
Requirements Traceability for Object Oriented Systems by Partitioning Source Code

Nasir Ali1,2, Yann-Gaël Guéhéneuc1, and Giuliano Antoniol2

1 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
2 SOCCER Lab, DGIGL, École Polytechnique de Montréal, Canada

E-mail: {nasir.ali,yann-gael.gueheneuc}@polymtl.ca,antoniol@ieee.org

Abstract—Requirements traceability ensures that source
code is consistent with documentation and that all requirements
have been implemented. During software evolution, features
are added, removed, or modified, the code drifts away from its
original requirements. Thus traceability recovery approaches
becomes necessary to re-establish the traceability relations
between requirements and source code.

This paper presents an approach (Coparvo) complementary
to existing traceability recovery approaches for object-oriented
programs. Coparvo reduces false positive links recovered by
traditional traceability recovery processes thus reducing the
manual validation effort.

Coparvo assumes that information extracted from different
entities (e.g., class names, comments, class variables, or meth-
ods signatures) are different information sources; they may
have different level of reliability in requirements traceability
and each information source may act as a different expert
recommending traceability links.

We applied Coparvo on three data sets, Pooka, SIP Commu-
nicator, and iTrust, to filter out false positive links recovered
via the information retrieval approach i.e., vector space model.
The results show that Coparvo significantly improves the of
the recovered links accuracy and also reduces up to 83% effort
required to manually remove false positive links.

Keywords—Traceability, requirements, source code, experts,
Object-Oriented, source code partitions.

I. INTRODUCTION

Requirements traceability is defined as “the ability to

describe and follow the life of a requirement, in both a

forwards and backwards direction” [1]. During software

evolution developers add, remove, and modify software

functionality to meet ever changing user needs. Developers

may or may not update documentation and traceability links

whenever the source code is modified [2], which creates a

logical distance between source code and documentation;

possibly invalidating existing traceability relations. It be-

comes necessary to recover and validate traceability links

between documentation, e.g., requirements, and source code

to ease software evolution tasks, program understanding, or

updating existing system’s functionality.

Motivation: Requirements traceability has received

much attention over the past decade. Many researchers have

used Information Retrieval (IR) approaches [3], [4], [5] to

establish traceability links between high-level documents

e.g., requirements, manual pages, and design documents, and

low-level documents, e.g., source code and UML diagrams

[3], [4], [6], [7]. IR-based approaches assume that all soft-

ware artifacts are in textual format or can be thought of as

textual documents. Then, they compute textual similarity be-

tween two software artifacts, e.g., a class and a requirement.

A high textual similarity means that two software artifacts

probably share several concepts [3] and that, therefore they

are likely linked to one another. The effectiveness of IR

approaches is measured using IR metrics: recall, precision,

or average of both (F-measure) [3], [6], [8]. For a given

query, recall is the percentage of actual retrieved links over

the total number of pertinent links while precision is the

percentage of correctly retrieved links to the total number

of traces retrieved. High recall can be achieved by simply

linking each requirement to a source code file using an IR

approach, but it decreases precision. The lower precision, the

higher manual intervention is required to review candidate

links and remove false positives [3].

In this paper, we present an approach, Coparvo, to reduce

the number of false positive links. Coparvo assumes that

information extracted from different entities (e.g., class

names, comments, class variables or methods names) are

different source of information, code partition can be thought

of as an information source. Each information source may

act as an expert recommending traceability links.

Our conjecture is that including all sources of information,

i.e., code partitions, may negatively impact precision and

recall. Indeed when modifying a class, a developer much

likely keeps the class API in line with the implemented

feature while comments may not be updated. Thus, including

outdated comments may create huge number of false positive

links.

Example: Let us imagine that a developer is required

to trace an email client requirement to its source code.

The source code is in Java and requirements are writ-

ten in English. We assume that the developer is using

the IR approach, vector space model (VSM), to recover

traceability links between source code and requirements.

The developer is tracing a requirement Req1 - “verify

email address format before storing it in address book”.

Let us assume that the EmailAddressFormatChecker
class is responsible to verify email address format and

AddAddressbookRecord is responsible to store email

addresses in the address book, whereas SendEmail sends

out email. Let us further assume that in SendEmail

an object emailAddressFormatChecker of type

EmailAddressFormatChecker is created to verify

email addresses before sending out the emails. In such situ-

ation, the developer risks to link Req1 also to SendEmail
because VSM will find matched terms, email, address,

and format, between Req1 and SendEmail. Thus, it is

important to consider the kind of matched term, e.g., variable

name versus comments.

Approach: object oriented (OO) Source code is parti-

tioned in four partitions, e.g., class, method, variable names,

and comments. Coparvo merges all requirements in one

file, further, each Source code partition is used to create a

fictitious document containing all the text extracted from the

source code related to the given partition. Coparvo considers

four experts and thus four documents are created containing

class names, methods names, variable names, and comments

respectively. In the following, we will use as synonyms the

terms partition or expert as both refers to the same concept.

The fictitious documents are used to compute similarity

between requirements and the source code partitions. Co-

parvo ranks partitions based on the computed similarity; the

top most high similar partitions are considered as trustable

experts. If there are two or more partitions with the same

textual similarity to requirements then we consider all of

them as an expert. Coparvo then uses the identified experts

to classify traceability links recovered with any IR approach.

Each expert votes on the link to accept or reject it. To accept

a link at least to two experts (or the majority of experts if

there are three or more experts) must agree on a link, i.e.,
have a non-zero computed similarity.

Validation: We apply Coparvo to reduce false positive

links of a standard Vector Space Model (VSM) with TF/IDF
weighting scheme. We use three software systems: Pooka,

SIP communicator, and iTrust. Our findings show that, in

general, Coparvo improves accuracy of VSM and it also

reduces up to 83% efforts required to manually remove false

positive links.

This paper is organized as follows: Section II provides

a brief description on the state-of-the-art software artifacts’

traceability approaches. Section III describes proposed ap-

proach in detail and sketches our implementation of pro-

posed approach. Section IV presents the three case studies

while Section V & VI reports and discusses their results.

Finally, Section VII concludes with future work.

II. RELATED WORK

Much work [9], [3], [10] has been done by researchers to

recover traceability links between high-level documents, e.g.,
requirements, and low-level documents, e.g., source code.

Antoniol et al. [9], [11] proposed an approach for au-

tomatically recovering traceability links between object-

oriented design models and code the similarity of paired

elements from design and code. The authors used class

attributes as traceability anchors to recover traceability links.

Antoniol et al. [12] proposed a method to build traceability

links between two software releases of an object-oriented

system and point out differences between the releases.

The method recovers an ‘as is’ design from C++ software

releases, compares recovered designs at the class interface

level, and helps the user to deal with inconsistencies by

pointing out regions of code where differences are concen-

trated. The comparison step exploits an edit distance and a

maximum match algorithm. The focus of this work is not

on trace dependencies between requirements and code.

Sherba et al. [13] proposed an approach, TraceM, based

on technique from open-hypermedia and information inte-

gration. TraceM manages traceability links between require-

ments and architecture. An open hypermedia system enables

the creation and viewing of relationship in heterogeneous

systems. TraceM allows the creation, maintenance, and

viewing of traceability relationships in tools that software

professionals use on a daily basis. Maider [14] et al. re-

focused attention on practical ways to apply traceability-

information models in practice to encourage wider adoption

of traceability. The authors highlighted the typical decisions

involved in creating a basic traceability-information model,

suggested a simple UML-based representation for its def-

inition, and illustrated its central role in the context of a

modeling tool. Maletic et al. [7] proposed a XML-based

traceability query language, TQL. TQL supports queries

across multiple artefacts and multiple traceability link types.

TQL has primitives to allow complex queries construction

and execution support.

Eddy et al. [10] proposed a new technique called prune-

dependency analysis that can be combined with existing

techniques to dramatically improve the accuracy of con-

cern location. The authors developed CERBERUS, a hybrid

technique for concern location that combines information

retrieval, execution tracing, and prune dependency analysis.

Andrea et al. [15] proposed an approach helping devel-

opers to maintain source code identifiers and comments

consistent with high-level artifacts. The approach computes

textual similarity between source code and related high-

level artifacts, e.g., requirements. The textual similarity

helps developers to improve source code lexicon. Zou et

al. [16] performed empirical studies to investigate Query

Term Coverage, Phrasing, and Project Glossary term-based

enhancement methods that are designed to improve the

performance of a probabilistic automated tracing tool. The

authors proposed a procedure to automatically extract critical

keywords and phrases from a set of traceable artifacts to

enhance the automated trace retrieval.

The precision and the recall [3] of the links recovered

during traceability analyses are influenced by a variety of

factors, including the conceptual distance between high-level

documentation and low-level artifacts, the queries and the

applied IR approach. Comparisons have been made between

different IR approach, e.g., [17] and [18], with inconclusive

Table I
SOURCE CODE SECTIONS USED IN EXPERIMENTATION

Acronym Identifier Type
CN Class Name - one name per file
MN All Public and Private Method Names of a Class
VN Class and Method Variable Names of a Class
CMT All Block and Single line Comments of a Class

results. On certain data set, the vector space model performs

favorably in comparison to more complex techniques, such

as Jensen inequality or probabilistic latent semantic semantic

analyses [18]. Yet, the vector space model [3], [4], [17] with

T F/IDF weighting schema [19] is a reference baseline for

feature location [20] and traceability recovery [3], [17].

To best our knowledge, all the above mentioned ap-
proaches use textual similarity among various software arti-
facts to recover traceability links. The work presented in this
paper is complementary to existing IR-based approaches,
because it exploits significant source code partitions in
terms of textual similarity and use them as experts to vote
on recovered links. Our conjecture in this paper is that
including low textual similarity source code parts can lead
to low precision and recall.

III. COPARVO

This section describes our proposed approach, COde

PARtitioning and VOting, Coparvo, to improve the accuracy

of IR-based approach and reduce effort of a project manager,

in particular VSM, by partitioning source code. Coparvo is

automated and supported by FacTrace1 [5], which provides

several modules that help from traceability recovery to

traceability links verification.

A. Partitioning Source Code

To process source code, a Java parser is used to extract

all source-code identifiers. The Java parser build an abstract

syntax tree (AST) of the source code that can be queried

to extract required identifiers, e.g., class, method names,

etc. Each Java source code file is thus partitioned in four

parts (See Table I) and textual information is stored in four

separate files.

B. Requirements and Source Code Pre-processing

We remove non alphabetical characters and then use

the classic Camel Case algorithm to split identifiers into

terms. Then, we perform the following steps to normalise

requirements and source code sections: (1) convert all upper-

case letters into lower-case and remove punctuation; (2)

remove all stop words (such as articles, numbers, and so on);

and, (3) perform word stemming using the Porter Stemmer

bringing back inflected forms to their morphemes.

1http://www.factrace.net

C. Requirements and Source Code Indexing

Without the loss of generality, we use VSM [21] to

index all the processed documents. In VSM each query

is a requirement and documents are source code elements.

Query and documents are viewed as a vector of terms.

Different term weighting schemes can be used to construct

these vectors. The most popular scheme is TF/IDF. Term

frequency (T F) is described by a t × d matrix, where t is

the number of terms and d is the number of documents in the

corpus. T F is often called local weight. The most frequent

term will have more weight in T F but it does not mean

that it is important term. The inverse document frequency

(IDF) of a term is calculated to measure the global weight

of a term: (T F/IDF)i, j =
ni, j

∑k nk, j
× log2

(|D|
d:|ti∈d|

)
, where ni, j

is the occurrences of term ti in document d j, ∑k nk, j is the

sum of occurrences of all terms in document d j, |D| is the

total number of documents in the collection, and |d : ti ∈ d|
is the number of documents in which the term ti appears.

D. Defining and Ascertaining Experts

Let R = {r1, . . . ,rn} be a set of requirements or high-

level documents, C = {C1, . . . ,Cm} be a set of implementing

classes. Following Bunge ontology [22], let X = 〈x,P(x)〉
be a substantial individual i.e., an object, where the object

X is identified by its unique identifier x, and P(x) a set of

properties, in this paper, the collection of all source code

partitions or collection combination thereof i.e., all possible

information sources. To define information sources, let ψi
be a family of functions i = 1, . . .N each function selects a

sub-set of X properties, for example, the class names and/or

method names. In other words, each ψi function creates a

new set of documents having some of the P(X) properties.

We are interested in finding the high similarity values

between the set of requirements R, as merged into a single

document Rall =
⋃

j r j, and the document created by merging

ψi projections
⋃

j ψi(Cj). The high cosine similarity shows

the high trust over an expert. We order the high to low

similarity experts to attain top two experts for voting. We

use the cosine similarity between
⋃

j ψi(Cj) and requirement

Rall . The highest similarities can be computed as:

σmax = max
i
{σ(Rall ,

⋃
j

ψi(Cj))}

where σmax is the maximum attainable similarity and we

are not interested in the absolute value rather in the rank

associated to each projection ψi to identify most trustable ex-

perts and to select top two source-code experts βi associated

to the projections ψi for further processing. If two source

code partitions have same similarity to requirements then we

keep both of them. We consider two extreme cases: (1) if
the difference among source code partitions similarities is
equal to or less than 5% then we consider both/all experts;

(2) if difference between the first and second top source-
code projection is equal to or greater than 95% then we
only consider the first expert (top most information source).
The rationale of these two cases is that if the difference

is equals to or less than 5%, then two or more partitions

use similar semantics. The second rare case could occur if

developers totally used different identifiers’ names for two

source code partitions; e.g., coding a “send email function”

and commenting it with “patient information” comments.

Then, there would be high distance between method name

and comments because they do not share any semantics.

We consider at least the two top source-code partitions

as experts for voting because if two partitions of a class

are linking to a requirement then we can more likely trust

the link. We cannot assume that all four partitions would

link to a requirement because developers normally add many

functionalities in a class [23]. In addition, including more

experts would impact precision and recall negatively.

There may be as many ψi functions as there are subsets of

C , however, for practical reasons we are interested in ψi that

are (1) arguably meaningful; and (2) easy to compute. For

example, a projection dividing classes into text documents

corresponding to odd line numbers and even line numbers

may be easy to compute but not meaningful. Thus, in this

paper, we consider the four projection: CN, VN, MN, CMT

and combination thereof, e.g., MN and CMT using both

comments and API, which we denote MN +CMT for the

sake of simplicity.

E. Link Recovery and Voting Process

Coparvo assumes that traceability links have already been

recovered by an IR approach. In this paper, we use the

standard VSM model recovering links between elements of

C and R; let this set be L = {l1, . . . , lM} where M can be

as high as n×m.

Coparvo uses the top rated expert(s) βi to score each links

lq and decide via majority voting if the links is likely to be

a real link or should be rejected.

Suppose that VSM creates a link between a requirement

R1 “adding prelim support for spam filters” and a class

“SpamFilter”. Further assume that Coparvo uses CN, MN,

VN, and CMT as experts. For Coparvo, links lq are the base

links, experts vote and validate to confirm these links. To

accept a link, at least two βi must agree on a link lq. Let

us further assume, that CN and MN are the top two experts

and that there are no ties, i.e., this means Coparvo only uses

CN and MN as experts. Then CN and MN will vote on the

given link, this is to say the link between a requirement R1

and a class SpamFilter, will be accepted if and only if

both CN and MN experts also return a non-zero similarity

between SpamFilter and R1. If the links is accepted then

it will be assigned the highest similarity among the three

computed i.e., standard VSM, CN, and MN.

Finally, the actual way in which experts assign a similarity

between a requirement and a code projection ψi is not im-

portant but arguably it should be coherent with the baseline

recovery process and should produce sounds and meaningful

results. In this paper we simply re-used VSM also for the

different expert βi. In future work we will investigate the

effect of mixed configuration e.g., VSM as baseline and

Jensen inequality or topics model for the experts.

IV. EMPIRICAL STUDY

We perform an empirical study with three systems to

assess the accuracy of our proposed approach for require-

ment traceability in term of F-measure. The empirical study

provides data to assess the accuracy improvement over

a traditional VSM-based approach and, consequently, the

reduction of the project managers’ effort brought to the

maintainer when tracing requirements and validating trace-

ability links to source code.

A. Goal

The goal of our case studies is to evaluate the effec-

tiveness of Coparvo in improving accuracy of VSM and

reducing effort required to manually discard false positive

links. The quality focus is the ability of proposed approach

to recover traceability links between high-level documents

and source code in terms of F-measure [21].

F-measure is the harmonic mean of precision and recall

which is computed as F(j) = 2
1

R(j)+
1

P(j)
where R(j) is

the recall for the jth document in the ranking. P(j) is the

precision for the jth document in the ranking, and F(j) is

the harmonic mean of R(j) and P(j) (thus, relative to the jth

document in the ranking). The function F assumes values

in the interval [0,1]. It is 0 when no relevant documents

have been retrieved and is 1 when all ranked documents

are relevant. Further, the harmonic mean F assumes a

high value only when both recall and precision are high.

Therefore, determination of the maximum value for the F
can be interpreted as an attempt to find the best possible

compromise between recall and precision [21].

The perspective is that of practitioners and researchers,

interested in recovering traceability links with greater F-

measure value than currently-available traceability recovery

approaches based on IR techniques. In addition, to remove

as many as possible the false positive links.

B. Research Questions

The research questions that our empirical study addresses

are:

RQ 1: How does Coparvo help to to find valuable parti-
tions of source code that help in recovering traceability
links?

RQ 2: How does Coparvo help to reduce the effort re-
quired to manually verify recovered traceability links?

Table II
STATISTICS DESCRIBING DATASETS

Pooka SIP iTrust
Version 2.0 1.0 10

Number of Classes 298 1,771 526

Number of Methods 20,868 31,502 3,404

Source Code Sizes 244,870 LOCs 486,966 LOCs 19,604 LOCs
5.39 MB 27.3 MB 27.3 MB

RQ 3: How does the F-measure value of the traceability
links recovered by Coparvo compare with a traditional
VSM-based approach?

To answer these research questions, we assess the F-

measure of proposed approach when identifying correct

traceability links between requirements and source code on

the one hand and between requirements and source code

partitions on the other hand. Thus, we apply Coparvo and a

VSM-based approach on the three systems seeking to reject

the null hypotheses:

H0: There is no difference in the F-measure of the re-
covered traceability links when including whole source
code or source code partitions selected by Coparvo.

It is possible to formulate and accept an alternative

hypothesis if the null hypothesis is rejected with relatively

high confidence, which admits a positive effect of Coparvo

on the retrieval accuracy:

Ha: Recovering taceability links using Coparvo signifi-

cantly improves the accuracy of the IR-based approach,
in particular VSM.

C. Variables

We use F-measure as independent variable and the Co-

parvo and VSM as dependent variables to empirically at-

tempt rejecting the null hypotheses.

D. Objects

We select the three open-source systems, Pooka, SIP, and

iTrust, because they satisfy several criteria. First, we select

open-source systems, so that other researchers can replicate

our experiment. Second, we avoid small systems that do

not represent systems handled by most developers. Yet, all

three systems were small enough so that we were able to

recover and validate their requirements and traceability links

manually in a previous work. Finally, their source code was

freely available in their respective SVN repositories. Table

II provides some descriptive statistics of the three systems.

Pooka2 is an email client written in Java using the

JavaMail API. It supports reading email through the IMAP

and POP3 protocols. Outgoing emails are sent using SMTP.

It supports folder search, filters, context-sensitive colors, and

so on. SIP3 is an audio/video Internet phone and instant

messenger that supports some of the most popular instant

2http://www.suberic.net/pooka/
3http://www.jitsi.org/

messaging and telephony protocols, such as SIP, Jabber,

AIM/ICQ, MSN, Yahoo! Messenger, Bonjour, IRC, RSS.

iTrust4 is a medical application that provides patients with a

means to keep up with their medical history and records as

well as communicate with their doctors, including selecting

which doctors to be their primary caregiver, seeing and

sharing satisfaction results, and other tasks. iTrust allows

the staff to keep track of their patients through messaging

capabilities, scheduling of office visits, diagnoses, prescrib-

ing medication, ordering and viewing lab results, and so on.

E. Coparvo Use

We now details how we gather and prepare the input data

necessary to our empirical study.

Requirements: In a previous work [24], we used PRE-

REQUIR [8] to recover requirements for Pooka and SIP.

We recovered 90 and 82 functional requirements for both

systems respectively. iTrust is complete data set with source

code, requirements, and traceability links matrix.

We used these previously-built requirements to create

manual traceability links between requirements and source

code. Two of the authors created traceability links and the

third author verified all the links to accept or reject them.

We used FacTrace [5] to create/verify the manually-built

traceability links, which form two oracles, OraclePooka and

OracleSIP, of respectively 546 and 949 traceability links for

Pooka and SIP and which we use to compute the F-measure

of proposed approach and of the VSM-based approach.

iTrust OracleiTrust is provided by the developer. OracleiTrust

contains 183 traceability links at class level.

Obtaining Source Code: We downloaded the source

code of Pooka v2.0, SIP v1.0-draft, and iTrust v10.0 from

their respective SVN repositories. Table II provides descrip-

tive statistics of the three data set of source code. We

made sure that we could compile and run three systems by

setting up the appropriate environments and downloading

the relevant libraries before building traceability links.

Partitioning Source Code: We query AST of Java

source code to extract various parts of source code, in

particular CN, MN, VN, and CMT and save them in re-

spective files. The output of this step are the whole source

code identifiers’ files, partitions of source code, e.g., CN,

MN etc., and combination of partitions that we use for

creating traceability links as explained in Sections III. We

perform pre-processing steps on source code partitions and

requirements for further processing.

Ascertaining Experts: First, we merge all the require-

ments for each system, in particular Pooka, SIP Comm.,

and iTrust, in one a file. Second, we merge all classes’ CN,

MN, VN, and CMT in four different files and name them

as cn.txt, mn.txt, vn.txt, and cmt.txt. Lastly, we use VSM to

compute similarity between merged requirement document

4http://agile.csc.ncsu.edu/iTrust/

Figure 1. Top Experts for Traceability Link Recovery

and merged source code partitions file. Figure 1 shows the

top experts (βi) that has high similarities with requirements.

For example, Pooka shows that MN and CMT must agree on

each link. In the case of SIP Comm., we have extreme case

(see Section III, where difference between VN and CMT

is less than 5%. Therefore, we will keep VN and CMT as

second, MN as first expert.

Link Recovery and Voting Process: First, we use the

VSM to create traceability links between requirements and

whole source code (L), which creates 11,056, 79,422, and

7,166 links for Pooka, SIP, and iTrust, respectively.

Second, we link experts to requirements using the VSM.

For example, in Pooka, MN and CMT are top experts.

We use every class’s MN to link them to requirements

and same for CMT. Each set of traceability link between

requirements and source code partition is stored in their

respective category. These links will be used during expert

voting schema. For example, we extract all the MN from

SpamSearchTerm.java and SpamFilter.java and

use VSM to link it to appropriate requirement, such as

“adding prelim support for spam filters”. We store this link

in MN category. We repeat the same steps for CMT and

store recovered links in CMT category.

Lastly, we use L as our base links and asserted experts

vote on these base links. For example, in Pooka, if VSM

recovers a link between R1 and Class1, then MN and CMT

of Class1 must link to R1, if any of the compulsory expert

does not link to R1, we discard that link. We finally get the

maximum similarity among L and the experts’ links and

update the VSM similarity value of that link.

F. Analysis Method

We performed the following analysis on the recovered

links by our proposed approach, to answer our research

questions and attempt rejecting our null hypotheses.

We use OraclePooka, OracleSIP, and OracleiTrust to compute

the F-measure values of the VSM and Coparvo. The VSM

approach assigns a similarity value to each and every trace-

Table III
COPARVO AND VSM TOTAL RECOVERED LINKS AT 0 THRESHOLD AND

P-VALUES OF F-MEASURE

VSM Coparvo Effort p-Value
Recovered Links Recovered Links Saved

Pooka 11,056 4,514 59% <0.01

SIP Comm. 79,422 13,271 83% <0.01

iTrust 7,166 4,384 39% <0.01

ability link between requirements and whole source code,

whereas Coparvo uses its own process (see Section III) to

create traceability links among requirements and ψopt source

code sections.

We use a threshold t to prune the set of traceability links,

keeping only links whose similarities values are greater

than or equal to t ∈ [0,1]. We use different values of t
from 0.01 to 1 per steps of 0.01 to obtain different sets

of traceability links (L) with varying F-measure values, for

both approaches. We use these different sets to assess which

approach provides better F-measure values. Then, we use the

Mann-Whitney test to assess whether the differences in F-

measure values, in function of t, are statistically significant

between the VSM and Coparvo. Mann-Whitney is a non-

parametric test; therefore, it does not make any assumption

about the distribution of the data.

V. EXPERIMENT RESULTS

Figure 2 shows the F-measure values of VSM and Co-

parvo. It shows that βi voting on recovered links provides

better F-measures at different threshold t values.

Table III shows that Coparvo reduces project managers’

effort from 39% to 83%. Table IV shows that using different

combination of source code partitions and whole source code

provide poor results than proposed approach. SIP Comm.

results shows that considering VN and CMT as second

compulsory expert improves results.

We have statistically significant evidence to reject the H0

hypothesis for all the three case studies. Table III shows that

the p-values are below the standard significant value, α =
0.05. We approve alternative hypothesis Ha. Table IV shows

that using other source code partitions than βi also provide

some time better precision, recall, and F-measure over VSM

but not better than Coparvo. For example, in iTrust only

using MN provides up to 19% F-measure but it decreases 8%

precision than standard VSM, whereas Coparvo improves all

precision, recall, and F-measure values.

Thus, we answer the RQ-1 as follow: partitioning source

code and merging all of them and requirements in their

respective files helps to find high similarity source code

identifiers that can be considered as experts and their voting.

We answer the RQ-2 as follow: Coparvo use expert voting

scheme on recovered links to filter out false positive links.

Coparvo helps to reduce effort from 39% to 83%, required

to manually remove false positive links.

Pooka SIP iTrust

Coparvo

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN−CMT

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN−CMT−VN

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN−CMT

Single Partition

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN

Combinations

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
MN+Cmt

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
CN+MN+Cmt

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

Threshold

F−
M
ea
su
re

VSM
CL+MN

Figure 2. F-measure values at different level of threshold. These graphs only shows the highest F-measure results in different categories for the sake of
simplicity.

We answer the RQ-2 as follow: source code partitions βi
statistically increases F-measure over the tradition way of

recovering traceability links using whole source code.

VI. DISCUSSION & QUALITATIVE ANALYSIS

We now discuss lesson learned from applying our ap-

proaches on the case studies.

A. Effort Reduction

Coparvo is completely automatic, it does not require

additional effort from project manager. Table III shows the

different number of traceability links recovered with VSM

and Coparvo at t = 0. It shows that Coparvo helps to reduce

by up to 83% the effort to manually discard false positive

links. It also provides better precision, recall, and F-measure.

B. Ascertaining Experts

We recovered pre-requirements using PREREQUIR [8]

for Pooka and SIP Communicator. Thus, the requirements

of Pooka and SIP Communicator were not detailed and

have less textual description, on average 15 words per

requirement. iTrust, which comes with details requirements,

has better textual similarity between requirements and source

code partitions.

We only consider top two experts, more in the case of

a tie, for voting. At lest these two selected experts must

agree on a link. The rational behind this is that including

more lower quality expert for voting may impact results

negatively. We performed more experiments to support our

claim. Table IV shows that as we include low quality expert

Table IV
COPARVO, VSM, AND OTHER SOURCE CODE PARTITIONS’ COMBINATION RESULTS (BOLD VALUES REPRESENT THE TOP EXPERTS (βi) VOTING

RESULTS). (+) SIGN REPRESENTS THE COMBINATION OF SOURCE CODE PARTITIONS, WHEREAS (-) SIGN REPRESENTS DIFFERENT EXPERTS’ VOTING

ON RECOVERED LINKS BY VSM (COPARVO)

Pooka SIP Comm. iTrust
Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

VSM 42.28 11.14 8.19 14.10 13.25 7.17 49.03 20.38 12.87

MN-CMT 43.22 11.69 9.34 15.99 15.62 8.39 57.14 23.05 14.77
MN-VN-CMT 43.67 10.04 8.73 17.12 14.64 8.70 54.80 23.75 14.53

CN-MN-VN-CMT 40.99 7.16 8.12 16.61 11.33 8.15 42.10 22.04 15.10

CN 36.18 6.48 5.98 13.71 9.87 5.32 31.16 18.77 12.32

MN 42.22 10.75 8.28 17.54 15.87 8.57 41.57 28.63 19.87

VN 18.68 9.74 6.80 20.11 13.12 7.48 34.32 12.24 7.83

CMT 41.12 10.36 7.59 17.47 12.33 6.64 59.73 20.10 12.54

CN + MN 48.47 9.82 7.45 16.15 14.66 7.62 40.71 26.57 18.35

CN + VN 32.70 8.90 6.15 19.89 13.14 7.33 30.73 14.94 9.66

CN + CMT 39.16 10.92 8.04 19.05 12.18 6.49 54.84 20.68 12.79

CN + MN + VN 46.87 9.51 6.81 16.47 13.94 7.54 47.43 18.47 12.56

CN + MN + CMT 41.46 11.37 8.50 18.88 12.59 6.82 49.86 21.64 13.76

MN + VN 37.80 11.11 7.99 16.08 15.05 8.25 52.05 18.09 12.36

MN + CMT 40.67 11.46 8.52 19.06 12.57 6.84 52.56 21.44 13.66

VN + CMT 45.01 9.93 7.03 16.24 12.93 6.99 51.99 19.37 11.64

in voting, it start decreasing the results.

C. Different Scenarios

To effectively evaluate our findings, we compare our

proposed approach with three scenarios (i) the fours experts
(whole source code) are required to improve F-measure
(ii) only one expert is sufficient to improve F-measure
(single source code partition), and (iii) simply removing
low similarity source code sections can improve F-measure.

Below we discuss these scenarios in details:

The fours experts are required (Baseline): We included

all identifiers, in particular CL, MN, VN, and CMT, to

recover traceability links using VSM. Table IV shows the

results in the first section of table. We also used these results

as baseline to compare other two scenarios to measure the

accuracy improvement.

Single Source Code Partition: We split each Java file

in four partitions: CL, MN, VN, and CMT. We used each

partition and combination of the partition to recover trace-

ability links. Table IV shows that in SIP Communicator and

iTrust results, only including MN increases precision, recall,

and F-measure over baseline results. However, comparing

to Coparvo, none of the result using single source code

partition has all three values, in particular precision, recall,

and F-measure, better than Coparvo.

Combinations of Source Code Partitions: We per-

formed this step to evaluate how much ascertaining experts

and their voting help to improve F-measure in comparison

to removing low similarity source code partitions to improve

F-measure. For example, we only included MN and CMT

source code partitions of Pooka to recover traceability links.

The fourth part of Table IV shows that it improves F-measure

and recall, but decreases precision, when compared to base-

line. Whereas, source code partitions combination provides

lower precision, recall, and F-measure when compared to

Coparvo. This comparison shows that only removing low

similarity source code partitions does not help to improve

precision, recall, and F-measure. It is also important that

each link recovered by VSM must be voted by at least two

top experts recovered by Coparvo.

D. Role of Identifiers

In classical IR-based approaches all the terms extracted

from an artefact are used to define the semantics of the

artefact [25]. In Coparvo we partition source code in four

parts and measure the role of each partition on requirements

traceability. The third section of Table IV shows that devel-

opers usually integrate requirements concepts in MN. The

second important part of source code is comments that plays

an important role to recover traceability links. However, in

the case of SIP Communicator, CMT does not have much

superiority over VN.

Thus, Coparvo also helps experts to find out which parts

of the solution domain has high distance with problem

domain. It also helps to improve the quality of identifiers as

well as software quality that can help in program comprehen-

sion tasks. For example, in the case of SIP communicator,

the similarity is very low between source code parts and

requirements that results in poor quality links and huge

number of recovered traceability links (see Table III). It

shows that developers are not using requirements termi-

nology while implementing them. Requirements document

size could also be the reason behind this low similarity.

It alerts project managers that requirements include little

textual information that may be unclear and vague etc.

However, the similarity level among source code partitions

and requirements shows which partition has more distance

or low similarity to requirements.

Figure 1 shows that developers almost never used CN

to define any requirements’ term in SIP Communicator.

Therefore, similarity between requirements and CN is near 0.

They implemented requirements concepts at method level.

iTrust has high similarity between source code partitions

and requirements and it is well documented. Therefore, it

provides better precision, recall, and F-measure using VSM

and higher improvement after applying Coparvo.

E. Threats to Validity

Several threats potentially limit the validity of our experi-

ments. We now discuss potential threats and how we control

or mitigate them.

Construct validity: Construct validity concerns the re-

lation between theory and observations. In our empirical

study, we used widely adopted metrics, precision, recall,

and F-measure, to assess the IR technique as well as

their improvement. The oracle (traceability matrix) used

to evaluate the tracing accuracy could also impact our

results. To mitigate such a threat, two authors created manual

traceability oracles for Pooka and SIP Communicator and

then the third author verified to avoid imprecision in the

measurements. Moreover, we used iTrust traceability oracle

developed by the developers who did not know the goal of

our empirical study.

In our empirical study, they could be due to bias in

manually-built oracles. To mitigate this validity threat, two

authors created manual traceability oracles for Pooka and

SIP Communicator and then the third author verified to avoid

imprecision in the measurements. Moreover, we used iTrust

traceability oracle developed by the developers who did not

know the goal of our empirical study.

External Validity: The external validity of a study

relates to the extent to which we can generalize its results.

Our case studies are limited to three systems, Pooka, SIP, and

iTrust. It is not comparable to industrial projects, but the data

sets used by other authors [9], [17], [18] to compare different

IR methods have a comparable size. However, we cannot

claim that the same results would be achieved with other

systems. Different systems with different identifiers’ quality

,reverse engineering code approach, requirements, using

different software artifacts and other internal or external

factors [24] may lead to different results. However, the

three selected systems have different source code quality

and requirements. Our choice reduces this threat to validity.

Conclusion validity: Conclusion validity threats deals

with the relation between the treatment and the outcome. We

paid attention not to violate assumptions made by statisti-

cal tests. Whenever conditions necessary to use parametric

statistics did not hold, e.g., assumption on the data distribu-

tion, we used nonparametric tests, in particular Wilcoxon test

for paired analysis. Wilcoxon does not make any assumption

on the data distribution.

VII. CONCLUSION AND FUTURE WORK

This paper proposed the use of source code partition-

ing to improve the performances of IR-based traceability

recovery approach, in particular of Vector Space Model

(VSM). Source code partition and merging all partitions and

requirements were used by Coparvo to ascertain experts. We

kept only top two experts, more in the case of tie, for voting

on the recovered links by VSM. Our conjecture in this paper

is that including more lower similarity source code partitions

can impact precision and recall.

The results achieved in the reported case study demon-

strated that, in general, the proposed approach improves the

retrieval accuracy of vector space model. Coparvo could

produce different results on different data sets. However,

we used three systems that mitigate this threat. In all

three systems, Coparvo improved the accuracy of IR-based

approach and reduce efforts required to manually remove

false positive links.

We analysed that as the source code size increases, IR-

based approach recover more links. It makes an project

managers’ job difficult, because she must manually remove

false positive links. The proposed approach automatically

remove false positive links and reduce the effort between

39% and 83%. As the number of recovered links increases

the effort reduction increase.

We traced pre-requirements that were recovered using

PREREQIR [8] for Pooka and SIP Communicator. The

quality of pre-requirements is low as it provides the basic

definition of users’ needs. In the case of iTrust, requirements

were properly documented and they were post-requirements.

Therefore, we can see a high improvement in precision, re-

call, and F-measure using Coparvo. Using quality identifiers’

names (see Section VI) and requirements will provide better

results using Coparvo.

There are several ways in which we are planing to

continue this work. First, we are planing to apply Coparvo

on heterogeneous software artifacts to analyse accuracy im-

provement and effort reduction. Second, add more datasets

to generalise our findings. Lastly, we will use other IR-

based approach to quantify the improvement using our

proposed approach. Our empirical case studies demonstrate

that each source code partition has potential but not all

the partitions are equal in recovering traceability links. We

will use different weighting schemes for each source code

partition to measure the accuracy of IR-based approaches.

VIII. ACKNOWLEDGMENT

This work has been partially supported by the NSERC

Research Chairs on Software Cost-effective Change and

Evolution and on Software Patterns and Patterns of Software.

REFERENCES

[1] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the
requirements traceability problem,” Requirements Engineer-

ing., Proceedings of the First International Conference on,
pp. 94–101, April 1994.

[2] N. Ali, “Knowledge based reverse engineering process frame-
work,” in In proceedings of International Conference of
Software Engineering Research and Practice (SERP’08).
CSREA Press, 2008.

[3] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 970–983, 2002.

[4] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in Proceedings of 25th International Conference on Software
Engineering. Portland Oregon USA: IEEE CS Press, 2003,
pp. 125–135.

[5] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Trust-based
requirements traceability,” in ICPC ’11: Proceedings of
the International Conference on Program Comprehension
(ICPC’11). Washington, DC, USA: IEEE Computer Society,
2011, p. 10.

[6] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, and S. Howard,
“Helping analysts trace requirements: An objective look,”
in RE ’04: Proceedings of the Requirements Engineering
Conference, 12th IEEE International. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 249–259.

[7] J. I. Maletic and M. L. Collard, “Tql: A query language
to support traceability,” in TEFSE ’09: Proceedings of the
2009 ICSE Workshop on Traceability in Emerging Forms
of Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 16–20.

[8] J. H. Hayes, G. Antoniol, and Y.-G. Guéhéneuc, “Prereqir:
Recovering pre-requirements via cluster analysis,” in Reverse
Engineering, 2008. WCRE ’08. 15th Working Conference on,
Oct 2008, pp. 165 –174.

[9] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-
code traceability recovery: selecting the basic linkage prop-
erties,” Science of Computer Programming, vol. 40, no. 2-3,
pp. 213–234, 2001.

[10] M. Eaddy, A. Aho, G. Antoniol et al., “Cerberus: Tracing
requirements to source code using information retrieval, dy-
namic analysis, and program analysis,” in The 16th IEEE
International Conference on Program Comprehension. IEEE,
2008, pp. 53–62.

[11] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-
code traceability for object-oriented systems,” Annals of Soft-
ware Engineering, vol. 9, no. 1, pp. 35–58, 2000.

[12] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia,
“Maintaining traceability links during object-oriented soft-
ware evolution,” Software: Practice and Experience, vol. 31,
no. 4, pp. 331–355, 2001.

[13] S. A. Sherba and K. M. Anderson, “A framework for man-
aging traceability relationships between requirements and
architectures,” in Second International Software Requirements
to Architectures Workshop (STRAW 03), Part of International
Conference on Software Engineering, 2003, pp. 150–156.

[14] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics:
Promoting the use of a traceability information model in prac-
tice,” in TEFSE ’09: Proceedings of the 2009 ICSE Workshop
on Traceability in Emerging Forms of Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
21–25.

[15] A. D. Lucia, M. D. Penta, and R. Oliveto, “Improving source
code lexicon via traceability and information retrieval,” IEEE
Transactions on Software Engineering, vol. 37, pp. 205–227,
2011.

[16] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving
automated requirements trace retrieval: a study of term-
based enhancement methods,” Empirical Software Engineer-
ing, vol. 15, no. 2, pp. 119–146, 2010.

[17] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recover-
ing traceability links in software artifact management systems
using information retrieval methods,” ACM Trans. Softw. Eng.
Methodol., vol. 16, no. 4, 2007.

[18] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability
technique for specifications,” in Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference
on, 2008, pp. 103 –112.

[19] W. B. Frakes and R. Baeza-Yates, Information Retrieval: Data
Structures and Algorithms. Englewood Cliffs, NJ: Prentice-
Hall, 1992.

[20] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,
and V. Rajlich, “Feature location using probabilistic ranking
of methods based on execution scenarios and information re-
trieval,” IEEE Transactions on Software Engineering, vol. 33,
no. 6, pp. 420–432, 2007.

[21] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

[22] M. Bunge, Treatise on Basic Philosophy: Vol. 3: Ontology I:
The Furniture of the World. Boston MA: Reidel, 1977.

[23] M. Abbes, F. Khomh, Y.-G. Gue andhe andneuc, and G. An-
toniol, “An empirical study of the impact of two antipatterns,
blob and spaghetti code, on program comprehension,” in
Software Maintenance and Reengineering (CSMR), 2011 15th
European Conference on. IEEE, march 2011, pp. 181 –190.

[24] N. Ali, W. Wu, G. Antoniol, M. D. Penta, Y.-G. Guéhéneuc,
and J. H. Hayes, “Moms: Multi-objective miniaturization of
software,” in 27th IEEE International Conference on Software
Maintenance, IEEE. IEEE CS Press, 2011, p. 10.

[25] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and
S. Panichella, “On the role of the nouns in ir-based traceability
recovery,” in Program Comprehension, 2009. ICPC’09. IEEE
17th International Conference on. IEEE, 2009, pp. 148–157.

