focus of one of our previous
works [32]. Consequently, we only summarise this previous
work here for the sake of completeness and refer the inter-
ested reader to the original work for all the details.

4.1 Steps 1 and 2: Idioms Definitions
Figure 7 shows the different idioms that developers can
use to implement multiple features. In the first idiom,
in Figure 7a, class PartTimeStudent implements two
interfaces but reuses no implementation. In Figure 7b,
PartTimeStudent inherits from class Student, which
provides a functional feature. It implements an interface rep-
resenting a second functional feature, which it must imple-
ment. In the third idiom, in Figure 7c, PartTimeStudent
combines the functional features of Student and Worker
through a combination of inheritance and aggregation.

These idioms are not exhaustive. A class could imple-
ment three or more features and we could have variations
on the presence and location of the interfaces in the inheri-
tance trees. For example, it is obvious in Figure 7a that class
PartTimeStudent implements two functional features
through the use of two interfaces. Developers could have
defined an interface StudentWorker, inheriting from the
two interfaces and implemented by PartTimeStudent,
giving the impression that it implements only one feature.

4.2 Step 3: Idioms Detection
Algorithm 1 [32] identifies classes that potentially imple-
ment multiple features by implementing multiple interfaces.

It returns the set of classes that implement more
than one interface that is not in the Java class li-
braries, not a marker interface, e.g., org.spring-
framework.stereotype.Controller, and not an inter-
face defining only constants. Such classes are implementing
multiple functional interfaces that may indicate developers’
intent to use multiple inheritance.

4.3 Steps 4 and 5: Detection Results
There are occurrences of the idioms in which the inter-
faces implemented by a class do not represent functional
features: they represent infrastructural features, e.g., service
contracts with infrastructure service like JEE, or Spring;
implementation contracts, e.g., the method compareTo
of interface Comparable; constant pools; or marker inter-
faces without methods but defining some capabilities, e.g.,
Serializable.

Also, the definitions of functional features depend on the
domain. For example, the GUI functionality of JReversePro
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(a) A disciplined case of delegation. One class inherits a functional feature from another, and delegates two additional functional features
to two other classes.

(b) An ad-hoc case of delegation. The fact that ImmigrantPartTimeStudent implements the behaviour of its delegates is only implicit in
its API. Furthermore, it does not implement all the methods of its delegates.

Fig. 5. Implementing functional features with delegation.

(see Section 2.4) is secondary to its main feature, which is
the analysis of Java byte code. Thus, observing that one
of its classes implements the interface EventListener is
less interesting than if this interface appears in a class of
JHotDraw, which is a graphical system.

In JHotDraw, we observed several classes extending
a class and implementing one or many interfaces. For
example, CompositeFigure extends AbstractFigure
and implements FigureChangeListener. Such a com-
bination of class inheritance and (multiple) interface
implementation is common in graphical frameworks
in single-inheritance programming languages, like Java.
FigureChangeListener is a contract that graphical fig-
ures must fulfill to react appropriately to events.

In JavaWebMail and JReversePro, no case of multiple
inheritances corresponds to interesting features. Existing
cases are either utility interfaces (e.g., Iterator), marker
interfaces (e.g., Serializable), or constant interfaces (e.g.,
JwmaInboxInfo).

We do not further discuss the idioms related to multiple
inheritance and their detection and focus on the more inter-
esting scenarios of using delegation and ad-hoc idioms to

represent and combine features.

5 SCENARIO 2: DELEGATION

As summarised in the introduction, our approach for dis-
covering functional features in OO legacy systems includes
five steps. We now describe, for functional features imple-
mented and composed using delegation, the idioms (Steps 1
and 2) in Section 5.1, algorithms (Step 3) in Section 5.2, and
results (Steps 4 and 5) in Section 5.3.

5.1 Steps 1 and 2: Idioms Definitions

Figure 5 showed two idioms for composing func-
tional features with delegation: (1) when the delegator
PartTimeImmigrantStudent explicitly implements the
interface of the delegate, in Figure 5a, and (2) when it does
not, in Figure 5b. The first is an aggregation-based “em-
ulation” of multiple inheritance, which was illustrated in
Figure 7c. Advantages of this idiom include assignment com-
patibility, i.e., we can use a PartTimeImmigrantStudent
object where an Immigrant or Worker is expected.
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(a) Ad-hoc implementation of a functional feature.

(b) Incidence relation based on Figure 6a: class attributes patterns.

ClassX capabilities 
schedule 

assemblyLine 
licenseClass

I

... ...
... ...

(c) New incidence relation based on Figures 6a and 6b: considering the sub-
hierarchy with ClassX as root to include all attributes in and “below” ClassX.

Fig. 6. Example of ad-hoc implementation and incidence relations.

The second idiom, in Figure 5b, does not provide assign-
ment compatibility but better control of the delegation. It
allows choosing which behaviour of the delegate is offered
by the delegator. It also allows adapting the delegate’s be-
haviour to the delegator context by changing its signatures,
e.g., method name or parameter list, for example by using
aggregate-specific default values for some.

5.2 Step 3: Idioms Detection
Notwithstanding changes to method signatures, to detect
instances of delegation in OO code, an algorithm must
contend with scenarios in which the delegator implements
only parts of the public interface of the delegate. In Fig-
ure 5b, ImmigrantPartTimeStudent implements only
one method of Immigrant, i.e., isAuthorizedToWork().

We could use a percentage of the implemented public
interface to discover features based on delegation. When a
class A (1) has a data member b of type B and (2) supports
more than α% of B interface through delegation to b, then
we could qualify these methods and attribute a feature.
However, such a heuristic would likely produce many
false-positive and false-negative features: domain classes

(a) One class implementing two interfaces.

(b) One class inheriting from another, implementing an interface.

(c) One class inheriting from another, aggregating yet another, and
implementing the latter’s interface.

Fig. 7. Implementing functional features with multiple inheritance.

foreach class C in S do
let SUPER(C) = { superclass(C) } ∪ {
implemented interfaces(C) }

foreach element E in SUPER(C) do
if E in Java API then

SUPER(C) = SUPER(C) \ E
end
if E in Marker Interface then

SUPER(C) = SUPER(C) \ E
end
if E in Constants Interface then

SUPER(C) = SUPER(C) \ E
end

end
if |SUPER(C)| ≥ 2 then

mark C as potentially implementing the
feature in SUPER(C)

end
end

Algorithm 1: Feature discovery with multiple inheritance.

typically have a few domain methods and many utility
methods (constructors, accessors, comparators, etc.). Thus,
a percentage alone is not indicative: the feature depends
on which methods are being delegated. Thus, we introduce
the domain interface of a class C , noted as DOMINT(C), as
the full interface of C , from which we remove constructors,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

accessors, and methods inherited from the Java API (e.g.,
clone(), hash(), toString(), etc.).

The feature also depends on what methods are being
delegated. In Figure 5, the delegator and the delegates are
domain classes3 while a domain class could also delegate to
a utility class. For example, if a Student class has a set
attribute to contain the courses taken by the student, then
set and any of its methods delegated by Student is not a
functional feature of Student.

Our algorithm for discovering functional features based
on delegation considers the methods implemented by
classes and compares them to the methods implemented by
their attributes, disregarding the interfaces that they imple-
ment. In Figure 5, we look for scenarios of ad-hoc delegation
(Figure 5b), which are “weaker” than disciplined delegation
(Figure 5a) to identify both scenarios using Algorithm 2.

foreach class C in S do
let DOMINT(C) = { signature(m) | m is a domain
method of C }

foreach attribute a in C with type(a) not in the
Java API do

let DOMINT(type(a)) = { signature(n) | n is a
domain method of type(a) }

if DOMINT(C)∩DOMINT(type(a)) 6= ∅ then
mark C as potentially implementing the
feature DOMINT(type(a))

end
end

end
Algorithm 2: Feature discovery with delegation.
(signature(·) returns a method signature, type(·) returns the
type of an attribute (i.e., fully qualified name in Java)).

Thus, we considered a pair 〈C, a〉 as a potential func-
tional feature by delegation if the domain interfaces of class C
and attribute a have one or more methods in common. We
also compute the coverage ratio for a 〈C, a〉 as:

coverage =
size(DOMINT(a) ∩DOMINT(C))

size(DOMINT(a))
(1)

with which ratio of 1 means that all the domain methods of
the attribute are implemented by the delegator. A ratio of 1
is too stringent a condition because a class may not need all
the methods of an attribute but it is a useful benchmark.

5.3 Steps 4 and 5: Detection Results

We apply our algorithms to the five subject systems de-
scribed in Section 2.4. Table 2 summarises the results for the
five systems. We manually analyse the discovered candidate
features: all the candidates for JHotDraw, regardless of
coverage, and only those with coverage greater or equal
to 50% for the other systems. The full manual analysis is
available online4.

3. We could rather write, belong to the same domain: if the domain
is GUI, then delegates that are part of Java graphical frameworks, e.g.,
java.awt.* or javax.swing.*, do represent interesting delegations.

4. https://github.com/hafedhmili/featurediscovery
https://www.ptidej.net/downloads/replications/tse23a/

We observe that our algorithm lacks precision for cover-
age greater than 50% for four reasons:

• There are only a few candidate functional features
discovered by our algorithm per system. In particu-
lar, in JReversePro and FreeMind, only 10 candidate
features are found and, because all of them are false
positive, the reported precision values are zero. In
other systems with higher absolute numbers of can-
didate features, precision values are higher.

• We considered an implementation of delegation in
which an attribute of the delegate exists in the del-
egator. We observe candidate features in which this
attribute exists merely to simplify the code, not as
a true delegate, e.g., a class Person that has an
attribute Address address: an address is not a
delegate for Person.

• We do not handle implementations in which col-
lections of attributes are used to represent features.
Generic collections could help identify delegates but
genericity is a recent addition to Java and many
developers/legacy systems use un-typed collections.

• We excluded accessors from DOMINT(C) but ob-
served features in which accessors contribute to some
domain-related computation and should have been
kept in DOMINT(C).

We also observe differences among the five systems. In
JHotDraw, JavaWebMail and, to some extent, Lucene, the
functional features are central to their domains. In FreeMind
and JReversePro, these features relate to GUI aspects, which
are not central to the system functionalities.

We finally observe that delegation is used in many
design patterns to implement features, including Chain of
Responsibility, Decorator, Observer, Proxy, and Strategy.

We conclude that:

• The algorithm of Section 5.2 can discover reusable
functional features created via delegation.

• The output of the algorithm provides valuable in-
sights into the design of the systems, whether the
candidate features are true features or not.

• Short of analysing method bodies, which requires
access to the source code, simple heuristics could
significantly improve its precision.

However, a functional feature may not be represented
intensionally, i.e., as a class or an interface, as in Figures 4, 7,
or 5, but extensionally, i.e., repeated/duplicated in many
classes. Discovering that some program elements embody a
functional feature requires that these elements occur together
(togetherness) in many locations (multilocation).

6 SCENARIO 3: AD-HOC IMPLEMENTATION

We show, for ad-hoc implementations of functional features,
the idioms (Steps 1 and 2) in Section 6.1, algorithms (Steps
3) in Section 6.2, and results (Steps 4 and 5) in Section 6.3.

6.1 Steps 1 and 2: Idiom Definition
Figure 6 shows an example of the ad-hoc idiom and the
incidence relations that we use to discover related candidate
functional features.
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TABLE 2
Numbers and precision of the candidate features composed through delegation.

hhhhhhhhhhhhhhhMetric

Systems JHotDraw
v5.2

JavaWebMail
v0.7

JReversePro
v1.4

FreeMind
v1.4.1

Lucene
v0.7.1

#Cand. with Coverage = 100% 8 38% 2 50% 2 0% 3 0% 32 47%
#Cand. with 50% ≤ Coverage < 100% 7 43% 1 100% 0 N/A 0 N/A 3 33%
#Cand. with Coverage < 50% 26 N/A 13 N/A 2 N/A 20 N/A 43 N/A
Total Cand. with Coverage ≥ 50% 15 40% 3 66% 2 0% 3 0% 35 46%

Figure 6a shows an example of program elements oc-
curring together in multiple locations. The emerging func-
tional feature (intension) is to describe production resources:
a production resource has capabilities, i.e., what it can
do, and a schedule, when it should do it. It divides into
assembly-line resources (both machine tools and people)
and transportation resources (rolling stocks and drivers).

Figure 6b shows an example of the idiom that we want to
discover: (1) a hierarchy fragment, i.e., a class X and its two
subclasses Y and Z and (2) a slice of the hierarchy fragment,
i.e., a subset of its program elements5. A class/interface
hierarchy is a directed graph G whose vertices V are
classes/interfaces and edges E = V × V represent inheri-
tance/realisation relations between vertices. Let PE(v) be the
non-empty set of program elements of a vertex v and P(v)
the path starting from v, i.e., the set of vertices reachable
from v via its edges, transitively. A slice of the program
elements rooted in v ∈ V is S(v) = {PE(v′)|v′ ∈ P (v)}.

To find occurrences of this ad-hoc idiom, we use FCA,
as explained in Section 2.2, by defining a context in which
entities are hierarchy fragments P (v), v ∈ V and properties
are program elements, PE(v). This context is computation-
ally costly. First, given a non-leaf class ClassX, the number
of hierarchy fragments under ClassX is exponential in
the number of classes under ClassX. Second, for a given
hierarchy fragment P (v), v ∈ V , the number of possible
slices S(v) is exponential in the number of program elements
in each class. Indeed, if l, m, and n are the numbers of pro-
gram elements in ClassX, SubClassY, and SubClassZ,
respectively, then there are 2l − 1 non-empty subsets for
ClassX. Thus, there are (2l − 1) × (2m − 1) × (2n − 1)
possible sets. Finally, the matching of slices with one another
is a graph-matching problem and, thus, NP-complete.

However, this encoding is also needlessly restrictive: it
requires the exact same slices to occur at different locations.
We relax the design of both the hierarchy under a class
ClassX in Figure 6b and the program elements in the slices.
Figure 6c shows the reverse inheritance incidence relationship
described in Section 2.3. It associates a root class ClassX
with the union of the program elements of its sub-classes.

With this new incidence relationship, concepts consist
of pairs (V,PE) in which, for each class v ∈ V , the sub-
hierarchy rooted at v has all of the program elements in
PE(v), plus those in PE(v′) for any v′ subclass of v, and
both V and PE are maximal in the sense that: (1) there is
no class outside of V that has all of the elements in PE and
there is no element outside of PE that is common to all
classes in V .

5. The figure shows attributes, but the algorithm also uses methods by
considering their signatures.

At first, we could state that any concept (V, PE), such
that V contains more than one class, suggests that PE
represents a feature. However, considering the example in
Figure 6a, this statement would yield a concept whose
extent consists of the classes {Resource, Machinery,
Personnel, ShopFloorStaff} and whose intent consists
of the program elements {assemblyLine, capabilities,
licenseClass, schedule}. Yet, the intent does not oc-
cur in four independent hierarchy fragments, because three
of those occurrences correspond to nested sub-hierarchies,
which are shown in Figure 8. We conclude that not every
concept with an extension containing more than one class
represents a functional feature: To be valid, the classes that
are in the extent must not be hierarchically related.

Fig. 8. The three occurrences of {capabilities, schedule,
assemblyLine, licenseClass} are not independent.

Thus, before deeming the intent PE of a concept
(V, PE) a potential functional feature, we order the classes
in V using the class–subclass relationship and keep only the
set of minimal classes , e.g., in Figure 6, the original extent
{Resource, Machinery, Personnel, ShopFloorStaff}
is reduced to {Machinery, ShopFloorStaff}.

Conversely, we consider only the intent PE of a concept
(V, PE) that has the largest number of program elements
w.r.t. the classes in V and their subclasses. Indeed, if a set of
program elements has two or more independent occurrences,
which makes it a candidate feature, then a-fortiori any subset
thereof has at least as many independent occurrences. Con-
sequently, some of the subsets could qualify as features of
their own: The criterion here is whether there are further
independent occurrences, i.e., ones that are not subsets of
the respective occurrences of the super-feature.

Figure 9 illustrates a candidate feature and its
sub-features: the set of elements {assemblyLine,
capabilities, licenseClass, schedule} is deemed
a functional feature, because it has two independent
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Fig. 9. A candidate feature induces several candidate sub-features.

occurrences under Machinery and ShopFloorStaff, and
so do the subsets {assemblyLine} and {licenseClass},
which have two independent occurrences each. These
two subsets {assemblyLine} and {licenseClass}
are actually sub-features of the more interesting feature
{assemblyLine, capabilities, licenseClass,
schedule}. To avoid redundancies, we only keep the
features of maximal size: If a candidate feature has a
super-feature with the same number of occurrences, it is
ignored.

6.2 Step 3: Idiom Detection

We identify program elements appearing together at mul-
tiple locations, such as the ones illustrated in Figure 6a, to
discover functional features, by clustering these elements.
We use FCA because it supports the construction of concepts
from collections of classes and their program elements.

Following our encoding of program elements in con-
cept lattices explained in Section 2.3, we have a context
K = (C,M, I), where C is the set of classes, M is the
set of their methods and attributes, and I the incidence
relationship reverse inheritance. A context K associates to
each sub-hierarchy rooted at c all the elements (methods
and attributes) that occur anywhere in the sub-hierarchy.

We extract candidate functional features in three steps:
(1) we build the concept lattice L of K using an incremen-
tal lattice-construction algorithm [54], (2) we traverse the
resulting lattice to identify candidate features, and (3) we
categorise candidate features by computing two measures
for each one of them.

6.2.1 Generating Candidate Features

Algorithm 3 shows how we obtain candidate features. It
takes a concept lattice L as input and outputs a list of
candidate functional features, FeatureList. For each concept
(X,Y ), starting from the level below the lattice top (>L), the
algorithm computes min(X), which removes non-minimal
classes w.r.t. the class–subclass relationship. This removal
leaves only the root classes of the independent occurrences of
Y . If there is more than one such occurrence, |min(X)| > 1,
then it adds the concept to the list of candidate features. It
then looks at each child (X ′, Y ′) of (X,Y ) in L and adds it
to the list of concepts. If its minimal extent, min(X ′), has the

Input: concept lattice L
Output: feature candidates FeatureList
ListConcept← children(>L)
FeatureList← ∅
while ListConcept 6= ∅ do

(X,Y )← extract(ListConcept)
if |min(X)| > 1 then

add ((X,Y ), FeatureList)
foreach (X ′, Y ′) ∈ children((X,Y )) do

add ((X ′, Y ′), ListConcept)
if (|min(X ′)| = |min(X)|) then

remove ((X,Y ), FeatureList)
end

end
end
Algorithm 3: Feature discovery with lattice mining.

same size as the parent’s, min(X), then it removes (X,Y )
from the candidate feature list.

We use FeatureList as input for categorisation and mea-
surement, described in the following subsections.

6.2.2 Categorising Candidate Features

Candidate Feature

Ad Hoc Deliberate

Explicit Interface
Implementation

Explicit Class- 
Subclass Redefinition

Explicit
Aggregation

Full Extent Partial Extent

Full Behaviour Partial Behaviour

... ...

Fig. 10. Categories of candidate functional features.

Once FeatureList is output by Algorithm 3, we analyse it
manually and categorise the candidate features based on the
identified behaviour (the intent component). Figure 10 sum-
marises the categories, which we explain in the following.

First, we divide candidate features in two categories:

1) ad-hoc features correspond to cases where developers
missed that a set of methods (the intent) represented
a cohesive, reusable functionality worth embodying
in a class or interface and, thus, (partly) cloned these
methods in different classes. No relationship exists
between the elements (classes or interfaces) of the extent.

2) deliberate features correspond to cases where devel-
opers recognised that a set of methods represented
a reusable functionality, and codified it into a class
or interface; that class/interface is then somehow
’reused’ in several places, e.g., using some of the
design/coding patterns uncovered by Algorithm 2.
Each candidate feature contains one anchor type,
which is the class/interface that embodies the com-
mon behaviour.
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If a candidate functional feature belongs to the Ad Hoc
category, all of its descendants in the lattice L will also
belong to this category. Indeed, because the extents of the
descendants are subsets of the extent of their parent, then if
no relationship existed between the elements of the extent
of the parent, a fortiori none will be found in a subset
thereof. The converse is not true: A candidate feature may
be deliberate and have descendants that are Ad Hoc. Indeed,
as we travel down the lattice, classes/types are taken out of
extents while methods are added to the intents; if we remove
an anchor type from the extent, then typically6 the remaining
classes/interfaces have no relationship among one another
and, thus, form an Ad Hoc feature.

Although the value of Algorithm 3 lies mainly in identi-
fying ad-hoc features, which correspond to refactoring oppor-
tunities, a finer analysis of the deliberate features provides
additional insights on the design of the analysed systems:
instances of suboptimal refactoring.

Second, we divide deliberate features into three cate-
gories, based on the relationship between the anchor type and
the other elements of the extent, which we illustrate with
examples from JHotDraw. The three categories correspond
to three different reuse idioms: type reuse, implementation reuse,
and aggregation.

1) The case where the common behaviour is embodied
in a Java interface, and the extent consists of that
interface, along with the classes that implement it.
We call this category Explicit Interface Implementa-
tion. An example of such an extent corresponds
to the red box in Figure 11, which contains the
interface Figure with classes that implement it
(AbstractFigure, DecoratorFigure, etc.)7.

2) The case where the common behaviour is embodied
in a Java class, and the extent consists of that class,
often abstract, and its subclasses, which override
some of its methods. We refer to this category as
Explicit Class Subclass Redefinition. An example of
such an extent is the blue box in Figure 11, which
contains AbstractFigure and its subclasses.

3) The case where the common behaviour consists of
a class A, which is then reused as a component in
other classes that expose some of its behaviour. This
category is called Explicit Aggregation. An example
of such an extent is the green box in Figure 11,
which contains Figure (the component) and the
class DecoratorFigure, which has an attribute of
type Figure that it exposes through its API.

Third, we further divide the three previous categories
based on whether the full extent consists of interfaces/classes
satisfying the category definition or only a subset of the
extent satisfies the definition. The latter case occurs when
the candidate feature includes the anchor type and its related
interfaces/classes as well as unrelated classes that also provide
the same subsets of methods. This case can happen, de-
liberately (through cloning) or not (repeated maintenance

6. Not necessarily: The extent of a candidate feature may include
several overlapping partial categories, with their own anchor types, as
illustrated in Figure 11

7. For this example and the next two, the reader can ignore the names
of the coloured bounding boxes.

without proper refactoring to factor common methods).
Thus, we divide each of the three previous categories into
two categories: Full Extent and Partial Extent.

The example for Explicit Interface Implementation in Fig-
ure 11 corresponds to a full extent: The extent consists solely
of the interface Figure and its implementation classes. For
JHotDraw 5.0.2, we found many instances where the extent
consisted of AbstractFigure, some of its subclasses, and
other classes that are not descendants of AbstractFigure.
Such candidate features belong to the Partial Extent category
of Explicit Class Subclass Redefinition. In this case, the classes
that are descendants of AbstractFigure are called related
types (to the anchor type). Thus, the extent of a candidate
feature that is of a Partial Extent category will consist of (1)
an anchor type, (2) related types to the anchor type, and (3)
unrelated types.

Another example from JHotDraw, from the in-
terface implementation category, involves the concept
of animation. Our tool returned a candidate feature
whose extent consisted of the types {Animatable,
AnimationDecorator, BouncingDrawing} and whose
intent is the single method {void animationStep()},
which is the single method of interface Animatable.
Only class BouncingDrawing implements the interface
Animatable. Class AnimationDecorator, which is a
subclass of Decorator, does not implement this interface
either directly or indirectly. However, the method void
animationStep() is present in AnimationDecorator,
which is clearly an oversight.

Fourth, we further divide each one of the three Partial Ex-
tent categories into two categories corresponding to Full Be-
haviour or Partial Behaviour because the previous categories
considered only the extents of the candidate features. Yet,
the intents of the candidate features belonging to a Partial
Extent category may or may not include all the methods
shared between the anchor type and its related types.

6.2.3 Measuring Candidate Features
With the previous categories, the same candidate feature can
satisfy the conditions for several categories as illustrated by
the example of Figure 11, where the same extent, shown in
a black box, matches three categories highlighted by the red,
blue, and green boxes. In addition to being Full Extent, Full
Behaviour Explicit Interface Implementation, this candidate fea-
ture is also Partial Extent Explicit Class Subclass Redefinition,
because the extent contains the interface Figure, which
is not a subclass of AbstractFigure. Idem for Partial
Extent Explicit Aggregation. This is no accident: several of the
design idioms used to package and reuse functional features
do combine aggregation and inheritance; see Sections 3.1
and 3.2.

By definition, the shared behaviour among the anchor
type, e.g., AbstractFigure, and its related types is a superset
of the intent because, together, these classes are a subset
of the extent. We define BehaviourCoverageAnchor Related Types to
measure the relative size between that shared behaviour and
the intent:

BehaviourCoverageAnchor Related Types =

|Intent|
|Shared behavior among anchor and related types|

(2)
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Fig. 11. Example of a candidate feature belonging to the category Full Extent of Explicit Interface Implementation (red bounding box and red anchor
type), whose elements, taken in subsets, belong to the categories Partial Extent of Explicit Class–Subclass Redefinition (in green) and of Explicit
Aggregation (in blue).

The BehaviourCoverageAnchor Related Types of the candidate
feature in blue in Figure 11 is 0.8, which reflects that the
four methods in the intent represent 80 per cent (four-fifths)
of the shared behaviour between AbstractFigure and its
subclasses in the extent.

An example of a candidate feature belonging to the Full
Behaviour category of the Full Extent of Explicit Class Subclass
Redefinition contains the abstract class AbstractFigure
and (some of) its (concrete) subclasses. Its intent consists of
only four methods: connectionInsets(), handles(),
read(StorableInput), and write(StorableOutput)
while AbstractFigure declares 33 methods. The sub-
classes must only redefine these four abstract methods be-
cause AbstractFigure provides a default, working im-
plementations for the other 29. Thus, even when a candidate
feature has a full extent and full behaviour, its intent may
consist of only a subset of the behaviour of the anchor type.

We define BehaviourCoverageAnchor Domain Interface to measure
the coverage of the behaviour in the intent relative to the
behaviour of the anchor type in the extent as follows:

BehaviourCoverageAnchor Domain Interface =

|Intent|
|Anchor type interface|

(3)

A candidate feature node can include several partial
categories. For example, in JHotDraw, a candidate feature
node with extent {PointConstrainer, GridConstrai-
ner, StandardDrawingView} and with intent the single
method {constrainPoint(Point)}, divides into:

• A Partial Behaviour of Full Extent of Explicit In-
terface Implementation with anchor type Point-
Constrainer and related type GridConstrai-
ner.

• A Full Behaviour of Partial Extent of Explicit
Aggregation with anchor type the component
PointConstrainer and related type Standard-
DrawingView.

The BehaviourCoverageAnchor Related Types is 0.33 in the first
partial category because its intent represents one-third of the

shared behaviour between the anchor PointConstrainer
and related type GridConstrainer. For the second par-
tial category, it is 1 because the shared methods coincide
with the intent methods. For both partial categories, the
BehaviourCoverageAnchor Domain Interface is 0.33, i.e., the intent
Point constrainPoint(Point) represents one-third of
the full interface of PointConstrainer.

6.3 Steps 4 and 5: Detection Results

We present some measures of the lattices produced by our
algorithm for the five systems presented in Section 2.4. Then,
we describe the categorisation of the candidate functional
features. We discuss detailed results for JHotDraw and
JReversePro in Section 9.

We distinguish between (1) concepts in the lattices, (2)
candidate features, and (3) candidate features with two or
more methods in their intents, whose numbers are shown in
Table 3. The systems have different designs: there is no cor-
relation between the numbers of concepts and of candidate
features. Table 4 summarises the categories of the candidate
features. The last five columns represent disjoint sets. Table 5
shows the distributions of the different categories.

TABLE 3
Numbers of candidate features for the subject systems.

Systems #Concepts #CF #CF >= 2
FreeMind 251 69 42
JavaWebMail 162 50 29
JHotDraw 394 154 123
JReversePro 105 26 18
Lucene 276 91 64

If we associate a high percentage of Ad Hoc candidate
features with low code factorisation/maturity, then:

1) JHotDraw is the most mature, with only 35% Ad
Hoc candidate features, 38.32% Full Behaviour of Full
Extent, and 26.62% Partial Extent.

2) JReversePro is the least mature, with 92.3% Ad Hoc
candidate features and only 7.6% Full Behaviour of
Full Extent candidate features.
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TABLE 4
Candidature feature categories.

Systems #CF #AD #INT #SUB #AGR #PART
FreeMind 69 32 1 6 6 24
JavaWebMail 50 23 0 5 7 15
JHotDraw 154 54 41 18 0 41
JReversePro 26 24 1 1 0 0
Lucene 91 47 4 23 4 13

CF: candidate functional features
AD: Ad Hoc features

INT: Full Behavior of Full Extent of Explicit Interface Implementation
SUB: Full Behavior of Full Extent of Explicit Class Subclass Redefinition

AGR: Full Behavior of Full Extent of Explicit Aggregation
PART: Partial Extent not included in previous categories

TABLE 5
Distribution of candidate feature categories.

Systems %AD %INT %SUB %AGR %PART
FreeMind 46.38 1.45 8.7 8.7 34.78
JavaWebMail 46 0 10 14 30
JHotDraw 35.06 26.62 11.69 0 26.62
JReversePro 92.3 3.8 3.8 0 0
Lucene 51.65 4.4 25.27 4.4 14.3

3) FreeMind, JavaWebMail, and Lucene are in be-
tween. Lucene has both the second highest percent-
ages of Ad Hoc (51.65%) and of Full Behaviour of Full
Extent (34.05%) candidate features.

On one end of the spectrum, JHotDraw was developed
as a case study in design patterns and the studied version,
v5.1.2, shows that its design had gone through several
iterations and its developers had opportunities to recognise
functional features and to factor them as such, using inter-
faces, abstract classes, and delegations. On the other end,
JReversePro was developed by two researchers, with a very
specific/narrow focus: reverse-engineering Java bytecode.
FreeMind and JavaWebMail are the work of several devel-
opers, which explains the better factorisation. They are rela-
tively complex, multi-modal systems, which justifies poorer
factorisation due to complexity. The previous observations
depend on the “quality” of the candidate features in the Ad
Hoc category and, to a lesser extent, in the Partial Extent
category.

When considering candidate features belonging to the
Partial Behaviour category, two cases can happen. The intent
may contain less or the same methods as declared by the
anchor type: developers designed adequately the hierarchy.
The intent could also contain more/different methods: these
extra methods are not declared by the anchor type but
are still implemented by all its implementations/subclasses.
Developers should study such cases to decide whether they
missed factorisation opportunities or implemented a cross-
cutting concern necessary to all implementations but not
belonging to the anchor type.

We discuss in Section 7.4 threats to the validity of these
results after performing a qualitative evaluation of some of
these results in the next Section 7.

7 QUANTITATIVE AND QUALITATIVE EVALUATIONS

We now present a quantitative evaluation of the tool that
implements our approach. We called the tool F 3Miner for

FCA-based Functional Feature Miner. We also present a
qualitative evaluation of some candidate features proposed
by F 3Miner as well a comparison with a previous work.

7.1 Implementation and Performance
We implemented in F 3Miner all the algorithms presented
in the previous sections as an Eclipse plug-in, using the
JDT plug-in for Java source-code parsing and analysis. This
plug-in uses the Visitor design pattern to perform vari-
ous tasks, including feature discovery and filtering, feature
categorisation, and the computation of various metrics. It
outputs the categories by decreasing the size of the related
types set, and thus Full Extent categories are always output
first. F 3Miner is released online4.

Theoretically, assuming a bounded number of methods
per class, the algorithms for Scenarios 1 and 2 have a
complexity of n × log(n), where n is the number of classes
and log(n) represents the depth of the class hierarchy. (Real
class hierarchies tend to be much flatter.) The computation
for Scenario 3 is more involved. The computation of the
incidence relationship has a similar complexity to Scenarios
1 and 2, i.e., n × log(n). The theoretical complexity of the
incremental lattice construction algorithm that we imple-
mented isO(m×n2×p), wherem is the number of concepts
in the resulting lattice, n is the number of classes, and p is
the number of program elements par class [55]. The number
m of concepts is unknown and has an upper bound of 2n,
corresponding to the powerset of the set of classes. Because
the lattice generation algorithm falls into the category of
enumeration algorithms—it enumerates/generates concepts—it
is customary to talk in terms of unit costs, i.e., the cost of
generating one lattice node, which is O(n2 × p). Finally,
using the Visitor design pattern, the filtering and the cat-
egorisation of the lattice nodes is also O(m × n × log(n)),
where n × log(n) accounts for the detection of hierarchical
relationships between the classes of an extent.

In practice, the lattice sizes are fairly small, compared
to the theoretical limit, and the algorithms are fairly effi-
cient. Table 6 shows lattice sizes, the numbers of candidate
features, and execution times for seven different systems.
Execution times were obtained on a MacBook Air, with 8
GB of RAM, and an Intel Core i5. The last column shows
that the execution time grows slower than the theoretical
complexity.

7.2 Analysis of Some Candidate Features
We focus on the ad-hoc candidate features (Scenario 3),
which correspond to situations where developers/designers
inadvertently implemented the same set of methods (func-
tionality) in several places in the class hierarchy, with-
out realising their cohesion or potential for reuse. While
F 3Miner can also uncover functional features that have
been recognised as such, and that have been packaged as
interfaces or classes (Scenarios 1 and 2, see the discussion in
Section 9.1), its main value is in identifying ad-hoc features,
which are opportunities for refactorings to increase reuse.

Of the tested five subject systems (JHotDraw, JReverse-
Pro, JavaWebMail, Lucene, and FreeMind; see Section 2.4),
we chose JHotDraw and JReversePro for detailed qualitative
analysis. Our algorithm (Algorithm 3) has for objective
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TABLE 6
Execution performance

Systems LOCs Types (n) Methods Concepts (m) Cand. Feat. Exec. Times
Total Per Concepts Over m× n2 × p

FreeMind 0.7.1 65,490 198 4,785 251 69 00:45 0.179 1.89 E-07
JavaWebMail 0.7 10,707 115 1,079 162 50 00:38 0.234 1.89 E-06
JFreeChart 1.5 135,238 1,157 9,894 2,129 1,084 19:05 0.537 4.70 E-08
JHotDraw 5.2 9,419 171 1,229 394 154 01:54 0.289 1.38 E-06
JReversePro 1.4.1 9,656 87 663 105 26 00:16 0.152 2.64 E-06
Lucene 1.4 15,480 197 1,270 276 91 00:52 0.188 7.53 E-07
PMD 6.36.0 65,447 1,262 5,368 1,133 417 09:17 0.491 7.26 E-08

to find ad-hoc implementations of functional features, i.e.,
occurrences of the same sets of program elements in differ-
ent parts of a system implemented by developers without
recognising their similarity and encapsulating it in a class or
interface. In addition, our algorithm, through its incidence
relationship can also discover candidate functional features
when developers did recognise them and encapsulated it in a
class or interface reused through inheritance or delegation.
Hence, the output of Algorithm 3 can complement that of
Algorithms 1 and 2.

We now discuss its output using the two systems at both
ends of the maturity spectrum of our systems: JHotDraw
and JReversePro. We also discuss in Section 7.4 the threats
to the validity of the results presented in the previous
Section 6.3 and of this detailed qualitative evaluation.

7.2.1 JHotDraw
In Table 4, out of 154 candidate functional features, JHot-
Draw had 54 Ad Hoc (AD, no relationships between the
classes of the extent), 41 consisting of an interface and a
subset of its implementing classes, covering the full extent
(INT), 18 consisting of a class and some of its subclasses,
again covering the full extent (SUB), and 41 candidate
features where the extent contained one of the previous two
categories, along with unrelated classes (partial extent).

7.2.1.1 Explicit Interface Implementation Candidate
Features: The 41 candidate functional features correspond
to the following interfaces:

• Figure: 18 nodes of the lattice in all, each one
consisting of Figure, along with different subsets
of its implementing classes, and whose intents are
different sets of methods.

• Tool: 10 nodes, consisting of Tool with different
implementing classes and different intents.

• Handle: 8 nodes, similarly to Figure and Tool.
• Connector, DrawingEditor, FigureEnumera-

tion, Locator, and Painter, with one node each.

For one given interface, referred to as the anchor type,
the nodes of the lattice are hierarchically linked in relatively
deep hierarchies, where the children of a node, whose extent
consists of an interface and a set of its implementing classes,
have an extent that includes the same interface, but smaller
subsets of the implementing classes and a larger number of
methods.

For example, Figure 12 shows an excerpt of the JHot-
Draw lattice and the nodes containing the interface Figure.
It shows 18 interface-implementation nodes (yellow el-
lipses), 12 class–subclass nodes (orange rectangles), and

Fig. 12. Lattice of some candidate features induced by the interface
Figure. Yellow ellipses represent interface implementations, orange
squares class–subclass nodes, and red lozenges are Ad Hoc nodes.

11 Ad Hoc nodes (red lozenges). (It does not show par-
tial nodes, which are descendants of these full nodes.) Its
analysis shows that the extent of Node 40 (in the middle)
contains the interface Figure, the class AbstractFigure,
which implements Figure, and a set of descendants of
AbstractFigure. Children of Node 40 (Nodes 41, 50
through 55, 66, and 71) have extents that are subsets of the
extent of Node 40.

7.2.1.2 Explicit Class Subclass Redefinition Candidate
Features: The 18 nodes include the following five classes as
anchor types:

• AbstractFigure: 13 nodes, whose extents are 13
different sets of descendants of AbstractFigure.

• Command: 2 nodes.
• ChopBoxConnector, DrawApplet, and DrawApp-

lication, one node each.

Many of these nodes are direct or indirect descendants of
interface-implementation nodes. Figure 12 shows 12 class–
subclass nodes (orange squares) out of the 13 nodes whose
anchor type is AbstractFigure; all these 12 nodes are
descendants of interface-implementation nodes. This obser-
vation is not surprising: as shown by Figure 11, any subset
of the extent of a candidate feature that does not include
Figure is a class–subclass node.

7.2.1.3 Ad Hoc Candidate Features: The usefulness
of our algorithm and its results resides in the usefulness
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of the Ad Hoc (54) and Partial Extent (41) candidate func-
tional features because they reveal behavioural commonal-
ities (features) that were not recognised by the developers.
We specifically examine the Ad Hoc candidate features to
understand and discuss the results of our algorithm.

Many Ad Hoc nodes are children of deliberate (partial
or full) nodes, as shown in Figure 12, in which Ad Hoc
nodes (lozenges) descend from deliberate nodes (ellipses
or squares) and, as explained in Section 6.2.2, all the de-
scendants of an Ad Hoc node can only be Ad Hoc nodes.
JHotDraw has 54 Ad Hoc nodes, which are:

• 9 nodes that represent truly fortuitous co-occurrences
of program elements in JHotDraw.

• 39 nodes that are descendants of full/partial nodes,
such as the lozenges in Figure 12.

• 6 nodes that are “false positives” because the mul-
tiple occurrences of the program elements are, in
reality, the same occurrence, but arrived at from
different paths in the class hierarchy.

Figure 13 shows an example of such “false posi-
tives”. The interface ConnectionFigure extends both
Figure and FigureChangeListener, which are not
related hierarchically and do not share any methods.
Thus, our incidence relationship counts the domain in-
terface of ConnectionFigure (and its implementing
classes) as two independent occurrences because it comes
from both Figure and FigureChangeListener. There-
fore, Algorithm 3 returns a Ad Hoc candidate functional
feature whose extent consists of the interfaces {Figure,
FigureChangeListener} and whose intent includes the
union of the methods of the two interfaces.

A similar situation occurs between any interface I and
any class C if one of its subclasses, D, implements I , which
yields a candidate functional feature whose extent includes
the pair {I, C} and whose intent includes the methods in
the sub-hierarchy of D. The intent would include more than
the union of the methods in DOMINT(I) and DOMINT(C),
because the classes under the D sub-hierarchy would pro-
vide additional methods, specific to them.

7.2.1.4 Usefulness to Developers: The candidate
functional features that are potentially interesting are some
of the Ad Hoc nodes. We disregard the nodes that are de-
scendants of nodes representing deliberate features, e.g., the
lozenges in Figure 12, because they reflect commonalities
between classes that are known to extend the same class or
implement the same interface. We also disregard the nodes
with classes/interfaces with multiple ancestors because they
are false positives, as explained above. We focus on 7 nodes
out of 9, which reveal interesting features that were not
identified by the developers of JHotDraw 5.2:

• A figure is an indexed set of points, which ap-
pears in sibling classes PolylineFigure and
PolygonFigure.

• The concept of connection, as distinct from
Connector.

• The concept of indexable, storable objects.
• The similarity/redundancy between sibling classes

DrawingChangeEvent and FigureChangeEvent.

• The similarity between DrawApplet and
DrawApplication, beyond their common interface
DrawingEditor, as shown in Figure 14 (left).

Our algorithm identified commonalities between
DrawApplet and DrawApplication, suggesting that an
abstraction DrawingApplicationInterface could be
useful (Figure 14 (right)).

7.2.2 JReversePro
Table 4 shows that JReversePro had 26 candidate features,
including one Explicit Interface Implementation, one Explicit
Class Subclass Redefinition, and 24 Ad Hoc ones. We now
discuss these candidates.

The Explicit Interface Implementation can-
didate feature is anchored by the interface
jreversepro.revengine.JReverseEngineer, with
implementing classes JDecompiler and JDisAssembler.
The classes JDecompiler and JDisassembler represent
the entry points to the two main functionalities of
JReversePro, disassembling and decompiling bytecode.
JReverseEngineer consists of a single method void
genCode(), implemented in each class.

The Explicit Class Subclass Redefinition candidate
feature has for anchor the class JBlockObject,
and subclasses such as JCaseBlock, JCatchBlock,
JSwitchBlock, JDoWhileBlock, etc., and intent
{getEntryCode(), String getExitCode()}, which
return the beginning and ending string of each block
type. The extent includes all classes in the package
jreversepro.reflect.method. This candidate feature
has a BehaviourCoverageAnchor Domain Interface of 0.17. The
relatively low coverage has two explanations:

• A good factorisation: most of the behavior (83%) of
the subclasses of JBlockObject was factored in
JBlockObject, leaving little to be redefined.

• A poor factorisation: there are few common methods
(17%) between JBlockObject and its subclasses.

We study the domain interfaces of the subclasses of
JBlockObject: if they define only the two methods of
the intent, then it is a good factorisation. If each subclass
of JBlockObject implements a different, larger set of
methods, sharing only two common methods, then it is a
poor factorisation. We observe that ten out of twelve subclasses
of JBlockObject implement only the methods of the in-
tent, thus a good factorisation. The subclasses JForBlock
and JDoWhileBlock define more methods than the intent
because these classes have more complex structures.

The study of the 24 Ad Hoc candidates reveals that:

• 3 are interesting abstractions clearly not recognised
by the developers.

• 6 are mildly interesting features that maybe did not
warrant explicit factorisation.

• 6 are abstractions that were visibly recognised by
the developers but not implemented to exploit com-
monalities. They have extents consisting of pairs of
graphical classes, with different names, in different
packages, but offering similar functionalities with
Java AWT or Java Swing. Surely there are other ways
of handling such similar implementations, without
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Fig. 13. Starting from the interfaces Figure and FigureChangeListener, if there are two paths to the same type (interface or class), the
methods of that type (and those of its descendants) will be erroneously treated by our algorithms as independent occurrences of those methods
and will be included in the intent of the candidate node whose extent includes/consist of Figure and FigureChangeListener.

Fig. 14. Commonalities between the three classes
DrawApplet, DrawApplication, JavaDrawingView
using the interface DrawingEditor. The novel abstraction
DrawingApplicationInterface could be useful to factor methods
in DrawApplet and DrawApplication.

code duplication, e.g., using the Bridge and–or Fac-
tory design patterns.

• 9 have extents consisting of two or more interfaces
and intents consisting of the union of the domain
interfaces of the classes implementing these inter-
faces. These are false positives: we had similar false
positives with JHotDraw—six of them.

7.3 Comparison with Previous Work
We now compare our approach to a previous, existing
approach. We reported in Section 2 that there are only a few

Fig. 15. Lattice of some candidate features found in JReversePro. Yellow
ellipses represent interface implementations, orange squares class–
subclass nodes, and red lozenges are Ad Hoc nodes. (Some of the
transitive edges between nodes are omitted for clarity).

works that attempt to discover features in existing software
systems. Table 7 summarises the works most similar to ours.
It shows that these works span more than 20 years but
that most do not provide public implementation, systems,
and results to allow comparisons. We highlight two works
that are most closely related to ours and that provide some
public information that could be used for comparison: [25]
and [20]. These two works are quite recent and provide
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TABLE 7
Detailed comparison of approaches related to feature discovery. Highlighted rows show works for which most information for replication is public.

Approaches
(Years)

Main Analysis Tech-
niques and Tools

Implementation
(Public?)

Datasets (Pub-
lic?)

Results
(Public?)

Comparisons
with Others

Comments

[21] (2005) Manual (static) sys-
tems analyses

N/A Sonar systems
(Unavailable)

No No

[22] (2005) Static analysis (Ra-
tional Rose), manual
analyses

N/A Home
service robot
applications,
Samsung
Home Robot
(Unavailable)

No No

[23] (2007) DaRT, Understand for
C++, Tau, Together,
Rhapsody, DOORS,
then manual analyses

N/A G Platform
(Unavailable)

No No

[24] (1997) Clustering techniques No None No No
[25] (2017) Static analyses, clus-

tering
Yesα 12 open-source

systems
No No Microservices

identification
[20] (2021) FoSCI: dynamic

analysis, search-based
functional atom
grouping

Yesβ JPetStore
+ 6 open-
source Web
applications

Table 2, else not
public

LIMBO, WCA,
and MEM, met-
rics only

Service identifi-
cation

[27] (2006) Slicing, manual analy-
sis

No Yes (COBOL) Table 1 No

[28] (2014) Static analysis and
clustering

No No Figures 14-18 No Architecture
deficiencies

[29] (2020) Static and dynamic
analyses (ServiceCut-
ter), manual analyses

No in|FOCUS
(Proprietary)

No No

α: https://github.com/gmazlami/ ; β : https://github.com/wj86/FoSCI

results on available open-source systems. However, they do
not provide complete results, except for some in [20].

Consequently, we chose to compare F 3Miner to the
work by Jin et al. [20] by applying F 3Miner on JPetStore8

and using the Tables 2 and 4 provided in their work. We
chose this previous work because it provides some results
on an available open-source system, JPetStore. Also, it pro-
vides services that, we argue, are similar enough to the
concept of features.

Figure 16 shows the features discovered by F 3Miner
in JPetStore. F 3Miner discovered 25 candidate features,
which we report for replication in an online document4.
Among these 25 candidate features, we report in Table 8 the
features discovered by F 3Miner and their corresponding
services identified by the approach of Jin et al. The table
shows that F 3Miner could discover features that match the
four service candidates reported by Jin et al. It highlights
that both approaches find common classes that, combined
with others, are candidate features/services.

In addition, F 3Miner discovered 21 other candidate
features. We cannot describe all these features here for
lack of space but, among these, 10 are ADHOC candidate
features, which represent opportunities to refactor code or
create a new abstraction missed by developers.

For example, the candidate feature #1
is Ad Hoc and has for extent the classes
org.mybatis.jpetstore.domain.Category,
org.mybatis.jpetstore.domain.Product, and
org.mybatis.jpetstore.domain.Sequence and
for intent the methods String getName() and void
setName(String). It shows that the main domain

8. https://github.com/mybatis/jpetstore-6

abstractions all provide the same set of two methods. This
candidate feature is an opportunity to introduce a new
abstraction, e.g., NamedEntity that could be inherited by
the domain classes.

As another example, the candidate feature #58
is also Ad Hoc and has for extent the classes
org.mybatis.jpetstore.domain.CartItem and
org.mybatis.jpetstore.domain.LineItem and for
intent the six methods BigDecimal getTotal(),
Item getItem(), int getQuantity(), void
calculateTotal(), void setItem(Item), void
setQuantity(int). On the other hand, the delegation
candidate feature #27 has as an extent the classes CartItem,
LineItem and Item, and as intent the methods
int getQuantity(), and void setQuantity(int
quantity). This indicates that both CartItem and
LineItem wrap an Item and delegate a common set
of methods to it. In view of these results and the fact
that Item, CartItem, and LineItem do not share a
common super-type, we conclude that there is a refactoring
opportunity missed here by the developer.

Thus, with this comparison, we show that F 3Miner
compares favourably with the closest related work, which
provides results on open-source systems. We also show
F 3Miner discover other candidate features, which are op-
portunities for refactoring the system by introducing new
abstractions or merging similar abstractions.

7.4 Threats to Validity of the Evaluations
There are three main threats to the validity of the results
reported in these quantitative and qualitative evaluations:
(1) what constitutes an interesting or useful functional fea-
ture and how to compare features (construct validity), (2)
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Fig. 16. Lattice of candidate features discovered by F 3Miner in JPetStore (red lozenges: Ad Hoc nodes, blue triangles: delegation nodes).

TABLE 8
Features discovered by F 3Miner that correspond to services identified by the approach of Jin et al. (We replaced the package names

org.mybatis.jpetstore with . . . for the sake of clarity.

# Type Extent and Intent # Entities

16
Partial Extent
Full Behaviour
Explicit Aggregation

. . . .mapper.CategoryMapper

. . . .service.CatalogService

. . . .web.actions.CatalogActionBean

getCategoryList()

SC0

. . . .domain.Category

. . . .service.CatalogService

. . . .web.actions.CatalogActionBean

. . . .domain.Product

. . . .domain.Item

. . . .domain.Sequence

25
Full Extent
Full Behaviour
Explicit Aggregation

. . . .mapper.OrderMapper

. . . .service.OrderService

getOrdersByUsername(String)
getOrder(int)
insertOrder(Order)

SC1

. . . .domain.LineItem

. . . .web.actions.OrderActionBean

. . . .service.OrderService

. . . .domain.Order

SC2
. . . .domain.Cart
. . . .domain.CartItem
. . . .web.actions.CartActionBean

31
Full Extent
Full Behaviour
Explicit Aggregation

. . . .mapper.AccountMapper

. . . .service.AccountService

insertAccount(Account)
updateAccount(Account)

SC3
. . . .service.AccountService
. . . .web.actions.AccountActionBean
. . . .domain.Account

whether we are reliable judges of this usefulness (internal
validity), and (3) whether the results can be generalised to
other software systems (external validity).

With respect to construct validity, we argued elsewhere
that reusability is a combination of usefulness and usability
[56] where usefulness refers to the extent to which a program
element is often used while usability refers to the ease with
which it can be used.

Algorithm 2 identifies program elements that are de-
facto (re)usable: classes and interfaces. Thus, we focused on
usefulness. We were careful, both in our algorithms (e.g., the
concept of domain interface) and in our analyses, to focus
on domain semantics, and we made sure to distinguish
between features that were central to the application do-
mains of the studied systems, from the ones that were sec-
ondary (e.g., GUI features for JReversePro and FreeMind).
We confirmed the usefulness of many of such features by
their multiple occurrences in the code because many of the
same features were also uncovered by Algorithm 3. The
usefulness of Ad Hoc candidate features is de-facto because
all occur multiple times by definition. However, we only
performed a manual comparison of the features and did not

assess some objective measures, for example using cohesion
[57] or coupling [58], which we plan in future works.

We conducted a separate experiment, described in Sec-
tion 8.3, where we asked participants to assess the research
hypotheses that underlie our work.

With respect to internal validity, the authors have, at one
time or another, working with the systems studied for other
reasons (e.g., we used both JHotDraw and JReversePro in our
previous work on design patterns and architecture recovery
[59, 60]), and we have a comprehensive knowledge of these
systems and their implementations. Further, we conducted
a separate experiment described in Section 8.4, where we
asked participants to assess the same candidate features,
although they had less time to become familiar with the
software systems under study.

With regard to external validity, we want to perform
more experiments. However, we were careful in choosing
the systems to cover a broad spectrum of (1) sizes (10 vs. 70
KLOC), (2) maturity (JHotDraw vs. JReversePro), 3) frame-
work (JHotDraw) vs. monolithic system (JReversePro), (4)
mostly graphic (JHtoDraw, FreeMind) vs. mostly command
line (JReversePro), and (5) system (JReversePro) vs. end-user
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applications (JavaWebMail).
The scenarios, categories, and resulting features are gen-

eral and do not depend on the programming language.
Although we used Java to illustrate and apply our work,
it should generalise to any programming language where:
(1) there is some form of explicit inheritance and associa-
tion relationships and (2) a similarity in method signatures
suggests a similarity in function. These assumptions should
apply to any statically-typed programming language, such
as C++, C], Scala, or TypeScript.

8 USER VALIDATION

We now present an end-user validation, performed with
developers, on three aspects of F 3Miner:

1) The research hypotheses about ad-hoc features, their
imprint in actual code, the benefits of identifying
them (Section 8.3).

2) The quality of the ad-hoc candidate features proposed
by F 3Miner (Section 8.4).

3) The usability and usefulness of F 3Miner as a design
and re-engineering tool (Section 8.5).

We start by describing the experimental protocol (Sec-
tion 8.1) and the participants (Section 8.2) before present-
ing the questions and the participants’ answers in Sec-
tions 8.3, 8.4, and 8.5. We discuss threats to the validity of
this user validation in Section 8.6.

8.1 Experimental Protocol

We conducted the experiment online for the participants’ en-
vironmental health and safety as well as their convenience.

Prior to the experiments, the participants received in-
formation about installing and using F 3Miner. All of the
material for the experiment is available online4.

Each experiment session lasted about two and a half
hours and consisted of five steps:

1) Delivering a brief tutorial, explaining the research
problem and providing enough elements about the
research methodology to allow participants to an-
swer the subsequent questions.

2) Filling out an online questionnaire about the partic-
ipants’ background, knowledge, and experience in
object-oriented design and programming in general,
and Java in particular.

3) Evaluating the research hypotheses and methodol-
ogy, through an online questionnaire.

4) Evaluating the quality of twelve ad-hoc candidate
features, among those discussed in Sections 7.2.1
and 7.2.2, through an online questionnaire.

5) Evaluating the usability and utility of the tool, also
through an online questionnaire.

We designed Steps 3, 4, and 5 using the Goal Question
Metric framework to determine the tasks to be performed
and the elements to be measured for performance. We dis-
cuss any issues and trade-offs in the corresponding sections.

8.2 Participants and Experimental Sessions

We recruited twelve participants among the members of the
authors’ research labs, which host about 120 graduate stu-
dents and postdocs. We sent a general invitation to the mem-
bers of the labs. All participants were unpaid volunteers.
All participants could withdraw from the experiment at any
time, for any (or no) reason, without any consequence. All
answers are anonymous and anonymised.

Table 9 gives some descriptive statistics on the partici-
pants. All participants, who are all software engineering stu-
dents, are mostly moderately experienced Java developers.
They were divided into two almost equal halves regarding
their knowledge of the Prototype and Singleton patterns.

One of the authors remained connected throughout the
experimental sessions to answer the participants’ questions.

8.3 Research Hypotheses about Ad-Hoc Features

Our work rests on three hypotheses:

H1: Classes in legacy OOP tend to combine distinct
functional features;

H2: Discovering such functional features is useful for
understanding, debugging, and evolution;

H3: Functional features are implemented using specific
idioms, discoverable in the source code.

The purpose of this part of the experiment is to validate
these hypotheses, focusing on Ad-hoc functional features
(Scenario 3) for the hypothesis H3.

The questionnaire was designed with three objectives.
First, it helps evaluate our hypotheses. Second, it leads par-
ticipants to take a critical look at the research methodology,
which will help them answer precise questions about the
quality of the candidate features (next section). Finally, it
allows interpreting the results of the participants’ evaluation
of the candidate features.

The questionnaire consisted of four yes/no questions
pertaining to H1, H2 and H3, each with an open-ended
question to justify a negative answer. For example, for H1,
the question was:

• We observed, and thus hypothesised, that domain
classes in legacy OOP systems often implement sev-
eral functional features, regardless of how they are
composed (multiple inheritance, aggregation, aspect
weaving, or ad-hoc). Do you agree?

• If not, why not?

We asked a more precise question for H3:

• We argued, with a toy example, that class members
pertaining to a functional feature may be distributed
among many classes, and not be factored in a single
class. For example, the functionality may itself be
specialised into several flavours. Do you agree?

• If not, why do you think that it is unlikely that
class members related to a functional feature be
distributed amongst many classes?

Table 10 summarises the participants’ answers. The ac-
tual questionnaire and individual answers are available
online4.
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TABLE 9
Participants’ Descriptive Statistics

Question #Answers Answers
Experience in software development 12 0 - 6 months 0 6 - 12 months 1 1 - 3 years 3 3+ years 8
Experience with Java 12 0 - 6 months 1 6 - 12 months 2 1 - 3 years 3 3+ years 6
Knowledge of the feature concept 12 None 6 Theoretical 2 Practical 4
Knowledge of design patterns 12 None 1 Theoretical 7 Practical 4
What is the implementation difference be-
tween Prototype and Singleton patterns?

12 Unfamiliarity with the patterns 5 Familiarity with the patterns 7

TABLE 10
Evaluating the research methodology (hypotheses). For the last question, ’yes’ stands for ’reasonable’ and ’no’ stands for "too permissive’.

Question # Question (summary) Hypothesis #Answers Yes No % agreement
Q1 Classes implement multiple features in legacy

OOP systems
H1 12 10 2 83.33 %

Q2 It is worth identifying such features in legacy
OOP systems

H2 12 12 0 100 %

Q3.a Class members pertaining to a feature may be
distributed among many classes

H3 12 10 2 83.33 %

Q3.b When counting occurrences of sets of class
members within sub-hierarchies, we should ig-
nore structure (topology)

H3 12 11 1 91.66 %

Participants agreed, from 80% to 100%, with our research
hypotheses. Considering Q1 (two negative answers), one
participant said that what we describe corresponds to the
Blob anti-pattern and felt that we may be over-generalising.
The other negative participant wrote: “If you [...] observed
something happening, you don’t need to hypothesise about
its occurrence”.

With regard to question Q3.a, one negative participant
said that this was contrary to recommended practice. The
second negative participant argued that some class mem-
bers may participate in several functional features, with
which we agree: we do not see a contradiction between the
two statements.

With respect to question Q3.b, a single participant
thought that we were being too permissive by not taking
into account the structure/topology, i.e., where exactly in
the sub-hierarchy do the various elements of the intent
appear; s/he also mentioned overloading as a counter-
example.

8.4 Quality of the Ad-Hoc Candidate Features
We apply the Goal Question Metric (GQM) framework.
The goal of F 3Miner is to discover non-factored, or par-
tially factored, reusable functional features in legacy object-
oriented source code. Given this goal, we can ask several
questions to assess whether F 3Miner achieves its goal:

1) Given a system S, with known non-factored func-
tional features F1, F2, ..., Fn, does F 3Miner dis-
cover these features?

2) Given a system S, with known non-factored func-
tional features F1, F2, ..., Fn, does F 3Miner dis-
cover them faster than a manual inspection?

3) Given a system S , how good are the candidate
features CF1, ...,CFm discovered by F 3Miner?

The first two questions require a ground truth against
which to compare the output of F 3Miner, which could be
obtained by having experienced designers study the subject

software systems and identify non-factored (ad-hoc nodes)
or partially-factored (partial-extent nodes, see Section 6.2.2)
functional features that may be worth (re)factoring.

However, an exhaustive discovery of reusable functional
features, and more generally refactoring opportunities, is
neither practical—time-consuming—nor necessary. Indeed,
with reuse and refactoring, there is a cut-off point below
which, packaging the intent of an ad-hoc node into a class
may not be worth the refactoring effort.

Similarly, the second question is neither practical nor
fair to experiment participants. It is impractical because
identifying reusable functional features in a non-familiar
system of 60 or 70 KLOCs would take hours. It is unfair
because F 3Miner completes its computations in under two
minutes, even for the largest of the five systems, thanks to an
efficient incremental algorithm for building Galois lattices.

Therefore, we chose to focus on the third question and
have participants assess the candidate features discovered
by the tool, similarly to what we did in Section 7.2, but as
an independent validation.

We asked the participants to assess the quality of ad-hoc
candidate functional features because those correspond to
reusable features that developers of the software systems
did not factor and duplicated in the class hierarchies.

We defined the quality of an ad-hoc candidate feature
using three distinct characteristics of the discovered candi-
date features that we formulate as hypotheses to be verified
on the individual candidates:

H4: The multiple occurrences of the same set of meth-
ods (the intent of a candidate, see Section 6.2) is
meaningful/non-fortuitous;

H5: The methods forming the intent of a candidate are
functionally cohesive, i.e., they work towards the same
functionality;

H6: The identified feature (the intent) represents a useful
domain abstraction.

Hypothesis H4 embodies a key methodological choice
made in our approach: we focus only on method signatures,
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disregarding method bodies. We assume that two methods
that have the same signature and that appear in different
parts of a class hierarchy should have the same objective
and, therefore, the same behaviour. The other two hypothe-
ses pertain to the intrinsic quality of the candidates.

We associated each of the hypotheses with a yes/no
question Q4, Q5, Q6. For H6/Q6, if the answer is negative,
we asked participants additional questions about the candi-
date feature:
Q6.a: Do you see a design anomaly that could have ex-

plained how/why this multiple occurrences of a set
of methods occurred?

Q6.b: Do you see a rule that we could use to eliminate these
candidate nodes (false positives)?

Thus, essentially, we asked the participants to perform
the same kind of analyses that we performed in Section 7.2.

Our tool identified 54 ad-hoc candidate functional fea-
tures in JHotDraw and 24 in JReversePro.

We chose a subset of these ad-hoc features: 12 features,
six from JHotDraw and JReversePro, which we chose ran-
domly. The nodes used for the experiment are available
online4.

Table 11 presents the aggregated results for questions
Q4, Q5, Q6. The last column shows our own evaluation
of the same nodes, which was the basis for the results
presented in Sections 7.2.1 and 7.2.2. By and large, the results
suggest that the assessments of the experiment participants
are consistent with ours. Table 12 aggregates those results,
per ’type of node’ (Positive, Positive but ’Uninteresting’, and
False positive). It shows that ad-hoc nodes that we deemed
as positive and interesting, scored consistently higher than
false positive features: 68% versus 61% on Q4, an average
cohesion of 3.75, out of 5, versus 3, and a score of 79 %,
versus 50 %, for question Q6. These results should be put
into the context of (1) the small number of ad-hoc nodes
overall (12), and of each category (8, 1, and 3), (2) the fact
that the participants had zero familiarity with JHotDraw
and JReversePro prior to the beginning of the experiment,
and little time to assess each ad-hoc node–about 5 minutes
each, and (3) the relative diversity of their level of expertise
in Java and OO design (see Table 9).

Looking at the answers to questions Q6.a ("if it is a
false positive, what design anomaly could explain it") and
Q6.b ("what rule can you think of that would filter out
this false positive"), the participants had similar answers to
ours regarding the ’why’ and ’how to fix’ of the false posi-
tive (JReversePro N1) and uninteresting (JReversePro
N3) nodes of JReversePro, respectively. For the JHotDraw
nodes, the participants who agreed with our assessment
regarding the two false positives (nodes JHotDraw N5 and
JHotDraw N6 in Table 11) also had similar to answers for
questions Q6.a and Q6.b

9.

8.5 Usability and Usefulness of F 3Miner

We now evaluate the usability and utility of the tool, also
following the GQM framework and an online questionnaire.

9. For JReversePro N1, JHotDraw N5 and JHotDraw N6, the
classes of the extent had a void main(String[] args) method,
which 1) were inappropriate, from a class design point of view (Q6.a),
and 2) should not have been included in the domain interfaces of the
classes at hand.

Given the tasks carried out by the participants during
the previous parts of the experiment, we focused on the
evaluation of the following aspects:

• How easy is F 3Miner to install and use by the par-
ticipants? Although our tool is a research prototype,
we assessed the participants’ perception of the tool’s
overall usability with this general question.

• Is the graph generated by F 3Miner easy to under-
stand? We wanted to know if the forms and colours
of the nodes presented by F 3Miner make the graph
easy to read.

• Does the graph generated by F 3Miner support un-
derstanding the design of the analysed system? We
wanted to know if the participants could navigate
within the graph and identify features in a system.

• Does the generated graph support evaluating the de-
sign quality of the analysed system? Design quality
cannot be evaluated absolutely by the participants
because it requires a deep knowledge of the system
so we chose a relative evaluation.

We associated the first three aspects with questions Q8,
Q9, and Q10, whose answers were on a 5-point Likert scale,
from "Very easy", to "Very difficult". For the last aspect,
we provided the participants with graphs generated by
F 3Miner for four systems and, in Q11, asked participants
to assign them a relative design quality score on a 4-point
Likert scale, from “having the highest number of refactoring
opportunities” to “having the smallest number of refactor-
ing opportunities”.

We used two of the systems from our qualitative evalua-
tion, JHotDraw and JReversePro. They are the most and the
least mature in terms of the discovered Ad Hoc candidate
features, see Section 6.3. We added two actively maintained
OO systems: JFreeChart and PMD. JFreeChart is a frame-
work that supports developing charts. PMD is a static source
code analyser that uncovers programming flaws through
the use of built-in rules. Table 13 reports some descriptive
statistics for these four systems, including the size of the
graph generated by F 3Miner, in the last column.

Figure 17 displays the results for questions Q8, Q9 and
Q10. For Q8, most of the participants found that the tool
is Easy or Very Easy to use (10 out of 12). However, for Q9,
some participants found it difficult to understand the graphs
(5 out of 12). We believe that this is due to the too-short
amount of time assigned during the tutorial for presenting
the graphs (forms and colours). For Q10, participants found
it Easy to Average (10 out of 12) to navigate the graphs and
identify system features.

Figure 18 summarises the results for Q11: 11 out of
12 participants answered the question. It shows that most
participants (10 out of 11) recognised JFreeChart as being
the system with the highest number of refactoring oppor-
tunities, which matches findings in previous works that
analysed JFreeChart (e.g., [61, 62] ). Most of the participants
assigned a good score to JHotDraw: 6 out of 11 gave a 3 or 4
and none a score of 1, which conforms with our analysis in
Section 6.3 and the fact that JHotDraw was designed with
reuse (and design patterns) in mind.

Regarding PMD, we expected results similar to those
of JHotDraw because PMD is a framework/tool enforcing
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TABLE 11
Aggregated results for 12 ad-hoc candidate features. The number between parentheses in the node ID refers to F 3Miner generated IDs.

Ad-hoc node ID Question Q4 Question Q5 Question Q6 Our
Yes No %Yes Avg. Cohesion Stdv. Cohesion Yes No %Yes Assessment

JRevPro N1 (11) 6 6 50.00 3.08 1.88 3 9 25.00 False positive
JRevPro N2 (12) 7 5 58.33 3.42 1.08 10 2 83.33 Positive
JRevPro N3 (14) 8 4 66.67 4.08 1.68 7 5 58.33 Uninteresting
JRevPro N4 (15) 8 4 66.67 3.83 1.53 8 4 66.67 Positive
JRevPro N5 (24) 8 4 66.67 3.16 1.40 7 5 58.33 Positive
JRevPro N6 (20) 7 5 58.33 3.83 1.75 9 3 75.00 Positive
JHotDraw N1 (5) 6 6 50.00 3.5 1.31 9 3 75.00 Positive
JHotDraw N2 (20) 10 2 83.33 4.42 1.00 12 0 100 Positive
JHotDraw N3 (21) 8 4 66.67 4.16 1.53 10 2 83.33 Positive
JHotDraw N4 (110) 11 1 91.67 3.67 1.37 11 1 91.67 Positive
JHotDraw N5 (128) 8 4 66.67 2.33 1.50 6 6 50.00 False positive
JHotDraw N6 (135) 8 4 66.67 3.67 1.72 9 3 75.00 False Positive

TABLE 12
Answers to Q4, Q5, and Q6, aggregated by qualitative evaluation per Sections 7.2.1 and 7.2.2.

Category per Sections 7.2.1 and 7.2.2 Average % Yes for Q4 Average for Q5 Average % Yes for Q6

Positive 67.71 3.75 79.17
Positive but ’uninteresting’ 66.67 4.08 58.33
False positive 61.11 3.03 50.00

Fig. 17. Results of Q8, Q9 and Q10.

TABLE 13
Some metrics for the OO systems used for Q11.

System #LOCs #Types #Methods #Graph-Size
JHotDraw 5.2 9,419 171 1,229 154
JReversePro 1.4.1 9,656 87 663 27
JFreeChart 1.5 135,238 1,157 9,894 1,084
PMD 6.36.0 65,447 1,262 5,368 417

best practices in programming. However, the results were
inconclusive: most participants gave a score of 2 or 3 (9 out
of 11). We may explain these results by the size of PMD,
which is much bigger than JHotDraw’s in terms of LOCs,
types, and methods, as shown in Table 13. Thus, the graph
generated by F 3Miner for PMD is much bigger in the
number of nodes and candidate features than JHotDraw’s.
We believe that some participants based their negative score

on the high number of candidate features.
Regarding JReversePro, the results are mixed. Six partic-

ipants gave a low score (1 or 2), which matches the results
of our analysis in Section 6.3, while five participants gave
a positive score (3 or 4). We explain these mixed results by
the fact that JReversePro is small and has one main feature
(reverse engineering compiled Java code). Thus, the size of
the generated graph was small and some participants may
have based their positive assessment on the low number of
candidate features.

8.6 Threats to Validity of the User Validation
There are three main threats to the validity of the results
of this user validation: threats to (1) their construct validity,
pertaining to the design of the validation and its partici-
pants, (2) their internal validity, concerning the causes of the
results, and (3) their external validity and generalisation.
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Fig. 18. Results of Q11 for 4 systems. Score 1 indicates the system has
the highest number of refactoring opportunities, while score 4 indicates
the system has the smallest number of refactoring opportunities.

The design of and participants to this user validation are
threats to its construct validity in different aspects. First, the
questions and questionnaires may have led participants to
give certain answers. We mitigated this aspect by defining
the questions as simply as possible. We also used the usual
Likert scales, familiar to most participants. Second, we chose
systems of manageable sizes with which participants had no
experience. Thus, we attempted to put all the participants on
an equal footing so that their answers are valid and compa-
rable. Third, we used a convenient sampling of participants
who are not representative of all developers. However, we
argue that graduate students will be the next generation
of developers and, as such, are somewhat representative of
junior developers in the field.

The choices of the systems, of the graphs, and of the
questions and questionnaires impact our results and form a
threat to their internal validity. Indeed, it is possible that
our results are not due to these choices but due to, for
example, the intrinsic complexity of the chosen systems
and the complexity of working with unfamiliar graphs. We
mitigated this threat by asking 12 participants, allowing for
some control over the variability between participants. We
also mitigated this threat by using systems known for their
good and bad design and others with expected average
design quality. Finally, we asked participants to explain their
answers to avoid random answers.

Finally, we are aware that our results may not generalise
to other participants and other systems and that more exper-
iments would be necessary to confirm their generalisability.
However, our qualitative and user validations showed that
our algorithms and tooling did help in discovering candi-
date functional features and creating refactoring opportu-
nities. Hence, they gave us confidence that our algorithms
did indeed help our purpose, which is discovering reusable
functional features in legacy object-oriented systems. They
did not allow computing the extent to which they help,
which is future work.

9 DISCUSSION

We now discuss various aspects of our work.

9.1 Scenarios

Results from Algorithms 1, 2, and 3 show that our tech-
niques are interesting in two ways:

• They can help uncover those functional features that
have been codified in the program, using multiple
inheritance or delegation because this information
provides developers with a cartography of the system
and its various functional features, which could be
combined differently to build new systems.

• They can also uncover abstractions that have not been
identified by developers, such as Ad Hoc candidate
functional features discussed in Section 6 to guide
future refactorings of the system.

The algorithms also produce intersecting but different
sets of features:

• The algorithm pertaining to multiple inheritance
identifies features when a class has two ancestors
by marking those ancestors as potential features to
be (re)used, whereas Explicit Interface Implementation
and Explicit Class Subclass Redefinition candidate fea-
tures come from a class/interface with two different
sub-hierarchies that implement the same behaviour,
and propose those interfaces or classes (i.e., the an-
chors) as features.

• The algorithm for detecting instances of delegation
identifies cases of aggregation, even if the component
appears once whereas Explicit Aggregation candidate
features happen when a component appears in sev-
eral aggregates. Again, there is an overlap, but the
features discovered by each algorithm are different.

9.2 Variants

A common limitation to existing work on codifying idioms
and identifying occurrences of these idioms is the handling
of variants of the idioms. Indeed, like natural languages,
programming languages allow developers to express similar
idioms in a great variety of ways.

The handling of variants is a limitation in many
software-engineering problems. For example, the identifi-
cation of occurrences of design motifs—the solutions parts
of design patterns—suffers from this limitation. While
solutions have been proposed, for example, the use of
explanation-based constraint programming to relax con-
straints modelling design motifs [63], they may still miss
occurrences that do not satisfy the constraints.

This limitation is also conceptual. The handling of vari-
ants requires answering “how different an occurrence must
be from a given idiom before it ceases to be legitimately
considered an occurrence of that idiom?” Answering this
question often depends on the purpose and knowledge of
the developers who want to identify such occurrences.

In this work, we designed the idioms and their detec-
tion so that they can handle variants that we considered
legitimate, and whose accuracy we validated qualitatively
in Section 7.2 and through a user validation in Section 8.

For delegation, in Section 5, the detection algorithm
handles variants through three mechanisms: 1) by using
the concept of domain interface, 2) by not requiring that
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the aggregate (delegator) and the component (delegate)
implement the same interface, and 3) by using the concept
of coverage ratio. For ad-hoc functional features, introduced
in Section 6, the variance is embodied in the incidence
relationship we used to build the initial Galois lattice of
candidate features.

The handling of variants also relates to the possible
combination of idioms, for example, inheritance and del-
egation. Our algorithms and tool naturally handle such
combinations, which would be reported as different can-
didate functional features. The model of Figure 11 is
an actual example from JHotDraw where the same set
of Java types contains three overlapping categories: that
of an interface (Figure) with classes that implement
it (AbstractFigure. DecoratorFigure, PertFigure,
etc.), of a class (AbstractFigure) with its subclasses
(DecoratorFigure, PertFigure, etc.), and an aggregate
class (DecoratorFigure) with its component (Figure).

9.3 Categories and Factorisation

The categorisation of nodes, and the accompanying metrics,
provide insights into the levels of factorisation within the
systems under study and may help compare them in terms
of design maturity. From the categorisation of candidate
nodes and the results for JHotDraw and JReversePro, we
observe:

• The hierarchical representations of candidate fea-
tures, in Figures 12 and 15, provide insights into
the factorisation landscape of a system, to focus on
features that are most interesting, i.e., Ad Hoc features
that are not descendants of deliberate nodes.

• Notwithstanding false positive Ad Hoc candidate
functional features and ADHOC nodes that descend
from deliberate nodes (which are readily identifi-
able), most of the remaining ADHOC nodes (7 out of
9 for JHotDraw and 9 out of 15 for JReversePro)
are interesting abstractions missed by developers,
which may warrant refactorings into well-packaged
features.

• Some counterintuitive observations about the quality
of factorisation lead us to argue that, in the lower
levels of a class hierarchy, a good factorisation is a
combination of (1) a small fraction of the behaviour
of the root of the sub-hierarchy redefined by its
subclasses but (2) subclasses define little additional
behaviour to the root one. If there is a too small
coverage, i.e., no/little additional behaviour in the
subclasses, then we question the need for separate
subclasses. If there is a too big coverage, i.e., extra be-
haviour in the subclasses, then the subclasses could
better be in their own sub-hierarchies.

9.4 Categories and Design Patterns

Design patterns, by their very definitions, use delegation
and inheritance abundantly. Our categories and algorithms,
unsurprisingly, show that JHotDraw, the GUI development
framework meant as a case study in design patterns, is the
most mature of the five systems.

On the contrary, JReversePro, a research prototype for
reverse engineering Java bytecode, developed by two re-
searchers working in language design, is the least mature of
the studied systems.

Our categories and metrics reflect the presence or ab-
sence of design patterns. However, contrary to work that
only attempts to identify occurrences of some design pat-
terns in systems, e.g., [63], our approach distinguishes
between “good” and “bad” designs and, therefore, un-
der/over uses of design patterns.

Indeed, while a moderate and targeted use of design
patterns improves design quality, using no design patterns
or using design patterns unnecessarily decreases design qual-
ity. Our algorithms and metrics will identify such cases by
reporting features that could be factorised (missing design
patterns) and showing overlapping features (unnecessary
design patterns).

9.5 Functional Features and Galois Lattices
We defined a functional feature as a set of program ele-
ments distributed among a number of classes, which to-
gether implement a particular function, as shown in Fig-
ure 6a. Notwithstanding the complexity and computational
intractability of a structure-sensitive incidence relationship,
we proposed a simplified incidence relationship, which
associates each class with the set of methods and attributes
defined in the class and its descendants, which we call the
reverse inheritance incidence relationship.

In earlier work, we used Galois lattices on class interfaces
to identify optimal factorisations of class hierarchies [54].
The example of Figure 14 shows a situation where our
current algorithm discovers a candidate feature consisting
of methods occurring directly in the classes of the extent
(DrawApplet and DrawApplication), i.e., without re-
sorting to reverse inheritance.

Yet, we do need reverse inheritance because the program
elements that constitute a legitimate feature will often be
spread over several classes. Figure 19 illustrates the situ-
ation, showing methods corresponding to a subset of the
intent, which is a feature implementing a concept of a
connection, as the locus of linkage between figures that reacts
to figure change events. On the right, Figure 19 shows the
connection-point feature from PolyLineFigure and the
changeability feature from LineConnection. On the left,
the same methods are spread over three classes, two of
which are not hierarch vically related. We need the reverse-
inheritance incidence relationship because our algorithm
only considers inherited methods if they belong to different
class sub-hierarchies.

9.6 Functional Features and Code Clones
We chose to define the functional features of interest as
similar to subjects [1] rather than aspects [2] (see Section 1)
because we are interested in domain-related features, which
is also the reason for not analysing method bodies.

However, aspects, either explicitly using some technol-
ogy like AspectJ or implicitly, often in the form of code
clones, could help improve the quality of the detected func-
tional features or find new ones. For example, Peng et al. [64]
used code clones to detect features in source code. Yet, their
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(a) One occurrence of the intent of Node 5 (JHotDraw). (b) A second occurrence.

Fig. 19. The concept of connection is spread over several classes in JHotDraw

features of interest are implementation-related, not domain-
related, e.g., BankOpAuth for operator authentication.

We are interested in domain-related functional features,
for example, the feature concerned with moving figures in
JHotDraw. Therefore, we did not consider using code clones
but will explore in future work combining our idioms and
algorithms with code-clone detection to assess whether this
combination helps in improving the discovered functional
features and–or detecting new functional features.

9.7 Functional Features Understanding
Algorithms 2 and 3 in this article (1) provide a cartography
of the various functional features of a system and (2) identify
additional opportunities for factorisation, refactoring, and
reuse—the Ad Hoc candidate functional feature.
• Those that are descendants of deliberate (candidate)

features are most likely not interesting, the result of the
combinatorics of associating sets of classes to their
shared set of methods/attributes; inherent to FCA.

• Those that are not descendants of deliberate (candi-
date) features embody interesting abstractions that
have been missed by developers.

Thus, our algorithms could contribute to software devel-
opment and evolution by:
• Identifying and displaying deliberate, recognised

classes and interfaces that embody reusable func-
tional features, which are identified by Algorithm 2,
and which are identified as anchor types by Algo-
rithm 3.

• Discovering and displaying independent Ad Hoc can-
didate functional features, which are novel features
unrecognised by developers.

• Displaying the candidate features, i.e., highlighting
the program elements composing it, when the classes
or interfaces that participate in it are selected, as
shown in Figure 11, along with metrics.

• Displaying the hierarchy of deliberate candidate fea-
tures induced by a class or interface upon its selec-
tion, similar to the hierarchies (e.g., in Figures 12
and 15), but hiding Ad Hoc nodes.

• Similarly, the program elements composing Ad Hoc
candidate functional features upon the selection of
one of these elements, similar to Figure 14.

Such a tool would have several advantages:

• Providing a synthesized indicator—if not a metric—of
the quality of factorisation in a system.

• Suggesting novel features through the Ad Hoc candi-
dates, embodying interesting abstractions that may
warrant refactoring.

• Requiring no developers’ input thanks to our al-
gorithms relying on explicit programming language
semantics and formal concept analysis; as opposed
to implicit semantics, as embodied in variable names
and comments.

10 CONCLUSION AND FUTURE WORK

We presented algorithms to discover candidate functional
features in legacy OO systems. We explored three hypothe-
ses about how developers, without aspect-oriented pro-
gramming abstractions, would implement functional fea-
tures in a system.

We developed algorithms that rely solely on types
(classes and interfaces) and method signatures to discover
deliberate and ad-hoc candidate functional features and
applied them on five open-source systems and observed that
(1) multiple inheritance and delegation were overwhelm-
ingly used to compose recognised functional features; (2)
our algorithms discovered ad-hoc functional features as
well as some deliberate features not following the multiple
inheritance/delegation idioms; (3) our algorithms are com-
plementary to cartography systems and discover opportu-
nities for refactoring and reuse; and, (4) the outputs of our
algorithms provide indicators of the design maturity of the
systems under study.

In future works, we want to apply our approach to more,
diverse legacy systems to study their generalisability. We
also want to use objective measures to assess and compare
the discovered candidate features. We will validate ad-
hoc candidate features a-posteriori by studying subsequent
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versions of some systems. We will also study the use of
code clones to improve the quality of the functional features
and–or detect new functional features. We will study the
evolution of features and their relationships with changes
and faults. We will also consider evaluating the applica-
bility of our approach for dynamically-typed programming
languages, with their implicit dependencies [65], and non-
object-oriented programming languages, e.g., typed func-
tional programming languages like TypeScript.
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