An Exploratory Study of Macro Co-changes

Fehmi Jaafdr, Yann-Gagl GuéhénelicSylvie Hamel, and Giuliano Antonidl
1 PTiDEJ Team, SOCCER Lab, DGIGLEcole Polytechnique de Montréal, QC, Canada
2 LBIT Team, DIRO, Université de Montréal, QC, Canada
E-Mails: {jaafarfe,hamelsyl@iro.umontreal.ca, yann-gael.gueheneuc@polymtl.danai@ieee.org

Abstract—The literature describes several approaches to simplicity, we focus on C, C++, and Java source files (.c,

identify the _artefacts of programs that change together to .cpp, and .java) as they are among the most common and
reveal the (hidden) dependencies among these artefacts. 8¢e popular programming languages.

approaches analyse historical data, mined from version cdrol Previ h intrinsically limited in ti h
systems, and report co-changing artefacts, which hint at ta revious co-changes are intrinsically limited in time. yhe

causes, consequences, and actors of the changes. We introglu Cannot express patterns of changes between long time inter-
the novel concepts ofnacro co-changes (MCC), i.e, of artefacts ~ vals. For example, in the Bugzilla of ArgoUML, the bug ID
that co-change within a large time interval, and of dephase 5378 states, in relation té\r goDi agr am j ava, that an
macro co-changes (DMCC), i.e., macro co-changes that always «argoDiagram should provide constructor arguments for the

happen with the same shifts in time. We describe typical sce- " .
narios of MCC and DMCC and we use the Hamming distance concrete classes to create”, which relatebideCr eat e-

to detect approximate occurrences of MCC and DMCC. We Associ ationC ass. java. The bug report thus con-
present our approach, Macocha, to identify these concepts firms that these two files are related. However, no previous
in large programs. We apply Macocha and compare it in approach can detect that these files co-changed because they
terms of precision and recall with UMLDIff (file stability) a nd were maintained by the same developpebt ar | i ng but

association rules (co-changing files) on four systems: ArgtML, - .
FreeBSD, SIP, and XalanC. We also use external information tN€ir changes were separated by few hours. Yet, Knowing the

to validate the (approximate) MCC and DMCC found by dependency among theses files is useful to a new developer
Macocha. We thus answer two research questions showing that must changér goDi agr am j ava: she must assess

the existence and usefulness of theses concepts and exglen MbdeCr eat eAssoci at i onCl ass. j ava for change.

scenarios of hidden dependencies among artefacts. In general, this scenario happens when a developer is in

Keywords—Co-changes; stability; bit vectors. charge of a subset of a large program, composed of, among
others, filesF1 andF2. She may change and commit these

l. INTRODUCTION two files in the same day but with a few hours between each

Developers must continually change their software procommit, as illustrated in Figure 2. This scenario may repeat
grams to meet new requirements and user needs, el$er years and would be undetected using a sliding window
their programs become progressively unsatisfactory [8] anof few minutes. Yet, it contains important information both
eventually become obsolete to the point of disappearingfor the developer and her colleagues: changeBXomust
The literature describes many approaches to extract arlikely propagate td~2.
analyse the changes undergone by software artefacts and toAs another example in ArgoUML, we found that the
infer patterns that describe these changes to help progradevelopersnvw and tf morri s contributed with some
comprehension and evolution. Several of these approachgsitches that containfot ati onUtilityJava.java
identify co-changes among artefactsg, [2], [3], which and Mbdel El ement NaneNot at i onUni . j ava? and
represent the (often implicit) dependencies or logical-couthe bug ID 2928 confirms that the two files are related (see
plings among artefacts that have been observed to frequentSection IV for details). No previous approach can detedt tha
change together [4]. Two artefacts are co-changing if theyhese files co-changed because , during the 11 years of de-
were changed by the same author and with the same logelopment of ArgoUML, these two files were never changed
message in a time-window of less than 200 ms. [3]. Mockudy the same developer at the same time but were changed by
et al. [5] defined the proximity in time of checkins by the developerswwandt f norri s in two consecutive change
check-in time of adjacent files that differ by less than threeperiods: firstNot at i onUt i | i t yJava. j ava and, subse-
minutes. Other studies(g, [6] and [7]) described issues quently after one period of changéydel El ement Nane-
about identifying atomic change sets and reported that, ifNot at i onUml . j ava, pointing out dependency among
all cases, they differed by few minUI-eS' ; ; Lhttp://argouml.tigris.org/issues/shobug.cgi?id=4604

.ArtefaCtS can be SOU_I‘(FE (.:Ode files, classes In_ ObJeCt_ 2http://argoumI.tigris.org/issues/shawattachmen»t21’1_1i8/20101116-
oriented programs, specifications, and so on. In this papepatch-notation. txt
as in previous worke.g, [3], [8], and [9], for the sake of 3http://argouml.tigris.org/issues/shohug.cgi?id=2926

these two files.
In fact, this scenario can happen when a developer D2

Commitl in 20-12-2010 / 00h.00mn by devl

is always reminded to change file2 after one or two Period 1 Eg > B 1 22.12.2010/ 00h O5mn by dev2
days by developer D1, whenever D1 changed File as F2

shown in Figure 1. Previous work.g, [2], [3], [10], does

n_ot consider co-c_hanged files, if t_hey were changed by two s Commit n25.12.2010 1 00mn by devt
different authors in the same period. Thus, we present, the : Commitd in 26:12:2010 / 0Lh.05mn by dev2

first approach , to the best of our knowledge, to detect and to
report co-changed files maintained by different develapers CommitS in 30.12:2010/ 06h00mn by dovt.
Thus, we introduce the novel concepts wiacro co- Period3 Tl F e in31:12:2010/ 06h.0Smn by dev2
changes(MCC) and dephase macro co-changé@MCC), P2
inspired from co-changes and using the concept of change
periods, as defined in Section Il. The MCC describe a set
of files that always change together in the same periods afigure 1. FilesF1 and F2 are changed by different developers and in
time. The DMCC describes a set of files that always chang&vo consecutive periods of time.
together with some shift in time in their periods of change.
We also consider approximate MCC and DMCC when co-

Commitl in 20-12-2010 / 00h.00mn by devl

changes occur “almost” all the time, using the Hamming Period 1 L E 2012.2010/ 05h 05 by devt.
distance and by dividing the MCC (respectively, DMCC) P2

set into two sets: the 3c¢ (respectively, o) set that

contains files that have _exactly the same (dephase) _profile s Commit3 in 25:12:2010 / 01h.00mn by devd
and the $,ccpn (respectively, Sy con) set that contains Commitd in 25-12:2010 05h.05mn by dev

approximate (dephase) macro co-changing files.
We also present Macocha, an approach to identify MCC Commits in 30-12:2010 / 5h.00mn by devl
and DMCC in the evolution of programs, which relates Period3 T B 6 in 30:12:2010 / 06h.05mn by dev.
to file stability and co-changes, and perform two types of P2
empirical studiesQuantitatively we compare the stability
analysis of Macocha with that of UMLDIff [11] and the
co-change analysis of Macocha with association rules [Z]Figure 2. Two changes performed by one developer are seglientime
[3]. We compare the results of the three approaches on fougfter few hours)F1 andF2 are macro co-changing
different programs: ArgoUML, FreeBSD, SIP, and XalanC,
developed with three different programming languages, Cthose that have similar co-changes pattern, i.e, are maero c
C++, and JavaQualitatively, we use external information changing or dephase macro co-changing. We now present the
provided by bugs reports, mailing lists, and requirementoncepts of our approach using examples from ArgoUML.
descriptions to validate the MCC and DMCC not found _—
using association rules and to show that these MCC ané" Definitions
DMCC explain real evolution phenomena. 1) Change Period:We draw inspiration and extend the
Thus, the contributions of this paper are: (1) the defi-classical sliding window approach to consider that two
nitions of the two novel concepts of MCC and DMCC; Subsequent changes by any author and with any log message
(2) an efficient approach to identify such co-changes, nof'® part of one change period if we do not detect an
identified by previous work, in large programs ; (3) empirica interrupt between these two subsequent changes. We define
studies showing the existence and usefulness of (approx@n interrupt as a continuous duration without a change.
mate) MCC and DMCC among files. Section Il presents Hatton [12] presented an empirical study to estimate the
Macocha. Section Il describes our empirical study whiletime for a particular maintenance requests also known as
Section IV reports and discusses its results as well astthreachange requests or CRs). The author showed that the average
to its validity. Section VI discusses related work. Sectioh ~ duration of a CR is 5.17 hours and that the largest duration

concludes with future work. was less than 40 hours. _ _
Thus, in Macocha, the largest duration of a change period

is less than40 hours. Lett be the number of hours of

an interrupt between two change periods. In Macocha, we
We propose Macocha to mine version-control systemshooset = 5.17 hours,e.g, if the interrupt between two

(CVS and SVN), to identify the change periods in a programsubsequent changes is more thaa 5.17 hours, we assume

to group source files according to their stability throughthat theses two subsequent changes belong to two different

the change periods, and to identify among changed fileshange periods.

II. OUR APPROACH MACOCHA

Profile of idle file 0010000000000 a program. Figure 5 illustrate thefl and F2 are in dephase
macro co-change witk = 1; F2 andF3 are in a DMCC
Profile of changed file 0010100110001 with s = 2; and,F1 andF3 are in a DMCC withs = 3. In
this paper, we limit our study te = 1.
Figure 3. Profiles showing file Stability Macocha considers both identical amsimilar profiles
(with or without shifts in time) to account for cases where
F1 000110110110101010000011111101010110011 the files did not change exactly at the same times (in
F2 000110110110101010000011111101010110011 terms of change periods). We use the Hamming distance
Dy to measure the amount of differences between two
Figure 4. FilesF1 andF2 were in macro co-change change profilesi.e., the number of positions at which the

corresponding bits are different. After analysing several
values of ; between two profiles in different system, we
~ I E 2 N found that ;<3 is the best trade-off between precision
3|:EF2 PR and recall (as shown in Figure 9) . Thus, in this paper, we
consider that two profile are similar if the Hamming distance
between them is less then three/B3). Figure 6 illustrate
that F1 andF2 are in approximate macro co-change with
Dy <3; F2 andF3 are in a approximate MCC with p<3;
and,F1 andF3 are in a approximate MCC with p<5.

F3 UO‘iOOllD‘iDlllODl‘iO 111111101010000000111010

Figure 5. Three different bit vectors showing dephase maorohange

F1 0100001110101100111
E 2 0101001110100100141 B. Data Model, Implementation, and Outputs
E F3 0101001110100101011 Figure 7 describes the data used by Macocha. A change
contains several attributes: the changed file names, tles dat
Figure 6. Three different bit vectors showing approximatacra co- Of changes, the developers having committed the changes.
change Using this data, Figure 8 illustrates the concrete procéss o

In ArgoUML: We find 2,843 change periods in 11 years 0fMacocha. Macocha takes as input a CVS/SVN change log.

maintenance. By comparing the result of Macocha on co_lt creates a profile that describes the evolution of each file

change with association rules [2], [3] we find that 5.17 in each change period. It uses these profiles to compute the

hours is a good trade-off between precision and recall (seﬁtability of the files and, then, .identify MCC and DMCC.
Section IV for details). Macocha returns the following sets of (dephase) macro

2) Profile: We define a profile as a bit vector that co-changing files (and their profiles)&c, the set of

describes if a file changed or not during each of the chang@acro co-changing files with identical profiles in a pro-
periods of a program. The length of this bit vector is ~ 9r@M and $acc, the set of dephase macro co-changing

the number of change periods. We indicate that a file halles identified when shifting profiles by change periods.
changed in the'" period by putting the*” bit to one; zero MccH, the set of approximate macro co-changing files

otherwise. with similar profiles in a program by using the Hamming
3) File Stability: Macocha groups files according to their distance (&Dr<3) and $arcon, the set of approximate

stability: idle and changed, as shown in Figure 3. Each groufi€Phase macro co-changing files identified when shifting

is a set of profiles with similar stabilitydle files do not profiles bys change periods.

change in any change period after their introduction into I11. EMPIRICAL STUDY

the systemj.e., their profiles mostly contain zeroes, while Following GQM [13], the goal of our study is to show that

changed filesare files that changed after their introduction ,,, approach can identify MCC and DMMC and that they
into program. Macocha use this group to identify files havingyescribe interesting evolution phenomena. Our purpose is t

similar co-chf':mges pattern. o bring generalisable, quantitative evidence on the exigten
In ArgoUML. Macocha identifies 202 idle files and 2,946 \1cc and DMCC. The quality focus is that changing one file
changed files. may impact the files that (dephase) macro co-change with it.

4) Macro Co-changesSimilar changed profiles grouped The perspective is that of both researchers and practione
together represent MCCs and DMCCs. As8c IS WO \yhg should be aware of the hidden dependencies among
or more changed files that change together, that have fijies 1o make informed changes. The context of our study is

identical profiles during the life cycle of a program, as pqh the comprehension and the maintenance of programs.
illustrated in Figure 4. Given a file F1, ap®;cc is the

set composed oF1 and one or more filess2..FM such A. Research Questions
thatF2...FMalways macro co-change with the same shift in We formulate two research questio8Q1: How does
time s € [0, n—1] with respect td~1 during the evolution of Macocha compare to previous work in term of precision

Change
FileName

Date
Developer

with external information. We also report and discuss the
cardinalities of theM CC and DM CC' sets.

We do not report performance because, using a standard
— computer with a Intel Core i7-740QM (1.73/ 2.93GHz),
Abstract Macro @ 6GB RAM, and 1GB VRAM, Macocha identifies (dephase)

_ macro co-changes in FreeBSD (the largest program in terms

D S . . .
: of number of files and of changes) in less than ten minutes.
Malcro Dephalse macro | Idle file

— - C. Objects

We choose four programs developed with three different
programming languages: ArgoUMLFreeBSD, SIP*, and
XalanC'. We use these programs because they are open
source, have been used in previous work [10] [14], are of
different domains and in different programming languages,
span several years and versions, and underwent between
thousands and hundreds of thousands of changes. Table |
summarises some programs statistics.

ArgoUML is an UML diagramming program written in
Java and released under the open-source BSD License.
We analyse the evolution of this program for a period of
11 years, from 1998-01-26 to 2009-01-29. In this period,
ArgoUML has gone through over 13 major versions, from
the first published version to version 0.26.2 in November
2008, and many more minor versions.

and recall?RQ2: Are there (approximate) dephase macro FreeBSD is a free Unix operating system written in C and

co-changes among files and what is their usefulness? released under the open-source BSD License. We analyse
the evolution of this program for a period of 15 years,

B. Analyses from 1994-05-25 to 2009-02-11. In this period, FreeBSD has
To answer RQ1 and RQ2, we apply Macocha to differengone through eight major versions, from the first published
object programs and collect the different sets of MCC andversion to version 7.0 on February 2008.
DMCC. We then perform two types of empirical studies. SIP Communicator is an audio/video Internet phone and
Quantitatively, on the one hand, we compare the results dhstant messenger that supports some of the most popular
Macocha with those of UMLDIff for file stability. We thus VoIP and instant messaging protocols, such as SIP, Jabber,
show that Macocha can identify the same idle and change8IM/ICQ, MSN. SIP is open source and freely available
files as UMLDIff using only data from change logs. It does under the GNU Lesser General Public License. It is written
not produce as detailed information as UMLDIff but this in Java. We analyse the evolution of this program for a period
information is sufficient for our needs. Idles files do not of five years, from 2005-07-21 to 2010-12-09.
change in any change period after their introduction into th XalanC is an open-source software library from the
program. Thus, we discard this group of files because thef\pache Software Foundation written in C++. We analyse
are not useful for the co-change analysis due to their raréhe evolution of this library for a period of 11 years, from
evolution. 1999-12-18 to 2009-01-17. In this period, XalanC has gone
On the other hand, we compare the results of Macoch#rough over 20 major versions, from the first published
with those of the association rules approach [3] for co-version to version 1.10 in November 2008.
changing files. We also thus show that the sai&
produced by Macocha includes the same co-changing files as -
reported using association rules plus new co-changing files e now present the results of our empirical study. Table
Qualitatively, we confirm that eacd/CC found by Il summarises the sets obtained by applying Macocha.

Macocha but not association rules approach [3] is indeed\ pata Preprocessing and Identifying changed files

a dependency link using extemal information from bug- Before finding patterns in the change history, Macocha

reports, requirement descriptions, and mailing lists. W§e a . .
select typical examples of MCCs and DMCCs and ShOWdetects in each program the set of changed files. The pre-
processing step involves eliminating idles files becausg th

their usefulness using external sources of information.
We thus report a quantltatlvg analyS'S n a_\cqordance with 4http://argouml.tigris.org/, http://www.freebsd.org/, http://www.sip-
the state of the art and a qualitative analysis in accordana@mmunicator.org, and http://xml.apache.org/xalan-c/

Figure 7. Meta-model of our data

Idle file
File group
Changed file
Abstarct macro

macro
co-change

co-change

Dephase macro
co-change

Change Period FileName Profile
Analysis

Figure 8. Analysis-process

IV. STUDY RESULTS ANDDISCUSSIONS

ArgoUML | FreeBSD SIP XalanC - L .
Canguages Tava c Tava roxn providing that CVS/SVN repos.|tor|e.s are available.
Versions 30 8 2 21 In ArgoUML: We detect 202 idle files. For example, the
Ei:]es 1%%3 18?(;'2%3 Q’ZZZ 397%%92 files ModeChangeEvent . j ava andGoMbdel Tod as-
anges , , , , s
Start Dates| 98-01-26 | 94-05-25 | 05-07-21| 99-12-18 sifiers.]avawere modified in only one change period
End Dates | 09-01-29 | 09-02-11 | 10-12-09 | 09-01-17 in 11 years.Using UMLDIff, we confirm that these files
CPs 2,843 1,121 1,553 924 belong to an idle cluster.
Table | We detect 2,946 changed files. For example, the files
DESCRIPTIVE STATISTICS OF THE OBJECT PROGRAME PS: NUMBERS Test Pr Oj ect. J ava and NotationUtili tyUn1 -
OF CHANGE PERIOD) .j ava were modified 20 times during the evolution of

ArgoUML. Thus, these files belong to the changed group.

ArgoUML | FreeBSD| SIP [XalanC - . . .
Idie files 4 500 1856 | 963 = Using UMLDIff, we confirm that these files belong to an
Changed files 2,946 1,747 | 1,827 522 active cluster.
#OfN?MC#Cf-l 122 121 11‘; fs In FreeBSD: We find 1,856 idle files. For exampléd-
ax lies . - .

Vi 7 Tiles > > > 5 ti mer. ¢ and hddebug. ¢ were modified in one change
#0f Syicon 196 163 | 182 85 period in 15 years.

Max # files 46 44 32 22 We detect 1,747 changed files. The filasbrcl i st. c
#Of'\g'” # files ﬁ i 2 i and stal | i on. ¢ were modified in 15 change periods

Man”ffﬁes Z > 3 > during the evolution of FreeBSD. We cannot use UMLDIff to

Min # files 2 2 2 2 verify this result because UMLDIff can not analyse programs
of S]VICCH 53 63 36 4 Written in C.

Max # files 6 8 5 2

Min Z files > > 5 5 In SIP: We obtain 963 idle files. For exampl&gl ect -

S— | magePanel . j ava and| nageSour ceStream j ava

were modified in one change period in five years. With
UMLDIff, these files belong to an idle cluster. Macocha

CARDINALITIES OF THE SETS OBTAINED IN THE EMPIRICAL STUDY

Idle Groups | Changed Groupg detect 1,827 changed files. The fil&efaul t Tree-
ArGOUNIL 'Sdt'f ﬂUStgr(S:I . 205 . 39% Cont act Li st.java and TreeContact Li st.j ava
g0 e T 5 e were modified 15 times during the evolution of the program.
Idle Clusters 963 0 In XalanC: Our approach detect seven idle files. For exam-
SIiP Short-lived Clusters 0 997 ple, XLocat or . cpp and Cl oneabl e. cpp were modi-
Active Clusters 0 830 fied | h iod i . Usi UMLDiff
idle Clusters - o ied in one change period in nine years. Using iff, we
XalanC Short-lived Clusters 0 291 confirm that these files belong to an idle cluster. Macocha
Active Clusters 0 231 detect 522 changed files. The fil@@pLevel Arg. cpp
Table Il and Xal anEXSLTSet . cpp were modified in 30 changes
CARDINALITY OF MACOCHA SETS IN COMPARISON TdJMLDIFF[ll] periods during the evolution of the program_ Using UMLD-

iff, we confirm that these files belong to an active cluster.

do not change in any change period after their introductiori3 . .
. . , . How does Macocha compare to previous work in term
into the program. Thus, they do not participate in co-change

of precision and recall?

patterns.

Table 11l reports the number of idle, short-lived, and agtiv. For each program, Macocha detect files that have identical
files found by UMLDIff in the object-oriented object pro- or similar profiles (the MCCs sets) and report them.
grams (ArgoUML, SIP, and XalanC) and their categorisationQuantitatively: We compare the $o¢ found by Macocha
by Macocha. Because we want to distinguish idle fromwith the co-changing files found by an approach based
changed files, Macocha groups together the files identifiedn association rules [3] (see also [10]), which uses the
as short-lived and active by UMLDIff and compare the setsApriori algorithm [16] to compute association rules. The
provided by UMLDIff and by Macocha and find that they are Apriori algorithm takes a minimum support and a minimum
identical. For example, Macocha finds 2,946 changed filesonfidence and then computes the set of all association rules
in ArgoUML, identical to the UMLDiIff 1,390 + 1,556 = To obtain a comprehensive set of rules, we consider as valid
2,946 short-lived and active files. rules those achieving a minimum confidence of 0.9 as in

In addition, Macocha computes file stability in few min- previous work [3] and a minimum support of 2 to compare
utes because, unlike UMLDIff, which takes few hours [15], association rules and our approach.
because it does not create UML-like representations of We thus perform annternal evaluationsimilar to that
the programs before performing its analysis. Macocha caof Zimmermannet al's. Given snapshots;, i € [1,...,n],
analyse file stability for any program, unlike UMLDIff, we build two equal set&},qin = {S1...5:} and Tiesr =

Association Rules| External Information
Precision| Recall | Precision| Recall
o0 — ArgoUML 86% 98% 100% 99%
80 FreeBSD 98% | 100% 100% 100%
50 SIP 85% 96% 100% 98%
10 XalanC 90% | 100% 100% 100%
Z” p—— Table V
0 EXTERNAL EVALUATION OF MACOCHA WHEN USING THE RESULTS OF
oo s s s 788w ASSOCIATION RULESet al’ S APPROACH[3] AS ORACLE AND AFTER
MANUAL VALIDATION USING EXTERNAL INFORMATION

Figure 9. The mean of Precision and Recall achieved by Macedth ~ the precision and recall values of Macocha after manual
different values of By for the four programs validation, which show that Macocha is able to detegt-%

missed and co-changes wrongly reported by association
rules. We do not obtain 100% recall because of our choice

Association Rules Macocha - -

Precision | Recall | Precision] Recall of ¢ = 5.17 hours. A smaller value of would yield a higher
ArgoUML 15% | 66% 20% | 75% recall but a lower precision. We thus confirm Hatton’s study
FreeBSD 22% | 100% 24% | 100% 12 d { that — 517 h ; d trade-off
SIP 8% T 89% 3% T 91% [12] an report that = 5. ours is a good trade-o
XalanC 16% | 100% 22% | 100% between precision and recall.

Table IV Table V also reports, under the Association Rules header,

ASSOCIATION RULES S APPROACH[3] VS. MACOCHA the precision and recall of Macocha with respect to the

approach based on association rules. It shows that Macocha

{S¢11...S,}. We useT},.qin to build association rules and detects the majority of co-changing files detected by associ
compare the co-changing files f,..;, with those inT;.;. ation rules in the four object programs. In addition, Ma@ch
For the four programs, we find that Macocha improvedetects other §c¢ not detected by association rules. For
precision and recall over the approach based on associatig¥ample:
rules, as shown in Table IV. For example, for ArgoUML, In ArgoUML: O assi fi er Rol e. j ava andMessage-
results indicate that, the precision and the recall of Mhapc Di rectionKind. java were in approximate MCC. In
respectively20% and 75%, are better than those of associ- fact, in the Bugzilla of ArgoUML, the bug ID 881states
ation rules, respectively5% and 66%. that “when classifier assigned to an object [...] ArgoUML
The rationale of an internal evaluation is that no experiStops responding” in relation with these two files. These two
and no pre-existing groups of co-changing files are availabl file were changed by different authors in a time-window of
Precision and recall are measured for the testing sets bypore than few minutes. Thus, by applying the association
considering, for each file, the groups resulting from thefule approach described in [3], we cannot find that these
training sets as oracles. Such an internal validation havéles are co-changing.
some limits [17] [18]: (1) Files co-changing frequently in In SIP: Statuslcon.java and Contact Panel -
the past (training set) but not recently (test set) will be-j ava were in MCC. As confirmed in the Bugzilla of
considered wrongly as false negatives; (2) Files co-cliangi SIP by the bug 1D 497 This bug describes on an “Status
frequently recently (test set) but not in the past (trainingnotifications for a choosen contact” relating these two files
set) will be considered wrongly as false positive; (3) If These two files were changed by the same develparas
the training set contained false positives or negativesy th five times in a time-window of more than few minutes. Thus,
cannot be detected using the testing set. by applying the association rule approach described in [3],
Qualitatively: To overcome these limits and to validate the We could not find that these files are co-changing.
Syec not found_ using association ruIe_s, we also performanc Are there (approximate) dephase macro co-changes
external evaluatiomf Macocha by considering the results of among files and what is their usefulness?

the association rules as an oracle and by manually comparing To the best of K led . h
them with those of Macocha. In fact, for each set returned 0 the Dest of our knowledge, no previous approach can

by Macocha, if an identical set is returned by associationdeteCt files maintained with similar trends and some given

rules, it is considered a true positive. If the two sets are nozzlféfn'gl };T;'mvgteio\;al:;j;t?h?Ieag:e(;cflsnefcseO\flvgl\g;niitljﬁ:?sg
identical, we use external information to validate missing : pace,

files and to decide if they present a true positive, a fals%rate all DMCCs, so we only report representative examples.

negative, or a false positive. For example, In XalanC, al th " ArgoUML: When developers changédt | onAl i gn-

sets detected by association rules are detected by Macochb:z:’mdg]veei%ﬁg\rﬂ‘j‘i;h?;gsagr \éﬁ(r)gl'lt]r?uc??r?eosnee:n}o- files
except three sets. We validated these three sets using twio 9 gep ' '
messages in the mailing list and one bug in the Bugzilla. sy argouml.tigris.orglissues/shobug.cgizid=881

Table V reports, under the External Information header, °®http:/jjava.netijira/browse/JITSI-134

are in DMCC. In fact, in the Bugzilla of ArgoUML, the bug are not properly maintained, they can introduce bugs in
ID 1957 relates the two files: “Each label text is a few pixels a program. With our approach, for each program studied,
too high for its component. They should be positioned suctwe detected files in dephase macro co-changes. By using
that the label text is vertically aligned with the text in the external information, we confirmed our observation and that
labeled component”. these files indeed participate to bugs. For example, in SIP,
In FreeBSD: We find that ah-core.c and we detected seven bugs in relation with dephase macro co-
hpfs-al subr.c are in approximate DMCC. In changing files. By applying the association rule approach
the mailing list of FreeBSD, theMessage-|D: described in [3], we cannot find that these files are co-
<200906011106. n51B62Da020139@ r eef al | - changing. Thus, by knowing files that are in DMMCs, we

. freebsd. or g> states that the two files are related in could explain and possibly prevent bugs; we plan to study in
a lengthy the message from bugmastereeBSD.org on future work the bug prediction using (approximate) dephase
June 1, 2009 about “Current problem reports”. macro co-changes.

In SIP: We find that Mut eDat aSour ce. j ava and 3) Traceability Analysis:The change history represents
Cal | Peer Acti onMenuBar . j ava were changed sys- one of sources of information available for recoveringérac
temically with one shift change period in five years. In fact, ability links that are manually created and maintained by
These two files implement the same featukudio-Calls. developers. The version history may reveal hidden links tha
In XalanC: We find thatCl oneabl e. cpp and XLo- relate files and would be sufficient to attract the develdpers
cator.cpp are in approximate DMCC. In the XSLT attention. For example, in SIP, we detect traceability dink
syntax and semantic specificatfprihese files are related: between four approximate dephase macro co-changing files.
“A single template [...] can pull string values out of araity By applying the association rule approach described in [3],
locations in the source tree; it can generate structurds thave cannot find that these files are co-changing.

are repeated according to the occurrence of elements”. Due to the distributed collaborative nature of open-source
In the following scenarios, we summarise the usefulnesslevelopment, version-control systems are the primary lo-
of DMCCs reported by Macocha. cation of files and the primary means of coordination and

1) Management of Development Teanif:two classes archival. The requirements of open-source programs are typ
are in (approximate) dephase macro co-change, they shouically implied by communication among project participgnt
ideally be maintained by the same team of developersnd through test cases. However, such traces of requirement
to minimise the risks of introducing bugs in the future. are lost in time. Thus, by knowing classes there are in
The team of developers most likely possesses a wealth ¢hpproximate) dephase macro co-change, we could detect
unwritten knowledge about the design and implementatiorpotentially traceability links between them, which we plan
choices that they made for these classes, which would heliw concretely study in future work.
them to prevent introducing bugs [19].

Consequently, a team leader should redefine the organ-
isation of the maintenance team according to the DMCCs With our approach, we detect files in MCCs or in DMCCs
links among files, so that her team does not introduce bug four different programs belonging to different domains
because of the absence of information or lack of communiand with different sizes, histories, and programming lan-
cation among developers. For example, in ArgoUML, whenguages. However, we do not detect MCCs and DMCCs
we analysed changes made in tHfe& 12 dephase macro with the same proportion in each program. We observe that
co-changing files that have generated bugs, we found thdhe numbers of MCCs and DMCCs found in the programs
these changes have been made with one shift in time in thefteveloped in Java (ArgoUML and SIP) are greater than the
periods of change and by different developers . Thus, suchumber of MCCs and DMCCs found in program developed
co-changes can not be detected by previous work. Thanks C or C++ (see Table Il). We explain this finding by the
to DMCCs, a team leader should ensure that team who wilfact that, on the one hand, the majority of FreeBSD files
maintain these files in each change period have the necessaate idle and that, on the other hand, XalanC is the smallest
knowledge to maintain the dependency among these files.program analysed. Thus, we also apply our approach to

2) Bug and Change PropagationKnowing that two detect (dephase) macro co-changes on fewer C and C
files are in DMCCs implies the existence of (hidden) de-files than Java files, less than 529 files, thus explaining the
pendencies between these two files. If these dependencitesver numbers of MCCs and DMCCs. In future work, we

will conduct studies on other programs in these languages to

"http://argouml.tigris.org/issues/shobug.cgi?id=1957 confirm this observation and to assess the numbers of MCCs

8http://www.jitsi.org/index.php/Main/Features ; ;
and DMCCs according to the programming languages.
Shttp:/iwww.w3.0rg/TR/xslt 9 prog 9 guag

10http://argouml.tigris.org/issues/shotug.cgi?id=1957 A. Th e
= . reats t ty
Uhttp://argouml.tigris.org/issues/shobug.cgi?id=2926 0 the StUdy Validi

Lhttp:/largouml.tigris.org/issues/shotug.cgi?id=4604 Some threats limit the validity of our empirical study.

V. DISCUSSIONS

Construct Validity: Construct validity threats concern the evolving classes that maintain a stable structure of miati
relation between theory and observations. In this study th (association, inheritance, and aggregation) and, thu, th
could be due to implementation errors. They could alsdikely constitute the stable backbone of Mozilla.

be due to a mistaken relation between changes in files. As other example, UMLDIff [11] compares and detects
We believe that this threat is mitigated by the facts thatthe differences between the contents of two object-oréente
many authors discussed this relation, that this relatiemse program versions. A fact extractor parses each version to
rational, and that the results of our analysis shows thatextract models of their design. Next, a heuristic-differiag
indeed, MCCs and DMCCs exist and are corroborated bylgorithm, UMLDIff, extracts the history of the program
external sources of information (bug reports and others)evolution, in terms of the additions, removals, moves, re-
Actually, we apply static analysis to detect MCCs and namings, and signature-changes of design entities, such as
DMCCs because co-change analysis is known to be more packages, classes, interfaces, and their fields and methods
useful when combined with static analysis [23]. As UMLDiIff then assigns a stability to each class: short-lived
previous work detected co-changes committed by the samelasses (that exist only in a few versions of the program and
author in a short time window, relaxing these constraintshen disappear), idle classes (that rarely undergo changes
may also lead to false positives. The results of our empiricaafter their introduction in the program), and active classe
study show that Macocha improves precision and recall with{that keep being modified over their whole lifespan).

respect to the state of the art in four different programs. The Error Tolerant Graph Matching algorithm and
However, we cannot claim that our approach will give UMLDIff take few hours to analyse file stability for the four
similar results for any program. programs analysed in this paper because they require garsin
Internal Validity: Internal validity is the validity of causal and comparing AST-like representations of the programs be-
inferences in studies based on experiments. The intern&bre performing their analyses. Macocha computes stabilit
validity of our study is not threatened because we have nah few minutes using the change periods of a program, which
manipulate a variable (the independent variable) to see itdepend on how the developers of the program organise
effect on a second variable (the dependent variable). their work and group changes through the life cycle of the
Reliability Validity: Reliability validity threats concern program.

the possibility of replicating this study. We attempted to .)

provide all the necessary details to re-implement our apB: C0-changing Files

proach and replicate our empirical study. The change logs Ying et al. [2] and Zimmermanret al. [3] applied associ-
and the changed files of the four programs analysed witlation rules to identify co-changing files. Their hypothesis
their profiles to obtain our observations are on-line atis that past co-changed files can be used to recommend
http://lwww.ptidej.net/downloads/experiments/wcre/l1b source code files potentially relevant to a change request. A
External Validity: We performed our study on four dif- association-rule algorithm extracts frequently co-cliamg
ferent real programs belonging to different domains andiles of a transaction into sets that are regarded as charge pa
with different sizes, histories, programming languagest, Y terns to guide future changes. Such algorithm uses co-ehang
we cannot assert that our results and observations af@story in CVS and avoids the source code dependency
generalisable to any other programs, and the fact that afparsing process. However, it only computes the frequency
the analysed programs are open source may reduce thig co-changed files in the past and omits many other cases,
generability; future work includes replicating our study i e.g, files that co-change with always the same period of time

other contexts and with other programs. between changes. In Section IV, we showed that approaches
based on association rules cannot detect all occurrences of
VI. RELATED WORK MCCs and any occurrences of DMCCs because, by their

The concepts of MCCs and DMCCs relate our work tovery definition, they do not integrate the analysis of files

that on file stability, co-change, and change propagation. that are maintained by different developers and—or withesom
] - shift in time, which could lead to missed co-changing files.

A. File Stability German [7] used the information in the CVS to visualize

Many approaches exist to group files based on theiwhat files are changed at the same time and who are
relative stability throughout the software developmefe li the people who tend to modify certain files. He presented
cycle. For example, Kpodjedst al.[20] proposed to identify ~ SoftChange, a tool that uses a heuristic based on a sliding
all files that do not change in the history of a program, usingvindow algorithm to rebuild the Modification Record (MRs)
an Error Tolerant Graph Matching algorithm. They studiedbased on file revisions. In Softchange, a file revision is
the evolution of the Mozilla class diagram by collecting included in a given MR if all the file revisions in the
144 Mozilla snapshots over six years, reverse-engineeringlR and the candidate file revision were created by the
their class diagrams, and recovering traceability links besame author and have the same log. Thus, Softchange can
tween subsequent class diagrams. Their approach identifigtt detect co-changed file maintained in the same time by

different developers. Ceccarebit al. [21] and Canforaet on Bayesian networks that incorporates static source code
al. [10] proposed the use of a vector auto-regression modetiependencies as well as different features extracted fnem t
a generalisation of univariate auto-regression models, thistory of a program, such as change comments and author
capture the evolution and the inter-dependencies betweanformation. They used the Evolizer system that retrieves
multiple time series representing changes to files. Thewll modification reports from a CVS and uses a sliding
used the bivariate Granger causality test to identify if thewindow algorithm to group them. Canfora and Cerulo [25]
changes to some files are useful to forecasting the changesoposed an approach to derive the set of files impacted by
to other files. They concluded that the Granger test is a@iabla proposed change request. A user submits a new change
approach to change impact analysis and that it complementsquest to a Bugzilla database. The new change request
existing approaches like association rules to capture cas then assigned to a developer for resolution, who must
changes. If the authors integrate the analysis of files thainderstand the request and determine the files of the source
are maintained by different developers in periods of timecode that will be impacted by the requested change. Their
of more than few minutes, their approach could then detecapproach exploits information retrieval algorithms tcklthe
typical examples of MCCs and DMCCs. change request descriptions and the set of historical sourc
Antoniol et al. [8] presented an approach to detect simi-file revisions impacted by similar past change requests.
larities in evolutions of files starting from past maintecan Theses approaches detect change propagation among files.
notwithstanding their temporal distortions. They appliee Their change-propagation model can be used to predict fu-
LPC/Cepstrum technique, which models a time evolvingture change couplings and may involve several files that are
signal as an ordered set of coefficients representing thelsig in MCCs or in DMCCs but they do not allow to differentiate
spectral envelope, to identify in version-control systehves between these two concepts. All these approaches grouped
files that evolved in the same or similar ways. Their approaclthange couplings created by the same author and have the
can find files having very similar maintenance evolutionsame log message; thus, they can not detect (approximate)
history but they did not present a tool to detect MCCs andVICCs and—or DMCCs.
DMCCs. It used cepstral distance to assess series similarit Ambros et al. [18] presented the Evolution Radar, an
(if two cepstra series are “close”, the original signalsehav approach to integrate and visualise module-level and file-
similar evolution in time) with which we can not distinguish |evel logical couplings, which is useful to answer question
between the occurrences of MCCs and DMCCs. about the evolution of a program; the impact of changes at
different levels of abstraction and the need for restrutur
Beyer and Hassan [26] introduced the evolution storyboard,
The development and maintenance of a program ina new concept for animated visualisations of historical
volves handling a large number of files. These files arénformation about the program structure, and the storydboar
logically related to each other and a change to one filganel, which highlights structural differences between tw
may imply a large number of changes to various othewersions of a program. They also formulated guidelines for
files. Change propagation analyses how changes made {Re usage of their visualisation by non-experts and to make
one file propagate to others. Law and Rothermel [22] pretheir evaluations repeatable on other programs.
sented an approach for change propagation analysis basedHowever, Xing and Stroulia [27], reported that these
on whole-path profiling. Path profiling is a technique to yisyalisations are limited in their applicability becaubey
capture and represent a program dynamic control flowassume a substantial interpretation effort of their usats a
Unlike other path-profiling techniques, which record intra they do not scale well: they become unreadable for large

procedural or acyclic paths, whole-path profiling producessystems with numerous components.
a single, compact description of a program control flow,

including loops iteration and inter-procedural paths. Letw VIl. CONCLUSION AND FUTURE WORK

al.'s approach builds a representation of a program behavior

and estimates change propagation using three dependencyWe introduced the novel concepts of macro co-changes
based change-propagation analysis techniques: call graphand dephase macro co-changes to describe that two files
based analysis, static program slicing, and dynamic progra were changed by developers within same change periods,
slicing. Hassan and Holt [23] investigated several heigsst with possible shifts in time. We describe, Macocha, an
to predict change propagation among source code files. Theapproach to detect (dephase) macro co-changes using file
defined change propagation as the changes that a file mugtofiles and their stability in time.

undergo to ensure the consistency of the program when Macocha relates to file stability and co-changes. We there-
another file changed. They proposed a model of changfre performed two types of empirical studies. Quantita-
propagation and several heuristics to generate the set dively, we compared Macocha with UMLDIff [11] and an as-
files that must change in response to a changed file. Zhosociation rules approach [3] by applying and comparing the
et al. [24] presented a change propagation analysis base@sults of the three approaches on four different programs:

C. Change Propagation

ArgoUML, FreeBSD, SIP, and XalanC, and showed that Ma- [9]
cocha can identify the same idle/changed files as UMLDIff
and that Macocha has a better precision and recall than the
approach based on association rules. Qualitatively, we useyqj
external information provided by bugs reports, mailingslis

and requirement descriptions to show that detected MCCs
and DMCCs explain real, important evolution phenomena.
We also showed that dephase macro co-changes do exist and]
can help in explaining bugs, managing development teams,
and traceability analysis.

We are currently (1) replicating our studies with other 1,
programs, (2) performing a comprehensive study of the
number of MCCs and DMCCs with varying values of
and s (especially dependent on the analysed programs)[,13]
(3) identifying other scenarios in which dephase macro co-
changes help, and (4) relating MCCs and DMCCs with staticj14]
analysis and external software characteristics, suchasyeh
proneness. Future work also includes a comparative stud\élsl
of the different sets computed by Macocha and association
rules with different value of confidence and support other

than the values reported in [3]. [16]

ACKNOWLEDGMENT

This work has been partly funded by a FQRNT team 17
grant, the Canada Research Chair in Software Patterns and
Patterns of Software and the Tunisian Ministry of Higher
Education and Scientific Research. We gratefully thank!'8
Massimiliano Di Penta and Daniel M. German for their

generous comments.
[19]
REFERENCES

20
[1] M. M. Lehman and L. Belady, EdsRrogram evolution: processes [20]

of software change Academic Press Professional, Inc., 1985.
[2] A.T.T.Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, f&dict-
ing source code changes by mining change histamghsactions on
Software Engineering IEEE Computer Society Press, 2004, vol. 30,
no. 9, pp. 574-586.
[3] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, itiMg
version histories to guide software changes,’Piroceedings of the
26th International Conference on Software Engineering IEEE
Computer Society, 2004, pp. 563-572.
H. Gall, K. Hajek, and M. Jazayeri, “Detection of logicebupling
based on product release history,"Rmoceedings of the International
Conference on Software Maintenance IEEE Computer Society,
1998, pp. 190-.
[5] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two casadis
of open source software development: Apache and mozil&M
Trans. Softw. Eng. Methodol. ACM, July 2002, vol. 11, pp. 309—
346.
M. Fischer, M. Pinzger, and H. Gall, “Populating a reledsstory
database from version control and bug tracking systemsPri
ceedings of the International Conference on Software Maimnce
IEEE Computer Society, 2003, pp. 23-.
D. M. German, “An empirical study of fine-grained softwamod-
ifications,” Empirical Softw. Engg. Kluwer Academic Publishers,
September 2006, vol. 11.
G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predieé coding
and cepstrum coefficients for mining time variant inforroatifrom
software repositories,” ifProceedings of the International Workshop
on Mining software repositories ACM Press, 2005, pp. 1-5.

(21]

(22]

(4] (23]

[24]

6] [25]

[7] [26]

(8]
[27]

S. Bouktif, Y.-G. Guéhéneuc, and G. Antoniol, “Exttiagy change-
patterns from cvs repositories,” roceedings of the 13th Working
Conference on Reverse EngineerinEEE Computer Society, 2006,
pp. 221-230.

G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, sthiy
multivariate time series and association rules to deteyit# change
coupling: An empirical study,” inProceedings of the 2010 IEEE
International Conference on Software Maintenand&EE Computer
Society Press, pp. 1-10.

Z. Xing and E. Stroulia, “Analyzing the evolutionaryshory of the
logical design of object-oriented softwar@fansactions on Software
Engineering |IEEE Computer Society Press, 2005, vol. 31, pp. 850—
868.

] L. Hatton, “How accurately do engineers predict sofevanainte-

nance tasks?'Computer
vol. 40.

V. R. Basili and D. M. Weiss, “A methodology for colleng valid
software engineering date§oftware IEEE Computer Society Press,
1984, vol. 10, no. 6, pp. 728-738.

T. Zimmermann, S. Breu, C. Lindig, and B. Livshits, “Niig addi-
tions of method calls in argouml,” iRroceedings of the International
Workshop on Mining Software RepositoriesACM Press, 2006.

Z. Xing and E. Stroulia, “Umldiff: an algorithm for obg¢-oriented
design differencing,” inProceedings of the 20th International Con-
ference on Automated Software EngineeringCM Press, 2005.

R. Agrawal and R. Srikant, “Fast algorithms for miningsaciation
rules in large databases,” iAroceedings of the 20th International
Conference on Very Large Data Base#lorgan Kaufmann Publish-
ers Inc., 1994.

A. Vanya, S. Klusener, N. van Rooijen, and H. van VlieGharac-
terizing evolutionary clusters,” ifProceedings of the 16th Working
Conference on Reverse EngineerinEEE Computer Society, 2009.

IEEE Computer Society Press, 2007,

] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-ahge

information with the evolution radar,Transactions on Software
Engineering IEEE Computer Society Press, 2009, vol. 35, no. 5,
pp. 720-735.

B. W. Rebecca Wirfs-Brock and L. Wiener, EdBesigning Object-
Oriented Software Prentice Hall, 1990.

S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol, tReering the
evolution stable part using an ecgm algorithm: Is there aelin
mozilla?” in CSMR 2009, pp. 179-188.

M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Pentan“&clectic
approach for change impact analysis,” Bmoceedings of the 32nd
International Conference on Software EngineeringACM Press,
2010, pp. 163-166.

J. Law and G. Rothermel, “Whole program path-based dyoa
impact analysis,” ifProceedings of the 25th International Conference
on Software Engineering IEEE Computer Society, 2003, pp. 308—
318.

A. E. Hassan and R. C. Holt, “Predicting change propagatn
software systems,” irProceedings of the 20th IEEE International
Conference on Software Maintenance IEEE Computer Society,
2004, pp. 284—293.

Y. Zhou, M. Wiirsch, E. Giger, H. C. Gall, and J. LU, “Aymsian
network based approach for change coupling predictionProteed-
ings of the 15th Working Conference on Reverse EngineerlidcE
Computer Society, 2008, pp. 27-36.

G. Canfora and L. Cerulo, “Impact analysis by mining teaire
and change request repositories,” Rmoceedings of the 11th IEEE
International Software Metrics SymposiuMlEEE Computer Society
Press, 2005, p. 29.

D. Beyer and A. E. Hassan, “Animated visualization oftware
history using evolution storyboards,” iRroceedings of thel3th
Working Conference on Reverse Engineering IEEE Computer
Society Press, 2006.

Z. Xing and E. Stroulia, “Bottom-up design evolution no@rn
discovery and analysis,” Tech. Rep., 2007.

