
1

Analyzing and Visualizing Projects and their
Relations in Software Ecosystems

Van Tuan Tran1, Cheng Cheng1, Fabio Petrillo2, and Yann-Gaël Guéhéneuc1

1Concordia University, Montréal, Québec, Canada
2Université du Québec à Chicoutimi, Québec, Canada

Abstract—More and more software projects are being consol-
idated into ecosystems to increase their discovery, usability, and
usefulness. Some of the most popular ecosystems exist in npmjs,
Python Package Indexing, and Apache Maven Repository. It is
difficult for developers to relate these projects and use them to
their full potential because of their number, the spread and depth
of their features, and their intrinsic and accidental complexities.
We present a technique—SECO Storms Maker—to capture and
present the essential information from projects in an ecosystem
to help developers join, use, and contribute to the ecosystem. We
generate word-clouds based on the projects’ documentation via
tokenization and distribution frequency. We identify relations
among projects using grammar patterns scanning after part-
of-speech tagging. We put these word-clouds into a graph to
ease navigation and exploration. We evaluate our technique by
manually building a ground truth and comparing a randomly-
selected project with SECO to show its benefits.

I. INTRODUCTION

Software Ecosystems (SECOs) have been expanding in
recent years. For example, the number of packages in the
NuGet package manager went from about 3,600 packages in
2011 to more than 220,000 packages in 2020.

The growth of SECOs in number and size is due to the many
developments in various application domains, from personal
assistants to self-driving cars, and the open-source movement.
It is a boon for software developers, who can choose and
use many ecosystems, but also a curse: developers struggle
to identify the “best” ecosystems and, in it, the projects that
could fulfill their requirements, i.e., the Paradox of Choice.

Indeed, Loewenstein argued that more choices is not always
better [1]. If the choices promote sane competition among
providers, then developers, projects, companies, and ultimately
users, benefit. However, too many choices hide sustainable
libraries and frameworks, fragment development, yield the
“bandwagon effect”1. Hence, developers need help to iden-
tify, relate, compare, and contrast SECOs.

Previous work [2, 3] discussed the information needed by
developers when exploring SECOs: (1) a standard visual-
ization of the SECOs, (2) compatibility with other systems
or software, and (3) comparisons among the projects in
the SECOs. Merino et al. [4] discussed the importance of
visualization and multiple methods to visualize software but
these are not directly applicable to SECOs. Indeed, developers
often only consider the SECO documentation and that of its

1https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/

projects. Dedicated visualizations for SECOs must help
developers in exploring, comparing, and choosing a SECO
and projects in a SECO using available documentation.

For example, the Internet of Things (IoT) has dramati-
cally expanded in recent years with many different software
projects, from run-time libraries to communication protocols
to databases running on Cloud servers, which form many
competing but overlapping SECOs, i.e., from Google Cloud
IoT to Bosch IoT Suite. In particular, the Eclipse IoT SECO2

covers many IoT developers’ needs, sometimes with different
solutions to similar problems, e.g., CoAP vs. MQTT. Thus,
(new) developers must spend time and effort studying, un-
derstanding, and relating, via their documentation, the various
projects available in the Eclipse IoT SECO before using them.
We devise a visualization technique to show and contrast
software projects in/across SECOs to help developers.

There are multiple ways to visualize textual data from the
documentation. While bubble charts or treemaps may not
apply, word clouds (aka tag clouds) are more appropriate,
especially when a metric can be associated with each word,
e.g., importance, frequency, or distance. They were used in
multiple software-engineering research work [5, 6] and in
practice. e.g., to compare the USA presidential candidates’
speeches in 2008. Barth et al. [7] stated that word clouds are
a standard tool for abstracting, visualizing, and comparing text
documents.

We propose an approach, SECO Storms Maker, to
generate a word-cloud-based visualization of a SECO from
its documentation and that of its projects. We describe a
set of grammar rules for analyzing any SECOs when their
projects implement or use predefined standards/protocols.
We apply our approach on the Eclipse IoT SECO.

Section II summarises the related works. Sections III, IV
and V describe our approach, implementation and application
on the Eclipse IoT SECO. Sections VI and VII evaluate our
approach and its limitations. Finally, Section VIII concludes.

II. RELATED WORK

Text Analysis Techniques: Manning et al. [8] designed
and developed a more accurate Natural Language Processing
(NLP) toolkit than the NLTK toolkit. It is widely used by the
NLP research community, businesses, and governments. We
use the PoS annotators for tagging the words in sentences.

2https://iot.eclipse.org/projects/

https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://iot.eclipse.org/projects/


2

Previous Visualizations of Words: Shaw et al. [9] dis-
played words in connected graphs, where words are nodes
and edges are the similarities between words. The length of
the edges is based on the word metadata, such as their distri-
butions, their relations, etc. We adopt the idea of connected
graphs with edges showing the similarities among nodes. The
nodes in our visualization are the projects in a SECO.

There are other ways to visualize words. Dubinko et al.
[10] arranged word in a timeline while Wattenberg et al.
[11] assigned colors to each word that carries an activity and
displayed them in a Chromogram graph to show patterns.

Seifert et al. [12] proposed multiple techniques for creating
word cloud where font sizes depend on the importance of
words. The most appropriate technique minimizes redundant
white space, arranges the words “nicely” in a predefined space,
but takes more time. We use their Shift-Scale-Trunc (SCT)
algorithm, without the “Truncation” part.

Previous Visualizations of SECOs: Lungu et al. [13] pre-
sented the Small Project Observatory (SPO) to build interactive
visualizations of SECOs, using projects metadata, like sizes,
activities, developers’ activities. Their visualizations can show
inter-project dependencies using a graph of the projects.

Castella et al. [14] introduced word storms as groups of
word clouds where related words have the same color, size,
and position. We adopt this idea with a different approach and
application to visualize and compare projects in SECOs.

III. APPROACH

Often, many projects solve intersecting subsets of the same
functional requirements, providing other features, with dif-
ferent non-functional quality. Developers must read all the
projects’ documentation to know if one fits their needs, which
is time and effort-consuming and uncertain. We believe that
a graph with word cloud as nodes could help developers
in identifying, evaluating, and choosing projects within
a SECO. Indeed, they would provide (1) word cloud for
each project, summarizing their main topics, and (2) relations
among projects, showing complementary, substitutable, and
incompatible projects.

Our SECO Storms Maker divides into four steps:
Step 1 Collecting Data. Using Scrapy3 to crawl text from the

projects’ homepage and documentations.
Step 2 Finding keywords, generating word clouds. Using

Python NLTK4 library to analyze sentences and words
and Wordcloud5 to generate the clouds from the words.

Step 3 Finding relationships between projects, using PoS tag-
ging and rule-based grammatical scans of the sentences.

Figure 1 shows the resulting graphs for the Eclipse IoT
SECO. Blue nodes are standards/protocols. Word-cloud nodes
are the projects. We use the projects’ names as shapes of
the nodes because a project’s name usually has the highest
frequency, would take most space inside the node, but with
little information and comparability. Edges are relationships:
with red for “interchangeable” relationships and blue for “use”.

3https://scrapy.org/
4https://www.nltk.org/
5https://github.com/amueller/word cloud

A legend assists first-time viewers. Each step presents imple-
mentation challenges, which we discuss in the next section.

IV. IMPLEMENTATION

A. Collecting Data

We first need a list of all the projects in a SECO, which
we can build in multiple ways. Besides manually adding each
project, we can use a SECO public API or some JavaScript
code to analyze a SECO homepage.

We use Scrapy, an open-source and collaborative frame-
work for extracting data from some projects’ home-
pages/documentation. Scrapy supports multi-threading well,
compared to Selenium or BeautifulSoup, for performance.

From the list of projects’ homepages/documentation,
we create a JSON file containing the following fields
for each project: IsCrawled, CrawlDepthLevel,
IsWordcloudGenerated, SiteUrl, ProjectName.

Using this JSON file, we can track which project is crawled,
on how many levels, and if that project’s word-cloud is
generated. The results of this step are text files containing
all texts and links originating from the projects’ homepages.

B. Finding Keywords and Generating Word Clouds

We use the Python NLTK library to analyze the texts.
For each project, the input is its text file from Step 1; its
output is a list of keywords and their frequencies. The NLTK
library maintains a list of stop words to remove them from
the output. The resulting lists contain words of different types
(verb, noun, adjective, etc.). We use the Porter algorithm for
stemming words [15]. The stemming does not always create
meaningful words usable in word clouds. (For example, the
word “variable” is stemmed to “variabl”.) We maintain a link
to their original forms while stemming words. We also keep
a count of the original forms of the stemmed words.

a) Generating Word Clouds: Word clouds have proper-
ties that can create very different looks: (1) the shapes of the
clouds and (2) the sizes of the words. We observed that the
names of the projects are constantly repeated, which takes
valuable space for little information. Thus, we use the projects’
names as shapes of the word clouds.

The space between characters of the project’s name should
be negative, so the characters overlap and create a connected
space, which is filled using words. For each project, we display
the top 50 most frequent words. Given a frequent stemmed
word to display in a word cloud, we show its related, most
frequent unstemmed word, as shown in Figure 2.

With the Python Wordcloud library6, we create the word
clouds whose shapes are the names of the projects and content
are the more common words in decreasing sizes.

C. Finding Relationships between Projects

We split this step into four sub-steps:
1) Identify the possible relationships between projects.
2) Find sentences containing the relationship keywords.

6https://github.com/amueller/word cloud

https://scrapy.org/
https://www.nltk.org/
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud


3

Fig. 1. The graph of Eclipse IoT projects’ relationships

Fig. 2. The generated word-cloud for Keyple project

3) Tag sentences using Part-of-Speech (PoS).
4) Use grammar patterns to scan the result.
5) Add matches to the relationship list.

a) Identifying Relationships: Manikas et al. [16] defined
the symbiotic relationship between projects in a SECO, in-
spired by natural ecosystems, which we call the “Communi-
cable” relationship: two projects can communicate with each
other via the same protocols. Basole et al. [17] described
the “Dependency” relationship: one project depends on the
other. Batory et al. [18] introduced the “Interchangeable”
relationship: the projects can replace each other. Users can
use any of these projects to get the same features/behavior.

We add the “Other” relationship to describe relationships
that only exist in a specific SECO. For example, in the Eclipse
IoT SECO, some projects implement the same standards but
provide different features. In every SECO, these relationships
are different and must be identified manually. We cannot detect
such relationships automatically, as illustrated in Section V.

b) Finding Relationship Keywords: Once we know the
possible relationships between projects in a SECO, we can
detect their occurrences based on the sentences in the docu-
mentation of each project. For example, a sentence could read
“Project A depends on project B”.

c) Tagging Words and Building Grammar Patterns:
We then can construct a list of grammar rules that match
sentences describing relationships. The grammar follows a set
of predefined rules for each type of relationship. If a sentence
satisfies a rule, we add the relationship type between the

projects. For example, one rule for “Communicable” is:
Rule 1: if two projects support the same protocol, they can

communicate with each other.
The grammar rules can be straightforward. For example, the

pattern for the sentence “Project A depend on project B” is:
Noun + depend + preposition + Noun.

We store the detected relationships between projects in a
JSON file for visualization on the Web.

V. CASE STUDY: ECLIPSE IOT SECO

We apply our approach on the Eclipse IoT SECO. Tool and
data are at https://github.com/huntertran/seco-storms-maker.

A. Collecting Data

We extract a list of projects’ homepages from http://iot.
eclipse.org. While crawling, we see that the AGILE IoT
project’s homepage at http://agile-iot.eu/, contains little infor-
mation and links, so we increase the crawling level to 2.

B. Finding Keywords and Generating Word Clouds

Besides the list of common English stop words, we create
an additional list specifically for IoT SECO. We then apply
the steps in Section IV-B to break the texts into keywords and
generate individual word clouds for each project.

C. Finding Relationships between Projects

1) Identifying Types of Relationship: We observed that no
project has the “Dependency” relationship, possibly because
the number of projects is relatively small, compared to other
SECOs like NuGet. For the “Interchangeable”, “Communi-
cable”, and IoT-specific “Standard Implementation” relation-
ships, we use a list of predefined protocols and standards,
which must be implemented/supported by IoT projects to com-
municate with one another. We treat these protocols/standards
as relationship keywords as described in Section IV-B.

https://github.com/huntertran/seco-storms-maker
http://iot.eclipse.org
http://iot.eclipse.org
http://agile-iot.eu/


4

To identify these protocols/standards, we read the project
documentation and FAQ and manually identify abbreviations.
We share these keywords/abbreviations at https://git.io/JnC4f.

Using this list of standards/protocols, we identify the rela-
tionships among projects. For example, projects that support
MQTT are interchangeable. We process the crawled text
files of each project to obtain all sentences describing the
relationships among projects, tagged with PoS tagging.

2) Identifying Projects Relationships: Based on the list of
keywords, we draw relationships among the projects with a
simple ruleset for Eclipse IoT projects: (1) if two projects im-
plement the same protocol, they are interchangeable, and (2) if
two projects support the same protocol, they can communicate.

We build grammar patterns common in English to describe
the meaning of an IoT project related to the keywords,
available at https://git.io/JnCEf.

The resulting visualization is illustrated in Figure 1 and
available at https://huntertran.github.io/seco-storms-maker/.
The website contains visualizations for other SECOs. It uses
the SigmaJS library7 to draw the relationships. Users can zoom
and drag the node to move it.

VI. EVALUATION

To assess the visualization of the case study, we randomly
choose a project and perform a manual analysis to build a
ground truth. Then, we compare the result of this manual
analysis with that of our approach. We choose Keyple with
the parameters: (1) project homepage: https://projects.eclipse.
org/projects/iot.keyple and (2) CrawlDepthLevel: 1. We define
the following assessment criteria: (1) words in the word cloud,
(2) frequency of the words, and (3) project’s relationship to
implemented/used protocols.

We use the URLs in the project homepage for a deeper anal-
ysis. The URL must contain the project homepage to be valid
for further process. Then, we do a search for each word/phrase
to see how many times they are used on the current page. We
add this number to a list. We skip unimportant words based
on our understanding of the project. See https://git.io/JnClh
for the list of words.

To identify the relationships of Keyple with other projects,
we read and pick all sentences in the crawled text that clearly
define the capability of Keyple:

• The Keyple Calypso API provides a high-level interface
to implement fast and secure contactless ticketing trans-
actions based on the Calypso standard.—Keyple only
provides interfaces to implement the Calypso standard.

• Scope: Eclipse Keyple provides generic librairies for sim-
plifying the development of contactless applications based
on the Calypso standard, and for facilitating integration
with the secure elements typically involved in a secure
contactless solution.—The sentence claimed that Keyple
provides libraries to develop contactless applications but
does not say which standards it supports.

• This is the repository for the Java implementation of
’Calypso API’ for the ’Eclipse Keyple’ project.—Keyple

7http://sigmajs.org/

has a repository with source code that implement Calypso
standards and usage examples.

• Description: The goal of Eclipse Keyple is to allow devel-
opers to easily implement fast and secure off-line contact-
less transactions (using NFC cards, mobile phones, . . . )
based on the Calypso standard.—Keyple allows users to
implement Calypso standard quickly

Base on these sentences, we concluded that Keyple uses
the Calypso standard, as was concluded by our approach.
Comparing the ground truth with the result generated from
our automation tool, we observed that:

• Some words do not appear in the tool result (ticketing,
terminal) because they have low frequencies while im-
portant in the project.

• There are words that should not appear in the result of the
automation process like go, tags, back. These words,
while meaningless for the Keyple, could bear meaning in
other projects. For example, go appears in the sentence
Go back but, in some other project, it could be the Go
programming language.

• The relationships drawn from manual inspection and
automation tool are the same.

VII. DISCUSSION AND THREATS TO VALIDITY

While our approach could generate word clouds for the
projects in the Eclipse IoT SECO and their relationships, it
has some limitations, which reduce its usefulness.

A. Discussion

Compared to the “Small Project Observatory”, which shows
the dependencies between projects, our tool shows if projects
can interchange and communicate with each other via a
specific protocol. Compared to the “Word Storms”, which
synchronize color, size, and drawing position of the same
word in different word clouds, our tool presents a different
approach, showing the “interchangeable” and “communicate
able” relationships of the projects in a SECO. However, our
approach depends heavily on the quality of the documentation.
But it could be used to assess the documentation’s quality.

B. Internal threats

1) Bias in the Manual Evaluation: Because we design the
tool, we know how it works. This knowledge could create
the wrong inception while doing the manual inspection on
the selected project to build the ground truth. To address
this problem, on our visualization website, we put a simple
feedback form. Any researchers or users could use that form
to report a problem back to us.

2) Word, Not Word Phrase: The automation code counts
each word in the text separately. For example, the phrase smart
card in Keyple mentioning the NFC cards. Each word in the
phrase has meaning when standing alone and may have other
meanings in other projects. To address this problem, we can
include a list of phrases for each project in future work. The
tool can check this list when counting words.

https://git.io/JnC4f.
https://git.io/JnCEf
https://huntertran.github.io/seco-storms-maker/
https://projects.eclipse.org/projects/iot.keyple
https://projects.eclipse.org/projects/iot.keyple
https://git.io/JnClh
http://sigmajs.org/


5

C. External threats

1) Abbreviation: In the Keyple project, the word Secure
Element was abbreviated to SE and used multiple times.
This is specific hardware on Android devices that store cryp-
tographic data. The word SE also appeared in the phrase Java
SE, which is a version of Java. For other abbreviation words,
they can have other meanings or not an abbreviation in other
projects. To address this problem, in future work, we can use
the grammar rule with Part-of-Speech tagging as described
in section IV-C, with some modifications. The rule must be
customized for each project.

2) Words Without Meaning in a Project: When comparing
the list of words generated by automation code and the list by
manual inspection of Keyple project, we found some words
that have no meaning in the context of the project, such as
learning, downloads, tags, desktop. These words
may have meanings in other projects. Therefore, we cannot
add them to the stop words list to be excluded when counting.

3) Detection of Project Relationships: In our case study, we
rely on a list of standards–protocols to identify the relation-
ships between each project. We compose this list manually,
as there is no efficient and accurate way to detect or extract
them from the text. Researchers need to extract this list once
for each SECO domain.

VIII. CONCLUSION

In this paper, we proposed an approach to analyze and
visualize the contents and relations of software projects in
an ecosystem. The result is a word-cloud for each project,
visualized in a graph with relations to the standard or protocol
that the project supports/implements. We used the projects
in the Eclipse IoT ecosystem as a case study. We verified
the results by conducting a manual inspection on a randomly
chosen project and showed that our approach could indeed
summarise and relate projects in the ecosystem.

In the future, we could evaluate the tool more thoroughly by
interviewing developers. Another improvement is allowing the
project’s owner and maintainer to modify the generated word-
cloud and the relationship to archive the highest accuracy,
combined with the automation approach.

REFERENCES

[1] George Loewenstein. Is more choice always better.
Social Security Brief, 7(1):7, 1999.

[2] Alexander Serebrenik and Tom Mens. Challenges in
software ecosystems research. In Proceedings of the
2015 European Conference on Software Architecture
Workshops, pages 1–6, 2015.

[3] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar
Nierstrasz. Categorizing developer information needs
in software ecosystems. In Proceedings of the 2013
international workshop on ecosystem architectures, pages
1–5, 2013.

[4] Leonel Merino, Mohammad Ghafari, and Oscar Nier-
strasz. Towards actionable visualization for software
developers. Journal of software: evolution and process,
30(2):e1923, 2018.

[5] Gillian J Greene and Bernd Fischer. Interactive tag cloud
visualization of software version control repositories.
In 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT), pages 56–65. IEEE, 2015.

[6] Rylan Cottrell, Brina Goyette, Reid Holmes, Robert J
Walker, and Jorg Denzinger. Compare and contrast:
Visual exploration of source code examples. In 2009 5th
IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pages 29–32. IEEE, 2009.

[7] Lukas Barth, Stephen G Kobourov, and Sergey Pupyrev.
Experimental comparison of semantic word clouds. In
International Symposium on Experimental Algorithms,
pages 247–258. Springer, 2014.

[8] Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David McClosky.
The stanford corenlp natural language processing toolkit.
In Proceedings of 52nd annual meeting of the association
for computational linguistics: system demonstrations,
pages 55–60, 2014.

[9] Blake Shaw. Utilizing folksonomy: Similarity metadata
from the del. icio. us system. Project Proposal, Decem-
ber, 2005.

[10] Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine
Novak, Prabhakar Raghavan, and Andrew Tomkins. Vi-
sualizing tags over time. ACM Transactions on the Web
(TWEB), 1(2):7–es, 2007.

[11] Martin Wattenberg, Fernanda B Viégas, and Katherine
Hollenbach. Visualizing activity on wikipedia with
chromograms. In IFIP Conference on Human-Computer
Interaction, pages 272–287. Springer, 2007.

[12] Christin Seifert, Barbara Kump, Wolfgang Kienreich,
Gisela Granitzer, and Michael Granitzer. On the beauty
and usability of tag clouds. In 2008 12th Interna-
tional Conference Information Visualisation, pages 17–
25. IEEE, 2008.

[13] Mircea Lungu, Michele Lanza, Tudor Gı̂rba, and Romain
Robbes. The small project observatory: Visualizing soft-
ware ecosystems. Science of Computer Programming,
75(4):264–275, 2010.

[14] Quim Castella and Charles Sutton. Word storms: Multi-
ples of word clouds for visual comparison of documents.
In Proceedings of the 23rd international conference on
World wide web, pages 665–676, 2014.

[15] Anjali Ganesh Jivani et al. A comparative study of stem-
ming algorithms. Int. J. Comp. Tech. Appl, 2(6):1930–
1938, 2011.

[16] Konstantinos Manikas and Klaus Marius Hansen. Char-
acterizing the danish telemedicine ecosystem: Making
sense of actor relationships. In Proceedings of the Fifth
International Conference on Management of Emergent
Digital Ecosystems, pages 211–218, 2013.

[17] Rahul C Basole. Visualization of interfirm relations in
a converging mobile ecosystem. Journal of information
Technology, 24(2):144–159, 2009.

[18] Don Batory and Sean O’malley. The design and imple-
mentation of hierarchical software systems with reusable
components. ACM Transactions on Software Engineering
and Methodology (TOSEM), 1(4):355–398, 1992.


	Introduction
	Related Work
	Approach
	Implementation
	Collecting Data
	Finding Keywords and Generating Word Clouds
	Finding Relationships between Projects

	Case Study: Eclipse IoT SECO
	Collecting Data
	Finding Keywords and Generating Word Clouds
	Finding Relationships between Projects
	Identifying Types of Relationship
	Identifying Projects Relationships


	Evaluation
	Discussion and Threats to Validity
	Discussion
	Internal threats
	Bias in the Manual Evaluation
	Word, Not Word Phrase

	External threats
	Abbreviation
	Words Without Meaning in a Project
	Detection of Project Relationships


	Conclusion

