
An Exploratory Study of Macro Co-changes

Fehmi Jaafar1, Yann-Gaël Guéhéneuc1, Sylvie Hamel2, and Giuliano Antoniol1
1 PTIDEJ Team, SOCCER Lab, DGIGL,́Ecole Polytechnique de Montréal, QC, Canada

2 LBIT Team, DIRO, Université de Montréal, QC, Canada
E-Mails: {jaafarfe,hamelsyl}@iro.umontreal.ca, yann-gael.gueheneuc@polymtl.ca, antoniol@ieee.org

Abstract—The literature describes several approaches to
identify the artefacts of programs that change together to
reveal the (hidden) dependencies among these artefacts. These
approaches analyse historical data, mined from version control
systems, and report co-changing artefacts, which hint at the
causes, consequences, and actors of the changes. We introduce
the novel concepts ofmacro co-changes (MCC), i.e., of artefacts
that co-change within a large time interval, and of dephase
macro co-changes (DMCC), i.e., macro co-changes that always
happen with the same shifts in time. We describe typical sce-
narios of MCC and DMCC and we use the Hamming distance
to detect approximate occurrences of MCC and DMCC. We
present our approach, Macocha, to identify these concepts
in large programs. We apply Macocha and compare it in
terms of precision and recall with UMLDiff (file stability) a nd
association rules (co-changing files) on four systems: ArgoUML,
FreeBSD, SIP, and XalanC. We also use external information
to validate the (approximate) MCC and DMCC found by
Macocha. We thus answer two research questions showing
the existence and usefulness of theses concepts and explaining
scenarios of hidden dependencies among artefacts.

Keywords—Co-changes; stability; bit vectors.

I. I NTRODUCTION

Developers must continually change their software pro-
grams to meet new requirements and user needs, else
their programs become progressively unsatisfactory [1] and
eventually become obsolete to the point of disappearing.
The literature describes many approaches to extract and
analyse the changes undergone by software artefacts and to
infer patterns that describe these changes to help program
comprehension and evolution. Several of these approaches
identify co-changes among artefacts,e.g., [2], [3], which
represent the (often implicit) dependencies or logical cou-
plings among artefacts that have been observed to frequently
change together [4]. Two artefacts are co-changing if they
were changed by the same author and with the same log
message in a time-window of less than 200 ms. [3]. Mockus
et al. [5] defined the proximity in time of checkins by the
check-in time of adjacent files that differ by less than three
minutes. Other studies (e.g., [6] and [7]) described issues
about identifying atomic change sets and reported that, in
all cases, they differed by few minutes.

Artefacts can be source code files, classes in object-
oriented programs, specifications, and so on. In this paper,
as in previous work,e.g., [3], [8], and [9], for the sake of

simplicity, we focus on C, C++, and Java source files (.c,
.cpp, and .java) as they are among the most common and
popular programming languages.

Previous co-changes are intrinsically limited in time. They
cannot express patterns of changes between long time inter-
vals. For example, in the Bugzilla of ArgoUML, the bug ID
53781 states, in relation toArgoDiagram.java, that an
“ArgoDiagram should provide constructor arguments for the
concrete classes to create”, which relates toModeCreate-
AssociationClass.java. The bug report thus con-
firms that these two files are related. However, no previous
approach can detect that these files co-changed because they
were maintained by the same developperbobtarling but
their changes were separated by few hours. Yet, Knowing the
dependency among theses files is useful to a new developer
that must changeArgoDiagram.java: she must assess
ModeCreateAssociationClass.java for change.

In general, this scenario happens when a developer is in
charge of a subset of a large program, composed of, among
others, filesF1 andF2. She may change and commit these
two files in the same day but with a few hours between each
commit, as illustrated in Figure 2. This scenario may repeat
for years and would be undetected using a sliding window
of few minutes. Yet, it contains important information both
for the developer and her colleagues: changes toF1 must
likely propagate toF2.

As another example in ArgoUML, we found that the
developersmvw and tfmorris contributed with some
patches that containsNotationUtilityJava.java
and ModelElementNameNotationUml.java2 and
the bug ID 29263 confirms that the two files are related (see
Section IV for details). No previous approach can detect that
these files co-changed because , during the 11 years of de-
velopment of ArgoUML, these two files were never changed
by the same developer at the same time but were changed by
developersmvw andtfmorris in two consecutive change
periods: firstNotationUtilityJava.java and, subse-
quently after one period of change,ModelElementName-
NotationUml.java, pointing out dependency among

1http://argouml.tigris.org/issues/showbug.cgi?id=4604
2http://argouml.tigris.org/issues/showattachment.cgi/2118/20101116-

patch-notation.txt
3http://argouml.tigris.org/issues/showbug.cgi?id=2926

these two files.
In fact, this scenario can happen when a developer D2

is always reminded to change fileF2 after one or two
days by developer D1, whenever D1 changed fileF1, as
shown in Figure 1. Previous worke.g., [2], [3], [10], does
not consider co-changed files, if they were changed by two
different authors in the same period. Thus, we present, the
first approach , to the best of our knowledge, to detect and to
report co-changed files maintained by different developers.

Thus, we introduce the novel concepts ofmacro co-
changes(MCC) and dephase macro co-changes(DMCC),
inspired from co-changes and using the concept of change
periods, as defined in Section II. The MCC describe a set
of files that always change together in the same periods of
time. The DMCC describes a set of files that always change
together with some shift in time in their periods of change.
We also consider approximate MCC and DMCC when co-
changes occur “almost” all the time, using the Hamming
distance and by dividing the MCC (respectively, DMCC)
set into two sets: the SMCC (respectively, SDMCC) set that
contains files that have exactly the same (dephase) profile
and the SMCCH (respectively, SDMCCH) set that contains
approximate (dephase) macro co-changing files.

We also present Macocha, an approach to identify MCC
and DMCC in the evolution of programs, which relates
to file stability and co-changes, and perform two types of
empirical studies.Quantitatively, we compare the stability
analysis of Macocha with that of UMLDiff [11] and the
co-change analysis of Macocha with association rules [2],
[3]. We compare the results of the three approaches on four
different programs: ArgoUML, FreeBSD, SIP, and XalanC,
developed with three different programming languages, C,
C++, and Java.Qualitatively, we use external information
provided by bugs reports, mailing lists, and requirement
descriptions to validate the MCC and DMCC not found
using association rules and to show that these MCC and
DMCC explain real evolution phenomena.

Thus, the contributions of this paper are: (1) the defi-
nitions of the two novel concepts of MCC and DMCC;
(2) an efficient approach to identify such co-changes, not
identified by previous work, in large programs ; (3) empirical
studies showing the existence and usefulness of (approxi-
mate) MCC and DMCC among files. Section II presents
Macocha. Section III describes our empirical study while
Section IV reports and discusses its results as well as threats
to its validity. Section VI discusses related work. SectionVII
concludes with future work.

II. OUR APPROACH: MACOCHA

We propose Macocha to mine version-control systems
(CVS and SVN), to identify the change periods in a program,
to group source files according to their stability through
the change periods, and to identify among changed files

Figure 1. FilesF1 and F2 are changed by different developers and in
two consecutive periods of time.

Figure 2. Two changes performed by one developer are sequential in time
(after few hours),F1 andF2 are macro co-changing

those that have similar co-changes pattern, i.e, are macro co-
changing or dephase macro co-changing. We now present the
concepts of our approach using examples from ArgoUML.

A. Definitions

1) Change Period:We draw inspiration and extend the
classical sliding window approach to consider that two
subsequent changes by any author and with any log message
are part of one change period if we do not detect an
interrupt between these two subsequent changes. We define
an interrupt as a continuous duration without a change.

Hatton [12] presented an empirical study to estimate the
time for a particular maintenance requests also known as
change requests or CRs). The author showed that the average
duration of a CR is 5.17 hours and that the largest duration
was less than 40 hours.

Thus, in Macocha, the largest duration of a change period
is less than40 hours. Let t be the number of hours of
an interrupt between two change periods. In Macocha, we
chooset = 5.17 hours,e.g., if the interrupt between two
subsequent changes is more thant = 5.17 hours, we assume
that theses two subsequent changes belong to two different
change periods.

Figure 3. Profiles showing file Stability

Figure 4. FilesF1 andF2 were in macro co-change

Figure 5. Three different bit vectors showing dephase macroco-change

Figure 6. Three different bit vectors showing approximate macro co-
change

In ArgoUML: We find 2,843 change periods in 11 years of
maintenance. By comparing the result of Macocha on co-
change with association rules [2], [3] we find thatt = 5.17
hours is a good trade-off between precision and recall (see
Section IV for details).

2) Profile: We define a profile as a bit vector that
describes if a file changed or not during each of the change
periods of a program. The lengthn of this bit vector is
the number of change periods. We indicate that a file has
changed in theith period by putting theith bit to one; zero
otherwise.

3) File Stability: Macocha groups files according to their
stability: idle and changed, as shown in Figure 3. Each group
is a set of profiles with similar stability.Idle files do not
change in any change period after their introduction into
the system,i.e., their profiles mostly contain zeroes, while
changed filesare files that changed after their introduction
into program. Macocha use this group to identify files having
similar co-changes pattern.
In ArgoUML: Macocha identifies 202 idle files and 2,946
changed files.

4) Macro Co-changes:Similar changed profiles grouped
together represent MCCs and DMCCs. A SMCC is two
or more changed files that change together,i.e., that have
identical profiles during the life cycle of a program, as
illustrated in Figure 4. Given a file F1, a SDMCC is the
set composed ofF1 and one or more files,F2...FM, such
thatF2...FM always macro co-change with the same shift in
time s ∈ [0, n−1] with respect toF1 during the evolution of

a program. Figure 5 illustrate thatF1 and F2 are in dephase
macro co-change withs = 1; F2 andF3 are in a DMCC
with s = 2; and,F1 andF3 are in a DMCC withs = 3. In
this paper, we limit our study tos = 1.

Macocha considers both identical andsimilar profiles
(with or without shifts in time) to account for cases where
the files did not change exactly at the same times (in
terms of change periods). We use the Hamming distance
DH to measure the amount of differences between two
change profiles,i.e., the number of positions at which the
corresponding bits are different. After analysing several
values of DH between two profiles in different system, we
found that DH<3 is the best trade-off between precision
and recall (as shown in Figure 9) . Thus, in this paper, we
consider that two profile are similar if the Hamming distance
between them is less then three (DH<3). Figure 6 illustrate
that F1 andF2 are in approximate macro co-change with
DH<3; F2 andF3 are in a approximate MCC with DH<3;
and,F1 andF3 are in a approximate MCC with DH<5.

B. Data Model, Implementation, and Outputs

Figure 7 describes the data used by Macocha. A change
contains several attributes: the changed file names, the dates
of changes, the developers having committed the changes.
Using this data, Figure 8 illustrates the concrete process of
Macocha. Macocha takes as input a CVS/SVN change log.
It creates a profile that describes the evolution of each file
in each change period. It uses these profiles to compute the
stability of the files and, then, identify MCC and DMCC.

Macocha returns the following sets of (dephase) macro
co-changing files (and their profiles): SMCC , the set of
macro co-changing files with identical profiles in a pro-
gram and SDMCC , the set of dephase macro co-changing
files identified when shifting profiles bys change periods.
SMCCH , the set of approximate macro co-changing files
with similar profiles in a program by using the Hamming
distance (0<DH<3) and SDMCCH , the set of approximate
dephase macro co-changing files identified when shifting
profiles bys change periods.

III. E MPIRICAL STUDY

Following GQM [13], the goal of our study is to show that
our approach can identify MCC and DMMC and that they
describe interesting evolution phenomena. Our purpose is to
bring generalisable, quantitative evidence on the existence of
MCC and DMCC. The quality focus is that changing one file
may impact the files that (dephase) macro co-change with it.
The perspective is that of both researchers and practitioners
who should be aware of the hidden dependencies among
files to make informed changes. The context of our study is
both the comprehension and the maintenance of programs.

A. Research Questions

We formulate two research questions:RQ1: How does
Macocha compare to previous work in term of precision

Figure 7. Meta-model of our data

Figure 8. Analysis-process

and recall?RQ2: Are there (approximate) dephase macro
co-changes among files and what is their usefulness?

B. Analyses

To answer RQ1 and RQ2, we apply Macocha to different
object programs and collect the different sets of MCC and
DMCC. We then perform two types of empirical studies.

Quantitatively, on the one hand, we compare the results of
Macocha with those of UMLDiff for file stability. We thus
show that Macocha can identify the same idle and changed
files as UMLDiff using only data from change logs. It does
not produce as detailed information as UMLDiff but this
information is sufficient for our needs. Idles files do not
change in any change period after their introduction into the
program. Thus, we discard this group of files because they
are not useful for the co-change analysis due to their rare
evolution.

On the other hand, we compare the results of Macocha
with those of the association rules approach [3] for co-
changing files. We also thus show that the set SMCC

produced by Macocha includes the same co-changing files as
reported using association rules plus new co-changing files.

Qualitatively, we confirm that eachMCC found by
Macocha but not association rules approach [3] is indeed
a dependency link using external information from bug-
reports, requirement descriptions, and mailing lists. We also
select typical examples of MCCs and DMCCs and show
their usefulness using external sources of information.

We thus report a quantitative analysis in accordance with
the state of the art and a qualitative analysis in accordance

with external information. We also report and discuss the
cardinalities of theMCC andDMCC sets.

We do not report performance because, using a standard
computer with a Intel Core i7-740QM (1.73/ 2.93GHz),
6GB RAM, and 1GB VRAM, Macocha identifies (dephase)
macro co-changes in FreeBSD (the largest program in terms
of number of files and of changes) in less than ten minutes.

C. Objects

We choose four programs developed with three different
programming languages: ArgoUML4, FreeBSD4, SIP4, and
XalanC4. We use these programs because they are open
source, have been used in previous work [10] [14], are of
different domains and in different programming languages,
span several years and versions, and underwent between
thousands and hundreds of thousands of changes. Table I
summarises some programs statistics.

ArgoUML is an UML diagramming program written in
Java and released under the open-source BSD License.
We analyse the evolution of this program for a period of
11 years, from 1998-01-26 to 2009-01-29. In this period,
ArgoUML has gone through over 13 major versions, from
the first published version to version 0.26.2 in November
2008, and many more minor versions.

FreeBSD is a free Unix operating system written in C and
released under the open-source BSD License. We analyse
the evolution of this program for a period of 15 years,
from 1994-05-25 to 2009-02-11. In this period, FreeBSD has
gone through eight major versions, from the first published
version to version 7.0 on February 2008.

SIP Communicator is an audio/video Internet phone and
instant messenger that supports some of the most popular
VoIP and instant messaging protocols, such as SIP, Jabber,
AIM/ICQ, MSN. SIP is open source and freely available
under the GNU Lesser General Public License. It is written
in Java. We analyse the evolution of this program for a period
of five years, from 2005-07-21 to 2010-12-09.

XalanC is an open-source software library from the
Apache Software Foundation written in C++. We analyse
the evolution of this library for a period of 11 years, from
1999-12-18 to 2009-01-17. In this period, XalanC has gone
through over 20 major versions, from the first published
version to version 1.10 in November 2008.

IV. STUDY RESULTS AND DISCUSSIONS

We now present the results of our empirical study. Table
II summarises the sets obtained by applying Macocha.

A. Data Preprocessing and Identifying changed files

Before finding patterns in the change history, Macocha
detects in each program the set of changed files. The pre-
processing step involves eliminating idles files because they

4http://argouml.tigris.org/, http://www.freebsd.org/, http://www.sip-
communicator.org, and http://xml.apache.org/xalan-c/

ArgoUML FreeBSD SIP XalanC
Languages Java C Java C++
Versions 30 8 2 21
Files 3,148 3,603 2,790 529
Changes 16,727 186,959 8,046 397,052
Start Dates 98-01-26 94-05-25 05-07-21 99-12-18
End Dates 09-01-29 09-02-11 10-12-09 09-01-17
CPs 2,843 1,121 1,553 924

Table I
DESCRIPTIVE STATISTICS OF THE OBJECT PROGRAMS(CPS: NUMBERS

OF CHANGE PERIODS)

ArgoUML FreeBSD SIP XalanC
Idle files 202 1,856 963 7
Changed files 2,946 1,747 1,827 522
of SMCC 166 121 142 36

Max # files 35 24 15 17
Min # files 2 2 2 2

of SMCCH 196 163 182 85
Max # files 46 44 32 22
Min # files 2 2 2 2

of SDMCC 11 1 6 1
Max # files 4 2 3 2
Min # files 2 2 2 2

of SMCCH 53 63 36 4
Max # files 6 8 5 2
Min # files 2 2 2 2

Table II
CARDINALITIES OF THE SETS OBTAINED IN THE EMPIRICAL STUDY

Idle Groups Changed Groups

ArgoUML
Idle Clusters 202 0
Short-lived Clusters 0 1,390
Active Clusters 0 1,556

SIP
Idle Clusters 963 0
Short-lived Clusters 0 997
Active Clusters 0 830

XalanC
Idle Clusters 7 0
Short-lived Clusters 0 291
Active Clusters 0 231

Table III
CARDINALITY OF MACOCHA SETS IN COMPARISON TOUMLD IFF [11]

do not change in any change period after their introduction
into the program. Thus, they do not participate in co-change
patterns.

Table III reports the number of idle, short-lived, and active
files found by UMLDiff in the object-oriented object pro-
grams (ArgoUML, SIP, and XalanC) and their categorisation
by Macocha. Because we want to distinguish idle from
changed files, Macocha groups together the files identified
as short-lived and active by UMLDiff and compare the sets
provided by UMLDiff and by Macocha and find that they are
identical. For example, Macocha finds 2,946 changed files
in ArgoUML, identical to the UMLDiff 1, 390 + 1, 556 =
2, 946 short-lived and active files.

In addition, Macocha computes file stability in few min-
utes because, unlike UMLDiff, which takes few hours [15],
because it does not create UML-like representations of
the programs before performing its analysis. Macocha can
analyse file stability for any program, unlike UMLDiff,

providing that CVS/SVN repositories are available.
In ArgoUML: We detect 202 idle files. For example, the
files ModeChangeEvent.java andGoModelToClas-
sifiers.java were modified in only one change period
in 11 years.Using UMLDiff, we confirm that these files
belong to an idle cluster.

We detect 2,946 changed files. For example, the files
TestProject.java and NotationUtilityUml-
.java were modified 20 times during the evolution of
ArgoUML. Thus, these files belong to the changed group.
Using UMLDiff, we confirm that these files belong to an
active cluster.
In FreeBSD: We find 1,856 idle files. For example,hd-
timer.c andhddebug.c were modified in one change
period in 15 years.

We detect 1,747 changed files. The filessubrclist.c
and stallion.c were modified in 15 change periods
during the evolution of FreeBSD. We cannot use UMLDiff to
verify this result because UMLDiff can not analyse programs
written in C.
In SIP: We obtain 963 idle files. For example,Select-
ImagePanel.java andImageSourceStream.java
were modified in one change period in five years. With
UMLDiff, these files belong to an idle cluster. Macocha
detect 1,827 changed files. The filesDefaultTree-
ContactList.java and TreeContactList.java
were modified 15 times during the evolution of the program.
In XalanC: Our approach detect seven idle files. For exam-
ple, XLocator.cpp and Cloneable.cpp were modi-
fied in one change period in nine years. Using UMLDiff, we
confirm that these files belong to an idle cluster. Macocha
detect 522 changed files. The filesTopLevelArg.cpp
andXalanEXSLTSet.cpp were modified in 30 changes
periods during the evolution of the program. Using UMLD-
iff, we confirm that these files belong to an active cluster.

B. How does Macocha compare to previous work in term
of precision and recall?

For each program, Macocha detect files that have identical
or similar profiles (the MCCs sets) and report them.
Quantitatively: We compare the SMCC found by Macocha
with the co-changing files found by an approach based
on association rules [3] (see also [10]), which uses the
Apriori algorithm [16] to compute association rules. The
Apriori algorithm takes a minimum support and a minimum
confidence and then computes the set of all association rules.
To obtain a comprehensive set of rules, we consider as valid
rules those achieving a minimum confidence of 0.9 as in
previous work [3] and a minimum support of 2 to compare
association rules and our approach.

We thus perform aninternal evaluationsimilar to that
of Zimmermannet al.’s. Given snapshotsSi, i ∈ [1, ..., n],
we build two equal setsTtrain = {S1...St} and Ttest =

Figure 9. The mean of Precision and Recall achieved by Macocha with
different values of DH for the four programs

Association Rules Macocha
Precision Recall Precision Recall

ArgoUML 15% 66% 20% 75%
FreeBSD 22% 100% 24% 100%
SIP 18% 89% 24% 91%
XalanC 16% 100% 22% 100%

Table IV
ASSOCIATION RULES’ S APPROACH[3] VS. MACOCHA

{St+1...Sn}. We useTtrain to build association rules and
compare the co-changing files inTtrain with those inTtest.

For the four programs, we find that Macocha improve
precision and recall over the approach based on association
rules, as shown in Table IV. For example, for ArgoUML,
results indicate that, the precision and the recall of Macocha,
respectively20% and75%, are better than those of associ-
ation rules, respectively15% and66%.

The rationale of an internal evaluation is that no expert
and no pre-existing groups of co-changing files are available.
Precision and recall are measured for the testing sets by
considering, for each file, the groups resulting from the
training sets as oracles. Such an internal validation have
some limits [17] [18]: (1) Files co-changing frequently in
the past (training set) but not recently (test set) will be
considered wrongly as false negatives; (2) Files co-changing
frequently recently (test set) but not in the past (training
set) will be considered wrongly as false positive; (3) If
the training set contained false positives or negatives, they
cannot be detected using the testing set.
Qualitatively: To overcome these limits and to validate the
SMCC not found using association rules, we also perform an
external evaluationof Macocha by considering the results of
the association rules as an oracle and by manually comparing
them with those of Macocha. In fact, for each set returned
by Macocha, if an identical set is returned by association
rules, it is considered a true positive. If the two sets are not
identical, we use external information to validate missing
files and to decide if they present a true positive, a false
negative, or a false positive. For example, In XalanC, all the
sets detected by association rules are detected by Macocha
except three sets. We validated these three sets using two
messages in the mailing list and one bug in the Bugzilla.

Table V reports, under the External Information header,

Association Rules External Information
Precision Recall Precision Recall

ArgoUML 86% 98% 100% 99%
FreeBSD 98% 100% 100% 100%
SIP 85% 96% 100% 98%
XalanC 90% 100% 100% 100%

Table V
EXTERNAL EVALUATION OF MACOCHA WHEN USING THE RESULTS OF
ASSOCIATION RULESet al.’ S APPROACH[3] AS ORACLE AND AFTER

MANUAL VALIDATION USING EXTERNAL INFORMATION

the precision and recall values of Macocha after manual
validation, which show that Macocha is able to detect SMCC

missed and co-changes wrongly reported by association
rules. We do not obtain 100% recall because of our choice
of t = 5.17 hours. A smaller value oft would yield a higher
recall but a lower precision. We thus confirm Hatton’s study
[12] and report thatt = 5.17 hours is a good trade-off
between precision and recall.

Table V also reports, under the Association Rules header,
the precision and recall of Macocha with respect to the
approach based on association rules. It shows that Macocha
detects the majority of co-changing files detected by associ-
ation rules in the four object programs. In addition, Macocha
detects other SMCC not detected by association rules. For
example:
In ArgoUML: ClassifierRole.java andMessage-
DirectionKind.java were in approximate MCC. In
fact, in the Bugzilla of ArgoUML, the bug ID 8815 states
that “when classifier assigned to an object [...] ArgoUML
stops responding” in relation with these two files. These two
file were changed by different authors in a time-window of
more than few minutes. Thus, by applying the association
rule approach described in [3], we cannot find that these
files are co-changing.
In SIP: StatusIcon.java and ContactPanel-
.java were in MCC. As confirmed in the Bugzilla of
SIP by the bug ID 4976. This bug describes on an “Status
notifications for a choosen contact” relating these two files.
These two files were changed by the same developeryanas
five times in a time-window of more than few minutes. Thus,
by applying the association rule approach described in [3],
we could not find that these files are co-changing.

C. Are there (approximate) dephase macro co-changes
among files and what is their usefulness?

To the best of our knowledge, no previous approach can
detect files maintained with similar trends and some given
shifts in time. We validate the usefulness of DMCCs using
external information. For the lack of space, we cannot illus-
trate all DMCCs, so we only report representative examples.
In ArgoUML: When developers changedActionAlign-
.java, developers changedForwardingComponent-
.java in the following change period. Thus, these two files

5http://argouml.tigris.org/issues/showbug.cgi?id=881
6http://java.net/jira/browse/JITSI-134

are in DMCC. In fact, in the Bugzilla of ArgoUML, the bug
ID 19577 relates the two files: “Each label text is a few pixels
too high for its component. They should be positioned such
that the label text is vertically aligned with the text in the
labeled component”.
In FreeBSD: We find that ah-core.c and
hpfs-alsubr.c are in approximate DMCC. In
the mailing list of FreeBSD, theMessage-ID:
<200906011106.n51B62Da020139@freefall-
.freebsd.org> states that the two files are related in
a lengthy the message from bugmaster@FreeBSD.org on
June 1, 2009 about “Current problem reports”.
In SIP: We find that MuteDataSource.java and
CallPeerActionMenuBar.java were changed sys-
temically with one shift change period in five years. In fact,
These two files implement the same feature8: Audio-Calls.
In XalanC: We find that Cloneable.cpp and XLo-
cator.cpp are in approximate DMCC. In the XSLT
syntax and semantic specification9, these files are related:
“A single template [...] can pull string values out of arbitrary
locations in the source tree; it can generate structures that
are repeated according to the occurrence of elements”.

In the following scenarios, we summarise the usefulness
of DMCCs reported by Macocha.

1) Management of Development Teams:If two classes
are in (approximate) dephase macro co-change, they should
ideally be maintained by the same team of developers
to minimise the risks of introducing bugs in the future.
The team of developers most likely possesses a wealth of
unwritten knowledge about the design and implementation
choices that they made for these classes, which would help
them to prevent introducing bugs [19].

Consequently, a team leader should redefine the organ-
isation of the maintenance team according to the DMCCs
links among files, so that her team does not introduce bugs
because of the absence of information or lack of communi-
cation among developers. For example, in ArgoUML, when
we analysed changes made in three10 11 12 dephase macro
co-changing files that have generated bugs, we found that
these changes have been made with one shift in time in their
periods of change and by different developers . Thus, such
co-changes can not be detected by previous work. Thanks
to DMCCs, a team leader should ensure that team who will
maintain these files in each change period have the necessary
knowledge to maintain the dependency among these files.

2) Bug and Change Propagation:Knowing that two
files are in DMCCs implies the existence of (hidden) de-
pendencies between these two files. If these dependencies

7http://argouml.tigris.org/issues/showbug.cgi?id=1957
8http://www.jitsi.org/index.php/Main/Features
9http://www.w3.org/TR/xslt
10http://argouml.tigris.org/issues/showbug.cgi?id=1957
11http://argouml.tigris.org/issues/showbug.cgi?id=2926
12http://argouml.tigris.org/issues/showbug.cgi?id=4604

are not properly maintained, they can introduce bugs in
a program. With our approach, for each program studied,
we detected files in dephase macro co-changes. By using
external information, we confirmed our observation and that
these files indeed participate to bugs. For example, in SIP,
we detected seven bugs in relation with dephase macro co-
changing files. By applying the association rule approach
described in [3], we cannot find that these files are co-
changing. Thus, by knowing files that are in DMMCs, we
could explain and possibly prevent bugs; we plan to study in
future work the bug prediction using (approximate) dephase
macro co-changes.

3) Traceability Analysis:The change history represents
one of sources of information available for recovering trace-
ability links that are manually created and maintained by
developers. The version history may reveal hidden links that
relate files and would be sufficient to attract the developers’
attention. For example, in SIP, we detect traceability links
between four approximate dephase macro co-changing files.
By applying the association rule approach described in [3],
we cannot find that these files are co-changing.

Due to the distributed collaborative nature of open-source
development, version-control systems are the primary lo-
cation of files and the primary means of coordination and
archival. The requirements of open-source programs are typ-
ically implied by communication among project participants
and through test cases. However, such traces of requirements
are lost in time. Thus, by knowing classes there are in
(approximate) dephase macro co-change, we could detect
potentially traceability links between them, which we plan
to concretely study in future work.

V. D ISCUSSIONS

With our approach, we detect files in MCCs or in DMCCs
in four different programs belonging to different domains
and with different sizes, histories, and programming lan-
guages. However, we do not detect MCCs and DMCCs
with the same proportion in each program. We observe that
the numbers of MCCs and DMCCs found in the programs
developed in Java (ArgoUML and SIP) are greater than the
number of MCCs and DMCCs found in program developed
in C or C++ (see Table II). We explain this finding by the
fact that, on the one hand, the majority of FreeBSD files
are idle and that, on the other hand, XalanC is the smallest
program analysed. Thus, we also apply our approach to
detect (dephase) macro co-changes on fewer C and C++
files than Java files, less than 529 files, thus explaining the
lower numbers of MCCs and DMCCs. In future work, we
will conduct studies on other programs in these languages to
confirm this observation and to assess the numbers of MCCs
and DMCCs according to the programming languages.

A. Threats to the Study Validity

Some threats limit the validity of our empirical study.

Construct Validity: Construct validity threats concern the
relation between theory and observations. In this study, they
could be due to implementation errors. They could also
be due to a mistaken relation between changes in files.
We believe that this threat is mitigated by the facts that
many authors discussed this relation, that this relation seems
rational, and that the results of our analysis shows that,
indeed, MCCs and DMCCs exist and are corroborated by
external sources of information (bug reports and others).
Actually, we apply static analysis to detect MCCs and
DMCCs because co-change analysis is known to be more
useful when combined with static analysis [23]. As
previous work detected co-changes committed by the same
author in a short time window, relaxing these constraints
may also lead to false positives. The results of our empirical
study show that Macocha improves precision and recall with
respect to the state of the art in four different programs.
However, we cannot claim that our approach will give
similar results for any program.
Internal Validity: Internal validity is the validity of causal
inferences in studies based on experiments. The internal
validity of our study is not threatened because we have not
manipulate a variable (the independent variable) to see its
effect on a second variable (the dependent variable).
Reliability Validity: Reliability validity threats concern
the possibility of replicating this study. We attempted to
provide all the necessary details to re-implement our ap-
proach and replicate our empirical study. The change logs
and the changed files of the four programs analysed with
their profiles to obtain our observations are on-line at
http://www.ptidej.net/downloads/experiments/wcre11b/.
External Validity: We performed our study on four dif-
ferent real programs belonging to different domains and
with different sizes, histories, programming languages. Yet,
we cannot assert that our results and observations are
generalisable to any other programs, and the fact that all
the analysed programs are open source may reduce this
generability; future work includes replicating our study in
other contexts and with other programs.

VI. RELATED WORK

The concepts of MCCs and DMCCs relate our work to
that on file stability, co-change, and change propagation.

A. File Stability

Many approaches exist to group files based on their
relative stability throughout the software development life
cycle. For example, Kpodjedoet al. [20] proposed to identify
all files that do not change in the history of a program, using
an Error Tolerant Graph Matching algorithm. They studied
the evolution of the Mozilla class diagram by collecting
144 Mozilla snapshots over six years, reverse-engineering
their class diagrams, and recovering traceability links be-
tween subsequent class diagrams. Their approach identified

evolving classes that maintain a stable structure of relations
(association, inheritance, and aggregation) and, thus, that
likely constitute the stable backbone of Mozilla.

As other example, UMLDiff [11] compares and detects
the differences between the contents of two object-oriented
program versions. A fact extractor parses each version to
extract models of their design. Next, a heuristic-differencing
algorithm, UMLDiff, extracts the history of the program
evolution, in terms of the additions, removals, moves, re-
namings, and signature-changes of design entities, such as
packages, classes, interfaces, and their fields and methods.
UMLDiff then assigns a stability to each class: short-lived
classes (that exist only in a few versions of the program and
then disappear), idle classes (that rarely undergo changes
after their introduction in the program), and active classes
(that keep being modified over their whole lifespan).

The Error Tolerant Graph Matching algorithm and
UMLDiff take few hours to analyse file stability for the four
programs analysed in this paper because they require parsing
and comparing AST-like representations of the programs be-
fore performing their analyses. Macocha computes stability
in few minutes using the change periods of a program, which
depend on how the developers of the program organise
their work and group changes through the life cycle of the
program.

B. Co-changing Files

Ying et al. [2] and Zimmermannet al. [3] applied associ-
ation rules to identify co-changing files. Their hypothesis
is that past co-changed files can be used to recommend
source code files potentially relevant to a change request. An
association-rule algorithm extracts frequently co-changing
files of a transaction into sets that are regarded as change pat-
terns to guide future changes. Such algorithm uses co-change
history in CVS and avoids the source code dependency
parsing process. However, it only computes the frequency
of co-changed files in the past and omits many other cases,
e.g., files that co-change with always the same period of time
between changes. In Section IV, we showed that approaches
based on association rules cannot detect all occurrences of
MCCs and any occurrences of DMCCs because, by their
very definition, they do not integrate the analysis of files
that are maintained by different developers and–or with some
shift in time, which could lead to missed co-changing files.

German [7] used the information in the CVS to visualize
what files are changed at the same time and who are
the people who tend to modify certain files. He presented
SoftChange, a tool that uses a heuristic based on a sliding
window algorithm to rebuild the Modification Record (MRs)
based on file revisions. In Softchange, a file revision is
included in a given MR if all the file revisions in the
MR and the candidate file revision were created by the
same author and have the same log. Thus, Softchange can
not detect co-changed file maintained in the same time by

different developers. Ceccarelliet al. [21] and Canforaet
al. [10] proposed the use of a vector auto-regression model,
a generalisation of univariate auto-regression models, to
capture the evolution and the inter-dependencies between
multiple time series representing changes to files. They
used the bivariate Granger causality test to identify if the
changes to some files are useful to forecasting the changes
to other files. They concluded that the Granger test is a viable
approach to change impact analysis and that it complements
existing approaches like association rules to capture co-
changes. If the authors integrate the analysis of files that
are maintained by different developers in periods of time
of more than few minutes, their approach could then detect
typical examples of MCCs and DMCCs.

Antoniol et al. [8] presented an approach to detect simi-
larities in evolutions of files starting from past maintenance,
notwithstanding their temporal distortions. They appliedthe
LPC/Cepstrum technique, which models a time evolving
signal as an ordered set of coefficients representing the signal
spectral envelope, to identify in version-control systemsthe
files that evolved in the same or similar ways. Their approach
can find files having very similar maintenance evolution
history but they did not present a tool to detect MCCs and
DMCCs. It used cepstral distance to assess series similarity
(if two cepstra series are “close”, the original signals have a
similar evolution in time) with which we can not distinguish
between the occurrences of MCCs and DMCCs.

C. Change Propagation

The development and maintenance of a program in-
volves handling a large number of files. These files are
logically related to each other and a change to one file
may imply a large number of changes to various other
files. Change propagation analyses how changes made to
one file propagate to others. Law and Rothermel [22] pre-
sented an approach for change propagation analysis based
on whole-path profiling. Path profiling is a technique to
capture and represent a program dynamic control flow.
Unlike other path-profiling techniques, which record intra-
procedural or acyclic paths, whole-path profiling produces
a single, compact description of a program control flow,
including loops iteration and inter-procedural paths. Lawet
al.’s approach builds a representation of a program behavior
and estimates change propagation using three dependency-
based change-propagation analysis techniques: call graph-
based analysis, static program slicing, and dynamic program
slicing. Hassan and Holt [23] investigated several heuristics
to predict change propagation among source code files. They
defined change propagation as the changes that a file must
undergo to ensure the consistency of the program when
another file changed. They proposed a model of change
propagation and several heuristics to generate the set of
files that must change in response to a changed file. Zhou
et al. [24] presented a change propagation analysis based

on Bayesian networks that incorporates static source code
dependencies as well as different features extracted from the
history of a program, such as change comments and author
information. They used the Evolizer system that retrieves
all modification reports from a CVS and uses a sliding
window algorithm to group them. Canfora and Cerulo [25]
proposed an approach to derive the set of files impacted by
a proposed change request. A user submits a new change
request to a Bugzilla database. The new change request
is then assigned to a developer for resolution, who must
understand the request and determine the files of the source
code that will be impacted by the requested change. Their
approach exploits information retrieval algorithms to link the
change request descriptions and the set of historical source
file revisions impacted by similar past change requests.

Theses approaches detect change propagation among files.
Their change-propagation model can be used to predict fu-
ture change couplings and may involve several files that are
in MCCs or in DMCCs but they do not allow to differentiate
between these two concepts. All these approaches grouped
change couplings created by the same author and have the
same log message; thus, they can not detect (approximate)
MCCs and–or DMCCs.

Ambros et al. [18] presented the Evolution Radar, an
approach to integrate and visualise module-level and file-
level logical couplings, which is useful to answer questions
about the evolution of a program; the impact of changes at
different levels of abstraction and the need for restructuring.
Beyer and Hassan [26] introduced the evolution storyboard,
a new concept for animated visualisations of historical
information about the program structure, and the storyboard
panel, which highlights structural differences between two
versions of a program. They also formulated guidelines for
the usage of their visualisation by non-experts and to make
their evaluations repeatable on other programs.

However, Xing and Stroulia [27], reported that these
visualisations are limited in their applicability becausethey
assume a substantial interpretation effort of their users and
they do not scale well: they become unreadable for large
systems with numerous components.

VII. C ONCLUSION AND FUTURE WORK

We introduced the novel concepts of macro co-changes
and dephase macro co-changes to describe that two files
were changed by developers within same change periods,
with possible shifts in time. We describe, Macocha, an
approach to detect (dephase) macro co-changes using file
profiles and their stability in time.

Macocha relates to file stability and co-changes. We there-
fore performed two types of empirical studies. Quantita-
tively, we compared Macocha with UMLDiff [11] and an as-
sociation rules approach [3] by applying and comparing the
results of the three approaches on four different programs:

ArgoUML, FreeBSD, SIP, and XalanC, and showed that Ma-
cocha can identify the same idle/changed files as UMLDiff
and that Macocha has a better precision and recall than the
approach based on association rules. Qualitatively, we used
external information provided by bugs reports, mailing lists,
and requirement descriptions to show that detected MCCs
and DMCCs explain real, important evolution phenomena.
We also showed that dephase macro co-changes do exist and
can help in explaining bugs, managing development teams,
and traceability analysis.

We are currently (1) replicating our studies with other
programs, (2) performing a comprehensive study of the
number of MCCs and DMCCs with varying values oft
and s (especially dependent on the analysed programs),
(3) identifying other scenarios in which dephase macro co-
changes help, and (4) relating MCCs and DMCCs with static
analysis and external software characteristics, such as change
proneness. Future work also includes a comparative study
of the different sets computed by Macocha and associations
rules with different value of confidence and support other
than the values reported in [3].

ACKNOWLEDGMENT

This work has been partly funded by a FQRNT team
grant, the Canada Research Chair in Software Patterns and
Patterns of Software and the Tunisian Ministry of Higher
Education and Scientific Research. We gratefully thank
Massimiliano Di Penta and Daniel M. German for their
generous comments.

REFERENCES

[1] M. M. Lehman and L. Belady, Eds.,Program evolution: processes
of software change. Academic Press Professional, Inc., 1985.

[2] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predict-
ing source code changes by mining change history,”Transactions on
Software Engineering. IEEE Computer Society Press, 2004, vol. 30,
no. 9, pp. 574–586.

[3] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” inProceedings of the
26th International Conference on Software Engineering. IEEE
Computer Society, 2004, pp. 563–572.

[4] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logicalcoupling
based on product release history,” inProceedings of the International
Conference on Software Maintenance. IEEE Computer Society,
1998, pp. 190–.

[5] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,”ACM
Trans. Softw. Eng. Methodol.ACM, July 2002, vol. 11, pp. 309–
346.

[6] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” inPro-
ceedings of the International Conference on Software Maintenance.
IEEE Computer Society, 2003, pp. 23–.

[7] D. M. German, “An empirical study of fine-grained software mod-
ifications,” Empirical Softw. Engg. Kluwer Academic Publishers,
September 2006, vol. 11.

[8] G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predictive coding
and cepstrum coefficients for mining time variant information from
software repositories,” inProceedings of the International Workshop
on Mining software repositories. ACM Press, 2005, pp. 1–5.

[9] S. Bouktif, Y.-G. Guéhéneuc, and G. Antoniol, “Extracting change-
patterns from cvs repositories,” inProceedings of the 13th Working
Conference on Reverse Engineering. IEEE Computer Society, 2006,
pp. 221–230.

[10] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical change
coupling: An empirical study,” inProceedings of the 2010 IEEE
International Conference on Software Maintenance. IEEE Computer
Society Press, pp. 1–10.

[11] Z. Xing and E. Stroulia, “Analyzing the evolutionary history of the
logical design of object-oriented software,”Transactions on Software
Engineering. IEEE Computer Society Press, 2005, vol. 31, pp. 850–
868.

[12] L. Hatton, “How accurately do engineers predict software mainte-
nance tasks?”Computer. IEEE Computer Society Press, 2007,
vol. 40.

[13] V. R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data,”Software. IEEE Computer Society Press,
1984, vol. 10, no. 6, pp. 728–738.

[14] T. Zimmermann, S. Breu, C. Lindig, and B. Livshits, “Mining addi-
tions of method calls in argouml,” inProceedings of the International
Workshop on Mining Software Repositories. ACM Press, 2006.

[15] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-oriented
design differencing,” inProceedings of the 20th International Con-
ference on Automated Software Engineering. ACM Press, 2005.

[16] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” inProceedings of the 20th International
Conference on Very Large Data Bases. Morgan Kaufmann Publish-
ers Inc., 1994.

[17] A. Vanya, S. Klusener, N. van Rooijen, and H. van Vliet, “Charac-
terizing evolutionary clusters,” inProceedings of the 16th Working
Conference on Reverse Engineering. IEEE Computer Society, 2009.

[18] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change
information with the evolution radar,”Transactions on Software
Engineering. IEEE Computer Society Press, 2009, vol. 35, no. 5,
pp. 720–735.

[19] B. W. Rebecca Wirfs-Brock and L. Wiener, Eds.,Designing Object-
Oriented Software. Prentice Hall, 1990.

[20] S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol, “Recovering the
evolution stable part using an ecgm algorithm: Is there a tunnel in
mozilla?” in CSMR, 2009, pp. 179–188.

[21] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta, “An eclectic
approach for change impact analysis,” inProceedings of the 32nd
International Conference on Software Engineering. ACM Press,
2010, pp. 163–166.

[22] J. Law and G. Rothermel, “Whole program path-based dynamic
impact analysis,” inProceedings of the 25th International Conference
on Software Engineering. IEEE Computer Society, 2003, pp. 308–
318.

[23] A. E. Hassan and R. C. Holt, “Predicting change propagation in
software systems,” inProceedings of the 20th IEEE International
Conference on Software Maintenance. IEEE Computer Society,
2004, pp. 284–293.

[24] Y. Zhou, M. Würsch, E. Giger, H. C. Gall, and J. Lü, “A bayesian
network based approach for change coupling prediction,” inProceed-
ings of the 15th Working Conference on Reverse Engineering. IEEE
Computer Society, 2008, pp. 27–36.

[25] G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” inProceedings of the 11th IEEE
International Software Metrics Symposium. IEEE Computer Society
Press, 2005, p. 29.

[26] D. Beyer and A. E. Hassan, “Animated visualization of software
history using evolution storyboards,” inProceedings of the13th
Working Conference on Reverse Engineering. IEEE Computer
Society Press, 2006.

[27] Z. Xing and E. Stroulia, “Bottom-up design evolution concern
discovery and analysis,” Tech. Rep., 2007.

