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Abstract—Code smells are poor implementation choices,
thought to make object-oriented systems hard to maintain.
In this study, we investigate if classes with code smells are
more change-prone than classes without smells. Specifically,
we test the general hypothesis: classes with code smells are
not more change prone than other classes. We detect 29
code smells in 9 releases of Azureus and in 13 releases of
Eclipse, and study the relation between classes with these code
smells and class change-proneness. We show that, in almost
all releases of Azureus and Eclipse, classes with code smells
are more change-prone than others, and that specific smells
are more correlated than others to change-proneness. These
results justify a posteriori previous work on the specification
and detection of code smells and could help focusing quality
assurance and testing activities.

Keywords—Antipatterns, Mining Software Repositories, Em-
pirical Software Engineering.

I. CONTEXT AND PROBLEM

In theory, code smells [1] are poor implementation
choices, opposite to idioms [2] and, to some extent, to design
patterns [3], in the sense that they pertain to implementation
while design patterns pertain to the design. They are “poor”
solutions to recurring implementation problems. In practice,
code smells are in-between design and implementation: they
may concern the design of a class, but they concretely
manifest themselves in the source code as classes with
specific implementation. They are usually revealed through
particular metric values [4].

One example of a code smell is the ComplexClassOnly
smell, which occurs in classes with a very high McCabe
complexity when compared to other class in a system. At a
higher level of abstraction, the presence of some specific
code smells can, in turn, manifest in antipatterns [5], of
which code smells are parts of. Studying the effects of
antipatterns is, however, out of scope of this study and will
be treated in other works.

Premise. Code smells are conjectured in the literature to
hinder object-oriented software evolution. Yet, despite the
existence of many works on code smells and antipatterns,

no previous work has contrasted the change-proneness of
classes with code smells with this of other classes to study
empirically the impact of code smells on this aspect of
software evolution.

Goal. We want to investigate the relations between code
smells and changes: First, we study whether classes with
code smells have an increased likelihood of changing than
other classes. Second, we study whether classes with more
smells than others are more change-prone. Third, we study
the relation between particular smells and change-proneness.

Contribution. We present an exploratory study investigating
the relations between 29 code smells and changes occurring
to classes in 9 releases of Azureus and 13 releases of Eclipse.
We show that code smells do have a negative impact on
classes, that certain kinds of smells do impact classes more
than others, and that classes with more smells exhibit higher
change-proneness.

Relevance. Understanding if code smells increase the risk
of classes to change is important from the points of view of
both researchers and practitioners.

We bring evidence to researchers that (1) code smells do
increase the number of changes that classes undergo, (2) the
more smells a class has, the more change-prone it is, and
(3) certain smells lead to more change-proneness than others.
Therefore, this study justifies a posteriori previous work on
code smells: within the limits of the threats to its validity,
classes with code smells are more change-prone than others
and therefore smells may indeed hinder software evolution;
we empirically support such a conjecture reported in the
literature [1], [6], [7], which is the premise of this study.

We also provide evidence to practitioners—developers,
quality assurance personnel, and managers—of the impor-
tance and usefulness of code smells detection techniques to
assess the quality of their systems by showing that classes
with smells are more likely to change often, thus impacting
on the maintenance effort.

Organisation. Section II relates our study with previous



works. Section III provides definitions and a description of
our specification and detection approach for code smells.
Section IV describes the exploratory study definition and de-
sign. Section V presents the study results, while Section VI
discusses them, along with threats to their validity. Finally,
Section VII concludes the study and outlines future work.

II. RELATED WORK

Several works studied code smells, often in relation to
antipatterns. We summarise these works as well as works
aimed at relating metrics with software change-proneness.

Code Smell Definition and Detection. The first book on
“antipatterns” in object-oriented development was written
in 1995 by Webster [8]; his contribution includes con-
ceptual, political, coding, and quality-assurance problems.
Riel [9] defined 61 heuristics characterising good object-
oriented programming to assess a system quality manually
and improve its design and implementation. These heuristics
are similar and–or precursor to code smells. Fowler [1]
defined 22 code smells, suggesting where developers should
apply refactorings. Mäntylä [6] and Wake [7] proposed
classifications for code smells. Brown et al. [5] described
40 antipatterns, which are often described in terms of lower-
level code smells. These books provide in-depth views on
heuristics, code smells, and antipatterns aimed at a wide
academic audience. They are the basis of all the approaches
to specify and (semi-)automatically detect code smells (and
antipatterns).

Several works proposed approaches to specify and detect
code smells and antipatterns. They range from manual
approaches, based on inspection techniques [10], to metric-
based heuristics [4], [11], where code smells and–or antipat-
terns are identified according to sets of rules and thresholds
defined on various metrics. Rules may also be defined using
fuzzy logic and executed by means of a rule-inference engine
[12] or using visualisation techniques [13], [14].

Semi-automatic approaches are an interesting compro-
mise between fully automatic detection techniques that can
be efficient but loose track of the context and manual
inspections that are slow and subjective [15]. However,
they require human expertise and are thus time-consuming.
Other approaches perform fully automatic detection and use
visualisation techniques to present the detection results [16],
[17].

This previous work has contributed significantly to the
specification and automatic detection of code smells and
antipatterns. The approach used in this study, DECOR,
builds on this previous work and offers a complete method
to specify code smells and antipatterns and automatically
detect them.

Design Patterns and Software Evolution. While code
smells and antipatterns represent “poor” implementation
and–or design choices, design patterns are considered to be

“good” solutions to recurring design problems. Nevertheless,
they may not always have positive effects on a system.
Vokac [18] analysed the corrective maintenance of a large
commercial system over three years and compared the fault
rates of classes that participated in design patterns against
those of classes that did not. He noticed that participating
classes were less fault prone than others. Vokac’s work
inspired us in the use of logistic regression to analyse the
correlations between code smells and change-proneness.

Bieman et al. [19] analysed four small and one large
systems to study pattern change proneness. Other studies
dealt with the changeability and resilience to change of
design patterns and of specific pattern roles [20], [21], [22],
and with their impact on the maintainability of a large
commercial system [23].

While previous works investigated the impact of good
design principles, i.e., design patterns, on systems, we study
the impact of poor implementation choices, i.e., code smells,
on software evolution.

Metrics and Software Evolution. Several studies, such as
Basili et al.’s seminal work [24], used metrics as qual-
ity indicators. Cartwright and Shepperd [25] conducted an
empirical study on an industrial C++ system (over 133
KLOC), which supported the hypothesis that classes in
inheritance relations are more fault prone. It followed that
Chidamber and Kemerer DIT and NOC metrics [26] could
be used to find classes that are likely to have higher fault
rates. Gyimothy et al. [27] compared the capability of sets
of Chidamber and Kemerer metrics to predict fault-prone
classes within Mozilla, using logistic regression and other
machine learning techniques, e.g., artificial neural networks.
They concluded that CBO is the most discriminating metric.
They also found LOC to discriminate fault-prone classes
well. Zimmermann et al. [28] conducted an empirical study
on Eclipse showing that a combination of complexity metrics
can predict faults and suggesting that the more complex the
code, the more faults. El Emam et al. [29] showed that after
controlling for the confounding effect of size, the correla-
tion between metrics and fault-proneness disappeared: many
metrics are correlated with size and, therefore, do not bring
more information to predict fault proneness.

We do not claim that smells are better predictor of change-
proneness than metrics, which instead provide more fine-
grained and precise information to prediction models. On
the other hand smells refer to specific programming styles
and are therefore a better tool than metrics for developers.
They are able to tell the developer whether a code artefact
is bad or not, by means of thresholds defined over metrics.
A ComplexClassOnly smells warns against excessive com-
plexity, while McCabe cyclomatic complexity of WMC [26]
leave such a judgement to the developer.



Table I
LIST OF CODE SMELLS CONSIDERED IN THIS STUDY (DEFINITIONS CAN

BE FOUND [30]).

AbstractClass ChildClass
ClassGlobalVariable ClassOneMethod
ComplexClassOnly ControllerClass
DataClass FewMethods
FieldPrivate FieldPublic
FunctionClass HasChildren
LargeClass LargeClassOnly
LongMethod LongParameterListClass
LowCohesionOnly ManyAttributes
MessageChainsClass MethodNoParameter
MultipleInterface NoInheritance
NoPolymorphism NotAbstract
NotComplex OneChildClass
ParentClassProvidesProtected RareOverriding
TwoInheritance

III. CODE SMELLS

We use our previously proposed approach, DECOR (De-
fect dEtection for CORrection) [31], to specify and detect
code smells. DECOR is based on a thorough domain analysis
of code smells and antipatterns defined in the literature, and
provides a domain-specific language to specify code smells
and antipatterns and methods to detect their occurrences au-
tomatically. It can be applied on any object-oriented system
through the use of the PADL meta-model and POM frame-
work. PADL is a meta-model to describe object-oriented
systems [32]; parsers for AOL, C++, and Java are available.
POM is a PADL-based framework that implements more
than 60 metrics, including McCabe cyclomatic complexity,
Brian Henderson-Sellers’ cohesion metric, Chidamber and
Kemerer metric suite, and statistical features, e.g., computing
and accessing metrics box-plots, to compensate for the effect
of size.

Moha et al. [31] reported that the DECOR current de-
tection algorithms for antipatterns ensure 100% recall and
have a precision greater than 31% in the worst case, with
an average greater than 60%. Although such a precision
could be an issue in general, in this paper we use only the
code smells detection algorithms of DECOR (antipatterns
are defined in terms of code smells), which have a higher
precision (80% on average), because the definition of a code
smell is always more constraining than that of an antipattern,
and includes less variability, such as fuzzy threshold or union
between many rules.

The definition of a code smell includes several metrics
with specific thresholds. In the current algorithms, the
thresholds have been defined based on the literature and
empirical studies.

Listing 1 shows the specifications of the ComplexClas-
sOnly and LowCohesionOnly code smells. A class has
the ComplexClassOnly smell if its McCabe complexity,
computed as the sum of the McCabe complexities of all
its methods, is very high with respect to the complexity of
all the other class in the system. A class is with the LowCo-
hesionOnly smell if it lacks cohesion, measured using Brian
Henderson-Sellers’ cohesion metric LCOM5 and evaluated

Table II
SUMMARY OF THE 9 RELEASES OF AZUREUS (CHANGES ARE

COUNTED FROM ONE RELEASE TO THE NEXT, AZUREUS
4.2.0.2 IS THUS EXCLUDED).
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2008-06-16 3.1.0.0 589,049 2,954 669
2008-07-01 3.1.1.0 604,527 3,026 7,035
2008-10-15 4.0.0.0 690,116 3,045 383
2008-10-24 4.0.0.2 648,942 3,099 387
2008-11-20 4.0.0.4 651,642 3,111 1,589
2009-01-26 4.1.0.0 664,163 3,149 238
2009-02-05 4.1.0.2 664,554 3,149 478
2009-02-25 4.1.0.4 664,810 3,150 1,341
2009-03-23 4.2.0.0 680,238 3,210 106

Total 9 5,858,041 27,893 12,226

as very high, i.e., over the upper quartile when considering
all classes. The values 20 indicates that, in these two code
smells, a deviation from the upper quartile is possible, e.g.,
classes with McCabe values that are up to 20% below the
upper quartile are also complex classes.

In the following, we study 29 code smells [5], [1], as
shown in Table I. We choose these smells because they
are representative of problems with data, complexity, size,
and the features provided by classes. Their definitions and
specifications are outside of the scope of this paper and are
available in a longer technical report [30].

IV. STUDY DEFINITION AND DESIGN

The goal of our study is to investigate the relation between
the presence of smells in classes and class change-proneness.
The quality focus is the increase of maintenance effort and
cost due to the presence of code smells.

The perspective is that of researchers, wanting to get
evidence on the conjecture of the impact of smells on
change proneness—to further our understanding of the im-
pact of implementation and design choices on systems. Also,
recommendations on code smells can be useful from the
perspective of developers: the presence of change-prone
classes likely increases the maintenance effort and cost.
Finally, they can be viewed from the perspective of managers
and–or quality assurance personnel, who could use code
smell detection techniques to assess the change-proneness of
in-house or to-be-acquired systems to better quantify their
cost-of-ownerships.

The context of this study consists of the change history
of two systems, Azureus and Eclipse, having a different size
and belonging to different domains. Azureus1, now known as
“Vuze”, is an open source BitTorrent client written in Java.
BitTorrent is a protocol that allows to exchange files over the
Internet. Eclipse2 is an open-source integrated development
environment used both in open-source communities and in
industry. It is mostly written in Java, with C/C++ code used

1http://azureus.sourceforge.net/
2http://www.eclipse.org/



1 RULE_CARD : ComplexClassOnly {
2 RULE : ComplexClassOnly { (METRIC : McCabe , VERY_HIGH , 20 ) } ;
3 } ;
4 RULE_CARD : LowCohesionOnly {
5 RULE : LowCohesionOnly { (METRIC : LCOM5, VERY_HIGH , 20 ) } ;
6 } ;

Listing 1. Specification of the ComplexClassOnly and LowCohesionOnly code smells.

Table III
SUMMARY OF THE 13 ANALYSED RELEASES OF ECLIPSE (CHANGES

ARE COUNTED FROM ONE RELEASE TO THE NEXT,
ECLIPSE 3.4 IS THUS EXCLUDED).
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2001-11-07 1.0 781,480 4,647 21,553
2002-06-27 2.0 1,249,840 6,742 26,378
2003-06-27 2.1.1 1,797,917 8,730 10,397
2003-11-03 2.1.2 1,799,037 8,732 11,534
2004-03-10 2.1.3 1,799,702 8,736 15,560
2004-06-25 3.0 2,260,165 11,166 11,582
2004-09-16 3.0.1 2,268,058 11,192 24,150
2005-03-11 3.0.2 2,272,852 11,252 49,758
2006-06-29 3.2 3,271,516 15,153 2,745
2006-09-21 3.2.1 3,284,732 15,176 11,854
2007-02-12 3.2.2 3,286,300 15,184 10,682
2007-06-25 3.3 3,752,212 17,162 7,386
2007-09-21 3.3.1 3,756,164 17,167 40,314

Total 13 31,579,975 151,039 243,903

mainly for widget toolkits. Eclipse has been developed partly
by a commercial company (IBM), which makes it more
likely to embody industrial practices. Also, it has been used
by other researchers in related studies, e.g., to predict faults
[28].

We analysed 9 releases of Azureus, from release 3.1.0.0
to 4.2.0.0, in the years 2008-2009. We tracked the change
history between releases using its Concurrent Versions Sys-
tem (CVS). Characteristics of the analysed releases are
shown in Table II. We analysed 13 releases of Eclipse
available on the Internet between 2001 and 2008. Table III
summarises the analysed releases and their key figures. On
each considered release, we apply the 29 current code smell
detection algorithms provided by DECOR to obtain the sets
of classes with smells.

A. Research Questions

Based on the data collected from Azureus and Eclipse,
our study aims at answering three research questions on
the relationship between code smells and classes change-
proneness,
• RQ1: What is the relation between smells and change

proneness? We investigate whether classes with smells
are more change-prone than others by testing the null
hypothesis: H01: the proportion of classes undergoing
at least one change between two releases does not
significantly differ between classes with code smells and
other classes.

• RQ2: What is the relation between the number of
smells in a class and its change-proneness? We are
also interested to evaluate whether classes with a higher
number of smells are more change-prone than others by
testing the null hypothesis: H02: the number of smells
in change-prone classes is not significantly higher than
the number of smells in classes that do not change.

• RQ3: What is the relation between particular kinds
of smells and change proneness? Also, we analyse
whether particular kinds of smells contribute more than
others to changes by testing the null hypothesis: H03:
classes with particular kinds of code smells are not
significantly more change-prone than other classes.

B. Variable Selection

We relate the following dependent and independent vari-
ables to test the previous null hypotheses and, thus, answer
the associated research questions.

Independent variables. We have as many independent
variables as kinds of code smells: we investigate the presence
of 29 different kinds of smells. Each variable si,j,k indicates
the number of times a class i has a smell j in a release
rk. For RQ1, we aggregate these variables into a Boolean
variable Si,k indicating whether a class i has at least one
smell of any kind. For RQ2, we consider the number of
changes ci,k a class i to underwent between rk and rk+1,
and convert ci,k into a Boolean variable Ci,k (true if the
class underwent at least one change, false otherwise).

Dependent variables. The dependent variables measure
the phenomena related to our independent variables. Our
dependent variable for RQ1 and RQ3 is the class change
proneness, which is measured, as above described, as the
number of changes ci,k that a class i underwent between
release rk (in which it has some smells) and the subsequent
release rk+1. This number of changes is counted as the
number of commits in the CVS (HEAD only). For RQ1 and
RQ3, we are interested to distinguish classes that underwent,
between two releases, at least one change. In RQ2, we
compare the number of smells in change-prone classes
with that in non-change-prone classes, using as dependent
variable the total number of smells sti,k a class i has in a
release rk.



C. Analysis Method

In RQ1, to attempt rejecting H01, we test whether the
proportion of classes exhibiting (or not) at least one change,
significantly varies between classes with (some) smells and
other classes. We use Fisher’s exact test [33], which checks
whether a proportion vary between two samples. We also
compute the odds ratio (OR) [33] that indicates the like-
lihood for an event to occur. The odds ratio is defined as
the ratio of the odds p of an event occurring in one sample,
i.e., the odds that classes with some smells underwent a
change (experimental group), to the odds q of the same
event occurring in the other sample, i.e., the odds that
classes with no smell underwent a change (control group):
OR = p/(1−p)

q/(1−q) . An odds ratio of 1 indicates that the event
is equally likely in both samples. An OR greater than 1
indicates that the event is more likely in the first sample
(smells), while an OR less than 1 that it is more likely in
the second sample.

In RQ2, we use a (non-parametric) Mann-Whitney test
to compare the number of smells in change-prone classes
with the number of smells in non-change-prone classes.
Non-parametric tests do not require any assumption on the
underlying distributions. We also test the hypothesis with
the (parametric) t-test. Other than testing the hypothesis,
it is of practical interest to estimate the magnitude of the
difference of the number of smells in classes with and
without changes: we use the Cohen d effect size [33], which
indicates the magnitude of the effect of a treatment on the
dependent variables. The effect size is considered small for
0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8 and large
for d ≥ 0.8. For independent samples (to be used in the
context of unpaired analyses, as in our case), it is defined as
the difference between the means (M1 and M2), divided by
the pooled standard deviation (σ =

√
(σ2

1 + σ2
2)/2) of both

groups: d = (M1 −M2)/σ.
In RQ3, we use a logistic regression model [34], similarly

to Vokac’s study [18] to relate change-proneness with the
presence of particular kinds of smells. In a logistic regression
model, the dependent variable is commonly a dichotomous
variable and, thus, assumes only two values {0, 1}, e.g.,
changed or not. The multivariate logistic regression model
is based on the formula:

π(X1, X2, . . . , Xn) =
eβ0+β1·X1+...+βn·Xn

1 + eβ0+β1·X1+...+βn·Xn

where (i) Xj are characteristics describing the modelled phe-
nomenon, in our case the number of smells of kind j a class
contains, i.e., si,j,k when the model is applied to the class
i of release rk

3; (ii) βj are the model coefficients; and (iii)
0 ≤ π ≤ 1 is a value on the logistic regression curve. The
closer the value is to 1, the higher is the likelihood that the
class undergoes a change.

3for simplicity we omit i and k from the formula.

Table IV
AZUREUS: CONTINGENCY TABLE AND FISHER TEST RESULTS FOR

CLASSES WITH AT LEAST ONE SMELL THAT UNDERWENT AT LEAST ONE
CHANGE.
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p-values OR
3.1.0.0 220 1967 20 1433 < 0.01 8.01
3.1.1.0 564 1686 101 1381 < 0.01 4.57
4.0.0.0 83 2238 7 1519 < 0.01 8.05
4.0.0.2 106 2206 12 1510 < 0.01 6.04
4.0.0.4 435 1886 39 1484 < 0.01 8.77
4.1.0.0 50 2297 11 1533 < 0.01 3.03
4.1.0.2 112 2235 11 1533 < 0.01 6.98
4.1.0.4 112 2236 12 1532 < 0.01 6.39
4.2.0.0 37 2353 3 1580 < 0.01 8.28

While in other contexts (e.g., [27]), logistic regression
models were used for prediction purposes; as in [18], we use
such models as an alternative to the Analysis Of Variance
(ANOVA) for dichotomous dependent variables. This is to
say that we use logistic regression to reject H03. Then,
for each smell and for the 9 analysed Azureus releases
and for the 13 Eclipse releases, we count the number of
times that the p-values obtained by the logistic regression
were significant. It is also important to highlight that during
the procedure for building the logistic regression model we
discarded variables that were highly correlated to others
(i.e., thanks to the model, we were able to only select one
variable)—that can happen between some smells—thus the
model only contains a non-redundant set of features (smells)
useful to warn against classes change-proneness.

V. STUDY RESULTS

Table V
ECLIPSE: CONTINGENCY TABLE AND FISHER TEST RESULTS FOR

CLASSES WITH AT LEAST ONE SMELL THAT UNDERWENT AT LEAST ONE
CHANGE.
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p-values OR
1.0 2042 1731 417 448 < 0.01 1.27
2.0 3673 1373 767 236 0.02 0.82
2.1.1 2224 3838 193 964 < 0.01 2.89
2.1.2 2400 3664 359 798 < 0.01 1.46
2.1.3 2942 3125 516 642 0.01 1.17
3.0 3415 4880 684 1032 0.32 1.06
3.0.1 6216 2087 1294 423 0.69 0.97
3.0.2 5784 2520 1194 524 0.91 1.01
3.2 1819 9621 115 2210 < 0.01 3.63
3.2.1 2778 8680 291 2038 < 0.01 2.24
3.2.2 3321 8144 409 1921 < 0.01 1.92
3.3 1778 10844 145 2364 < 0.01 2.67
3.3.1 4337 8290 682 1830 < 0.01 1.40



Table VI
AZUREUS: MANN-WHITNEY AND t-TEST RESULTS FOR NUMBER OF

SMELLS IN CLASSES THAT ARE CHANGE-PRONE OR NOT.

Releases M-W t-test Cohen
p p d

3.1.0.0 < 0.01 < 0.01 0.72
3.1.1.0 < 0.01 < 0.01 0.71
4.0.0.0 < 0.01 < 0.01 1.01
4.0.0.2 < 0.01 < 0.01 0.86
4.0.0.4 < 0.01 < 0.01 0.83
4.1.0.0 < 0.01 < 0.01 0.59
4.1.0.2 < 0.01 < 0.01 0.93
4.1.0.4 < 0.01 < 0.01 0.85
4.2.0.0 < 0.01 < 0.01 1.02

Table VII
ECLIPSE: MANN-WHITNEY AND t-TEST RESULTS FOR NUMBER OF

SMELLS IN CLASSES THAT ARE CHANGE-PRONE OR NOT.

Releases M-W t-test Cohen
p p d

1.0 0.79 0.03 0.06
2.0 < 0.01 < 0.01 −0.08
2.1.1 < 0.01 < 0.01 0.31
2.1.2 < 0.01 < 0.01 0.13
2.1.3 0.04 < 0.01 0.07
3.0 0.07 0.10 0.03
3.0.1 0.11 0.26 −0.03
3.0.2 0.12 0.28 −0.02
3.2 < 0.01 < 0.01 0.41
3.2.1 < 0.01 < 0.01 0.29
3.2.2 < 0.01 < 0.01 0.25
3.3 < 0.01 < 0.01 0.41
3.3.1 < 0.01 < 0.01 0.18

We now report the results of our study to address the
research questions. We discuss these results in the following
Section VI.

A. RQ1: Smells and Change Proneness

Tables IV and V report, for each analysed release of
Azureus and Eclipse, the number of classes (1) with smells
and that changed; (2) with smells but that did not change; (3)
without smells but with changes; and, (4) without smells nor
changes. The tables also report the result of Fisher’s exact
test and ORs when testing H01.

Results for Azureus in Table IV show that the ORs are
very high (always greater than 3); in most cases the odds
for classes with smells to change is six times higher or more
than for classes without smells. H01 rejection and the ORs
provide a posteriori concrete evidence of the negative impact
of smells on change-proneness. Developers should be wary
of classes with smells, because they are more likely to be the
subject of their maintenance effort. For Eclipse, except for
the 3.0 release series, proportions are significantly different,
thus allowing to reject H01. There is a greater proportion of
classes with smells that change with respect to other classes.
In some cases (e.g., releases 1.0, 2.0, 2.1.2, 2.1.3, and the 3.0
release series), ORs are close to 1, i.e., the odds is even that
a class with a smell changes or not. In the other releases, the
odds of changing are 2 to 3.6 times in favour of classes with
smells. We conclude that the odds to change are in general
higher for classes with smells.

B. RQ2: Number of Smells and Change Proneness

Tables VI and VII report, for Azureus and Eclipse respec-
tively, results of the Mann-Whitney two-tailed test, t-test,
and Cohen d effect size, aimed at comparing the number of
code smells in classes that changed or not. For Azureus, the
p-values are always significant with a high effect size, indi-
cating that for all the analysed releases change-prone classes
are those with a higher number of smells. For Eclipse, results
are significant (although with a small effect size), except for
the 3.0 release series, where differences are not significant,
thus confirming the findings from RQ1 regarding the limited
relation of smells with change-proneness for this release
series. In summary we can reject H02.

Table VIII
AZUREUS: NUMBER OF SIGNIFICANT p-VALUES IN THE 9 ANALYSED

RELEASES OBTAINED BY LOGISTIC REGRESSION FOR THE
CORRELATIONS BETWEEN CHANGE-PRONENESS AND KINDS OF

SMELLS. BOLDFACE AND GRAY BACKGROUND INDICATE SIGNIFICANT
p-VALUES FOR AT LEAST 75% OF THE RELEASES.

Smells Proneness to
Changes

AbstractClass 5
ChildClass 3
ClassGlobalVariable 2
ClassOneMethod 1
ComplexClassOnly 2
ControllerClass 2
DataClass 4
FewMethods 2
FieldPrivate 1
FieldPublic 2
FunctionClass 2
HasChildren 1
LargeClass 5
LargeClassOnly –
LongMethod –
LongParameterListClass 1
LowCohesionOnly 2
ManyAttributes –
MessageChainsClass 4
MethodNoParameter 2
MultipleInterface 4
NoInheritance 3
NoPolymorphism 3
NotAbstract 7
NotComplex 2
OneChildClass 1
ParentClassProvidesProtected –
RareOverriding 1
TwoInheritance –

C. RQ3: Kinds of Smells and Change Proneness

Tables VIII and IX show the results of the logistic regres-
sion for the correlations between changes and the different
kinds of code smells. In particular, the tables summarise the
number of analysed releases for which each kind of smells
was significant in the logistic regression model. Smells that
are significant for at least 75% of the releases (7 for Azureus,
10 for Eclipse) are highlighted in boldface. Detailed results
of the logistic regression are in a longer technical report [30].
In Azureus, only the smell NotAbstract has a significant
impact on change proneness in more than 75% of releases.
AbstractClass and LargeClass resulted to be significant in



Table IX
ECLIPSE: NUMBER OF SIGNIFICANT p-VALUES IN THE 13 ANALYSED

RELEASES OBTAINED BY LOGISTIC REGRESSION FOR THE
CORRELATIONS BETWEEN CHANGE-PRONENESS AND KINDS OF

SMELLS. BOLDFACE AND GRAY BACKGROUND INDICATE SIGNIFICANT
p-VALUES FOR AT LEAST 75% OF THE RELEASES.

Smells Proneness to
Changes

AbstractClass 1
ChildClass 6
ClassGlobalVariable 2
ClassOneMethod 4
ComplexClassOnly 8
ControllerClass 4
DataClass 4
FewMethods 2
FieldPrivate 6
FieldPublic 8
FunctionClass 1
HasChildren 11
LargeClass 8
LargeClassOnly –
LongMethod 9
LongParameterListClass 6
LowCohesionOnly 5
ManyAttributes 9
MessageChainsClass 10
MethodNoParameter 8
MultipleInterface 5
NoInheritance –
NoPolymorphism 3
NotAbstract 1
NotComplex 10
OneChildClass 2
ParentClassProvidesProtected –
RareOverriding 4
TwoInheritance –

more than 50% of the releases (5 out of 9). In Eclipse, the
smells that have a significant effect on change-proneness
for 75% of the releases or more are HasChildren, Mes-
sageChainsClass, and NotComplex. In summary, although
results sometimes depend on the particular context—e.g.,
system analysed and particular release—we can reject H03,
i.e., there are smells that are more related to others to
change-proneness.

As discussed in Section IV, the logistic regression pro-
cedure has pruned out from the model smells that are
significantly correlated to others, initially inserted in the
model as their definition in terms of metrics was different.
We also performed a Spearman rank correlation analysis
and identified pairs of smells that had a significant and high
(>0.8) correlation. Such correlations were consistent in all
the analysed releases of Azureus and Eclipse (see [30]). It
is the case, for both Azureus and Eclipse, of LargeClass
and LargeClassOnly, and, for Azureus, of NotAbstract and
ParentClassProvidesProtected, and of RareOverriding and
ParentClassProvidesProtected. In all these cases, the logistic
regression discarded the second smell in the pair.

VI. DISCUSSION

This section discusses results reported in Section V, along
with threats to validity.

From Tables IV and V, it can be noticed that large
proportions of classes in each release of both Azureus and

Eclipse are with smells. This fact is not surprising because
we used 29 code smell detection algorithms, which cover
almost all aspects of the implementation and–or design of
classes. Moreover, we do not consider that a class with a
smell is necessarily the result of a “bad” implementation or
design choice; only the concerned developers could make
such a judgement. We do not exclude that, in a particular
context, a code smell can be the best way to actually
implement and–or design a (part of a) class. For example,
automatically-generated parsers are often very large and
complex classes. Only developers can evaluate their impact
according to the context: it may be perfectly sensible to have
these large and complex classes if they come from a well-
defined grammar.

From Tables VIII and IX it can be seen that different
code smells are more important in the different systems.
This difference is not surprising because both systems have
been developed in two unrelated contexts, under different
processes. It highlights the interest of code smells in assess-
ing finely the quality of systems.

In the following we discuss in details results for the two
systems, Azureus and Eclipse.

A. Azureus

Classes with smells are more change-prone than those
without smells in all the 9 releases of Azureus, and this
with high odds ratios (3 to 8 times in favour of classes
with smells). Moreover, the likelihood of change increases
with the increase of the number of code smells in a
class, underscoring the fact that code smells are costly
and therefore should be detected and removed as early
as possible during the development of a system. Across
the 9 releases of Azureus, three particular kinds of code
smells lead almost consistently to change-prone classes: the
result for NotAbstract is statistically significant for 7 out
of 9 releases, while AbstractClass and LargeClass results
are statistically significant for 5 releases. By observing the
presence of smells across releases, we found that, in each
release, existing smells are generally removed from the
system while some new are introduced in the context of
new features addition. This explains why some smells are
not visible in some releases, and that the logistic regression
indicated some smells statistically significant only for some
releases of Azureus. Finally, we found that smells often
related to immature design and implementation (lack of use
of abstraction, of polymorphism, etc.) often occur in the first
releases, when developers might not have an idea of the
future system size yet. This is the case for example of the
smells NoInheritance, NoPolymorphism, and NotComplex.

Going to smells that are significantly correlated to changes
in most of the releases, the NotAbstract smell generally
occurs when a developer does not properly use abstraction
to simplify her code. Given the extensive use of inheritance
in Azureus, it is not surprising that parts of its design



could be improved by abstracting some classes, because
they may be the root of some important hierarchies. The
second frequent code smell (AbstractClass) occurs when
a class contains generic or abstract code not used at the
time when it is introduced. Such code often exists in the
system to support future pieces of functionality. It is not
surprising that such a code smell is found in Azureus,
since it is a common mistake developers make when using
object-orientation [35]. Finally, the third frequent code smell
(LargeClass), is a class that “is trying to do too much”.
Thus, it does not follow the good practice of divide-and-
conquer, i.e., decomposing a complex problem into smaller
problems. Yet, some problems are not easily decomposable
or, because of strong requirements imposed on the efficiency,
decomposition might just constitute an overhead. Again,
this is the case of Azureus, where complex algorithms are
implemented, and where the efficiency (being it a network
system) is a crucial issue.

B. Eclipse

Classes with smells (and, in particular, those with a higher
number of smells) are more change-prone than others except
in Eclipse 2.0 and in the Eclipse 3.0 series (including 3.0.1
and 3.0.2). We explain this by studying the release notes
of Eclipse 2.0 and 3.0. For example, in the “New and
Noteworthy” file coming along Eclipse 3.04 are described
the many changes made to the system, including a new Rich
Client Platform, new OSGi implementation, new look-and-
feel, and so on. Similarly, but to a smaller extent, Eclipse
2.0, was a major advancement with respect to the Eclipse 1.0
series. Consequently, it is not surprising that many classes
changed or were added, thus explaining the discrepancies in
results for different releases. In summary, in releases such
as the 3.0 series when a radical enhancement of the system
was made in terms of new features, changes were not really
related to smells.

Across the 13 Eclipse releases, three particular kinds of
code smells lead to change-prone classes: HasChildren, Mes-
sageChainsClass, and NotComplex. The first, HasChildren,
describes classes with many children. Given the extensive
use of inheritance, and the frequent changes of class hierar-
chies in Eclipse (as it was previously found for Eclipse-JDT
in particular [20]), it is not surprising that many classes have
subclasses. The second, MessageChainsClass, characterises
classes that use long message chains to perform their func-
tionality. This makes the code dependent on relationships
between potentially unrelated objects. Again, finding many
classes with this smell is not surprising in a system with
thousands of collaborating classes, known for its rich API.
Finally, the third code smell, NotComplex, can also be
explained by the extensive object-orientation, leading to

4http://archive.eclipse.org/eclipse/downloads/drops/R-3.
0-200406251208/eclipse-news-R3.html

many classes performing “atomic” functionality, with little
complexity per se.

C. Threats to Validity

We now discuss the threats to validity of our study
following the guidelines provided for case study research
[36].

Construct validity threats concern the relation between
theory and observation; in our context, they are mainly
due to errors introduced in measurements. The count of
changes occurred to classes is based on the CVS change
log. In this context, we are just interested to check whether
a class changes or not, rather than quantifying the amount of
change, which is however possible and could be investigate
in future work. Also, we are aware that the detection
technique used includes our subjective understanding of the
smell definitions, as discussed in Section III. However, as
discussed, we are interested to relate smells “as they are
defined in DECOR” [31] with change-proneness. For this
reason, smell detection imprecision does not affect our study.
Finally, we are aware that smells can be dependent each
other. However, we relied on the logistic regression model
building procedure to select the subset of non-correlated
smells. In addition, we also performed a Spearman rank
correlation analysis to identify highly-correlated smells—
actually discarded by the logistic regression— as discussed
in Section V.

Threats to internal validity do not affect this particular
study, being an exploratory study [36]. Thus, we cannot
claim causation, but just relate the presence of smells with
the occurrences of changes, although our discussion tries
to explain why some smells could have been the cause of
changes.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the statistical tests that we used (we
mainly used non-parametric tests).

Reliability validity threats concern the possibility of repli-
cating this study. We attempted here to provide all the
necessary details to replicate our study. Moreover, both
Eclipse and Azureus source code repositories are available
to obtain the same data. Finally, the data set on which our
statistics have been computed is available on the Web5.

Threats to external validity concern the possibility to
generalise our findings. First, we are aware that our study has
been performed on two systems, Eclipse and Azureus, thus
generalisation will require further case studies. However, we
limited such a threat by choosing two different systems,
belonging to different domains, and studied a reasonably
long history of both—spanning 9 releases for Azureus and
13 releases for Eclipse. Second, we used a particular yet
representative set of smells. Different smells could have lead

5http://www.ptidej.net/downloads/experiments/prop-WCRE09



to different results and should be studied in future work.
However, within its limits, our results confirm the conjecture
in the literature.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we reported an exploratory study, performed
on 9 releases of Azureus and 13 releases of Eclipse, which
provides empirical evidence of the negative impact of code
smells on classes change-proneness. We showed that classes
with smells are significantly more likely to be the subject
of changes, than other classes. We also showed that some
specific code smells, are more likely to be of concern during
evolution.

This exploratory study supports, within the limits of the
threats to its validity, the conjecture in the literature that
smells may have a negative impact on software evolution.
We justify a posteriori previous work on smells, and provide
a basis for future research to understand precisely the root
causes of their negative impact. The study also provides
evidence to practitioners that they should pay more atten-
tion to systems with a high prevalence of smells during
development and maintenance. Indeed, systems containing a
high number of smells are likely to be more change prone:
therefore, the cost-of-ownership of such systems will be
higher than for other systems, because developers will have
to put more effort.

Although previous studies correlated source code metrics
with change-proneness, we believe that smells, along with
certain metrics, can provide to developers recommendations
easier to understand than what metric profiles can do. In
fact, smells are defined in terms of thresholds on metrics,
thus they can tell whether some metric values are becoming
critical or not, while in the absence of thresholds, such a
decision is left to the developer, who might lack of skills
and experiences to do judge. On the other hand, it must be
clear that smells are not replacement to metrics in the ability
of building change-proneness or fault-proneness prediction
models.

Future work includes (i) replicating this study on other
systems to assess the generality of our results; (ii) studying
the effect of antipatterns, i.e., problems at a higher level
of abstraction than smells, and (iii), relating smells and
antipatterns not only to change-proneness, but also to other
phenomena such as the fault-proneness.

Data. All data as well as a technical report with more
detailed results are available on the Web1.
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[22] F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “Playing roles
in design patterns: An empirical descriptive and analytic
study,” in Proceedings of the 25th International Conference
on Software Maintenance (ICSM), K. Kontogiannis and
T. Xie, Eds. IEEE Computer Society Press, September 2009,
10 pages. [Online]. Available: http://www-etud.iro.umontreal.
ca/∼ptidej/Publications/Documents/ICSM09.doc.pdf

[23] P. Wendorff, “Assessment of design patterns during software
reengineering: Lessons learned from a large commercial
project,” in Proceedings of 5th Conference on Software
Maintenance and Reengineering, P. Sousa and J. Ebert, Eds.
IEEE Computer Society Press, March 2001, pp. 77–84.
[Online]. Available: http://www.computer.org/proceedings/
csmr/1028/10280077abs.htm

[24] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation
of object-oriented design metrics as quality indicators,” IEEE
Trans. Software Eng., vol. 22, no. 10, pp. 751–761, 1996.

[25] M. Cartwright and M. Shepperd, “An empirical investigation
of an object-oriented software system,” IEEE Trans. on Soft-
ware Engineering, vol. 26, no. 8, pp. 786–796, August 2000.

[26] S. R. Chidamber and C. F. Kemerer, “A metrics suite for ob-
ject oriented design,” IEEE Trans. on Software Engineering,
vol. 20, no. 6, pp. 476–493, June 1994.
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