
SMURF: A SVM-based Incremental Anti-pattern Detection Approach

Abdou Maiga1,3, Nasir Ali1,2, Neelesh Bhattacharya1,2, Aminata Sabané1,2

Yann-Gaël Guéhéneuc1, and Esma Aimeur3

1 Ptidej Team & 2 Soccer Lab., DGIGL, École Polytechnique de Montréal, Canada
3 Heron Lab., DIRO, Université de Montréal, Canada

E-mails: maigaabd@iro.umontreal.ca, {nasir.ali,neelesh.bhattacharya,aminata.sabane}@polymtl.ca,
yann-gael.gueheneuc@polymtl.ca, aimeur@iro.umontreal.ca

Abstract—In current, typical software development projects,
hundreds of developers work asynchronously in space and
time and may introduce anti-patterns in their software systems
because of time pressure, lack of understanding, communi-
cation, and–or skills. Anti-patterns impede development and
maintenance activities by making the source code more difficult
to understand. Detecting anti-patterns incrementally and on
subsets of a system could reduce costs, effort, and resources
by allowing practitioners to identify and take into account
occurrences of anti-patterns as they find them during their
development and maintenance activities. Researchers have
proposed approaches to detect occurrences of anti-patterns
but these approaches have currently four limitations: (1) they
require extensive knowledge of anti-patterns, (2) they have
limited precision and recall, (3) they are not incremental,
and (4) they cannot be applied on subsets of systems. To
overcome these limitations, we introduce SMURF, a novel
approach to detect anti-patterns, based on a machine learning
technique—support vector machines—and taking into account
practitioners’ feedback. Indeed, through an empirical study
involving three systems and four anti-patterns, we showed
that the accuracy of SMURF is greater than that of DETEX
and BDTEX when detecting anti-patterns occurrences. We also
showed that SMURF can be applied in both intra-system and
inter-system configurations. Finally, we reported that SMURF
accuracy improves when using practitioners’ feedback.

Keywords-Anti-pattern, program comprehension, program
maintenance, empirical software engineering.

I. INTRODUCTION

Developers continuously evolve software systems to im-
plement and adapt to new customers’ needs, as well as to
fix bugs. Due to the time-to-market, lack of understanding,
and the developers’ experience, developers cannot always
follow standard designing and coding techniques, i.e., de-
sign patterns [1]. Design patterns are “good” solutions to
recurring design problems, conceived to increase reuse, code
quality, code readability, resilience to changes and above
all, maintainability [2]. Consequently, anti-patterns creep up
in software systems. Anti-patterns are “poor” solutions to
recurring design and implementation problems [3]. They
are generally the result of misuse of the object-oriented
paradigm and–or design patterns [4].

Motivation: Researchers have performed empirical studies

to show that anti-patterns like Spaghetti Code and Blob
create hurdles during program comprehension [5], software
evolution and maintenance activities [6]. The Spaghetti
code anti-pattern is characteristic of procedural thinking in
object-oriented programming [4]. Spaghetti code is related
to classes without object-oriented structure. Therefore, such
classes do not exploit object-oriented mechanisms, such as
polymorphism and inheritance, and also prevent them from
being used by developers [7]. Another example of anti-
pattern is the Blob. A Blob is a large class that mostly
controls the behaviour of a system or part thereof [4].
These two anti-patterns and many more yield to design and
implementation of systems that are, at best, cumbersome
and hinder evolution, in particular by impeding program
comprehension [5]. It is important to detect anti-patterns in
order to refactor/or remove them. This will improve software
quality and reduce maintenance costs.

Limitations: Current anti-pattern detection approaches as
proposed by Marinescu [8], Moha et al. [7] and Alikacem
et al. [9], have four limitations: (1) they require extensive
knowledge of anti-patterns, (2) they have limited precision
and recall, (3) they are not incremental, and (4) they cannot
be applied on subsets of systems. We claim that the first and
second limitations, i.e., high complexity and low accuracy,
would be reduced by taking into account the practitioner’s
feedback. Indeed, practitioners using the textual description
of anti-patterns can easily recognise them (and then provide
feedback) but they will require more knowledge to define
and set-up rules and thresholds, based on design or program
metrics and properties to characterise anti-patterns. Also,
the current approaches are not flexible and cannot take
advantage of practitioners feedback, so their accuracy can
be improved only by changing the approach itself. Using
practitioners feedback is an easy and valuable way to im-
prove the accuracy of anti-patterns detection.

Further, the third and fourth limitations are even more
important, because they prevent a practitioner to guide the
detection process and that today’s software systems often
weigh hundreds of millions of lines of code. With such large
systems, a detection approach cannot be applied frequently

1

because of parsing and analysis times. Thus, it is important
to detect anti-patterns at every stage of software development
to reduce the maintenance costs and encourage practitioners
in the anti-patterns detection. Indeed, if developers detect
anti-patterns independently among few classes of a software
(subset of the system) as it is developed, the detection will
take less time. This will also permit the easy removal/or
refactoring of the anti-patterns compared to, when they
perform the detection on the whole system at the end of the
development. Moreover, the improvement at this stage will
facilitate the next steps in the development. Also, the number
of detected occurrences when dealing with the whole system
can be huge and discourage the practitioners to analyse and
correct them. We argue that these limitations could be taken
care of by using support vector machines (SVM).

Answer: SVM have been applied in various areas, e.g.,
bioinformatics [10] and object recognition [11]. SVM is
a recent alternative solution to the classification problem
and relies on the existence of a linear classifier in an
appropriate space by using a set of training data to train the
parameters of the model. It is based on the use of functions
called kernel, which allows an optimal separation of data in
different categories. When apply to anti-patterns detection,
we believe that SVM can yield better precision and recall
values when compared to that of previous approaches, and
can take into account practitioners’ feedback. Also, SVM
is by definition incremental because we can increase its
training set incrementally. Finally, it can be applied on
subsets of systems because it considers system classes one
at a time, not collectively as previous rule-based approaches
do. To the best of our knowledge, researchers have not yet
studied the potential benefits of using SVM to detect anti-
patterns.

In our previous study [12], we explored the potential
usage of SVM in the context of anti-patterns detection. The
preliminary results of our study were promising. However,
the data was only trained and tested on the same system
and we did not consider expert’s feedback. Our conjecture,
in this paper, is that SVM combined with expert’s feedback
can improve the accuracy (precision and recall) of anti-
pattern detection as well as SVM and we can generalise the
applicability of SVM-based approaches to multiple systems.

Contribution: The contribution of this paper is two-fold.
First, we propose our approach SMURF to detect anti-
patterns using SVM and practitioners’ feedback. We exploit
the benefits of SVM to detect the occurrences of anti-
patterns while taking into account practitioners’ feedback.
We use the most studied anti-patterns, i.e., Blob, Spaghetti
Code, Functional Decomposition, and Swiss Army Knife,
and perform more than 300 experiments to compare the
results of DETEX [7] and BDTEX [13], the best two state
of the art approaches, respectively, in exact and probabilistic
anti-patterns detections, with the results of SMURF. We use

both the measures of precision and recall to compare the
approaches on a set of three programs namely ArgoUML
v0.19.8, Azureus v2.3.0.6, and, Xerces v2.7.0. We showed
that the accuracy of SMURF is greater than that of DETEX
and BDTEX when detecting anti-pattern occurrences on a
set of classes or on the whole system. We also showed
that SMURF can be applied in both intra-system and inter-
system configurations. Finally, we reported that SMURF
accuracy improves when using practitioners’ feedback. We
thus conclude that our conjecture is correct: a SVM-based
approach can overcome the four limitations of previous
approaches.

Organisation: The paper is organised as follows. Section
II provides a brief description of the state-of-the-art of anti-
patterns detection approaches, machine learning approaches,
and SVM. Section III describes our approach along with
describing the SVM algorithm in some details. Section IV
introduces our empirical study while Section V reports and
discusses its results. Finally, Section VIII concludes the
paper and outlines future work.

II. RELATED WORK

We now recall major related work.

Smell/Anti-pattern Detection: Many researchers studied
anti-patterns detection. Rahma et al. [14] used quality met-
rics to identify and predict anti-patterns in UML designs
using structural and behavioral data. Ballis et al. [15], [16]
worked on both the detection of design patterns and anti-
patterns using a rule-based matching approach for extracting
all occurrences of a design pattern/anti-pattern in a graph
representation of the source code. Langelier et al. [17] pro-
posed a visual approach to detect anti-patterns. Marinescu
[8] presented detection strategies to detect and localise anti-
patterns in systems. Marinescu defined 10 detection strate-
gies to capture 10 important anti-patterns, but suffered from
two drawbacks: (1) if a user may not successfully detect an
anti-pattern without having extensive knowledge of metric-
based rules and (2) different results would be obtained using
different thresholds (whose definition itself is difficult). Dim-
itrios et al. [18] explored the ways in which the anti-pattern
ontology can be enhanced using Bayesian networks in order
to reinforce the existing ontology-based detection process.
Their approach allows software developers to quantify the
existence of an anti-patterns using Bayesian networks, based
on probabilistic knowledge contained in the anti-pattern
ontology regarding relationships of anti-patterns through
their causes, symptoms and consequences. Sahraoui et al.
[19] used search-based techniques to detect anti-patterns
conjecturing that the more the code deviates from good
practices, the more it is likely to be vulnerable to anti-
patterns, without mentioning the values of recall obtained.
Moha et al. [7] proposed an approach based on a set of
rules (metrics, relations between classes) that describes the

2

characters of each anti-pattern to identify them.
Khomh et al. [13] present BDTEX (Bayesian Detection

Expert), a Goal Question Metric (GQM) based approach to
build Bayesian Belief Networks (BBNs) from the definitions
of anti-patterns. The output of the BBN is a probability that a
class is an anti-pattern or not. For example, the probability of
a class being a Blob depends directly on the two symptoms:
MainClass and DataClass.

The approaches of Moha et al. [7], Marinescu [8], Rahma
et al. [14] are mostly based on the use of code/design
quality metrics and thresholds to identify anti-patterns. The
use of these approaches to characterize new anti-patterns or
to customise existing rules of detection for improving their
performance, will require practitioners to have an extensive
knowledge, at least about code/design quality metrics and
software quality. The knowledge is necessary to be able to
derive the rules from the textual description of anti-patterns.
Another issue to those approaches is the choice of thresholds
whose definition is difficult. In the same way, using the
approach proposed by Ballis et al. [15], [16] requires also to
learn the proposed language and to be able to describe struc-
turally and semantically anti-patterns using that language.
Thus all the above approaches are concerned with the first
limitation. Khomh et al. [13] approach based on bayesian
networks needs extensive knowledge to characterize the anti-
patterns and built the bayesian network. However based on
probability, it cannot tell to the user that a class is an anti-
pattern for sure. Then we will face again the problem of
threshold to decide if we consider a class as an occurrence
of anti-pattern or not based on the probability. For this the
user need an extensive knowledge. The approach of Moha
et al. [7] cannot be used successfully on a set of classes
because it needs the whole system to be able to automatically
set up the thresholds via boxplots. This approach failed to
answer to the third limitation. Moreover, any of the above
approaches cannot benefit from practitioners’ feedback and
the only way to improve the performance of one of them is
to modify the rules and/or the thresholds or of the pattern
formal description. Thus, they are all concerned with the
fourth limitation.

SVM: SVM has been used in several domains in the past
for various applications, e.g., bioinformatics [10] and object
recognition [11]. It is a recent alternative to the classification
problem. For examples, Takashi et al. [20] presented a doc-
ument retrieval method using non-relevant documents. The
approach used an active learning technique based on SVM
for evaluating the relevant feedback. Guihong et al. [21]
used C-SVM, a variant of SVM, for term classification and
proved that expansion terms determined in traditional ways
for pseudo-relevance feedback were not all useful. SVM has
also been used in image retrieval systems when Sethia et
al. [22] used invariant feature histograms to compare the
efficiency of different SVMs. They claimed that a significant

performance gain was obtained only after several feedback
rounds. Kim et al. [23] proposed the change classification
approach for predicting latent software bugs based on a
SVM. Lucia et. al. [24] used incremental user feedback to
enhance the rate of true positives found while analyzing
the anomaly reports. The approach was validated using
the anomaly reports of three real programs and the results
showed clear increase in the number of true positives found
in the anomaly reports.

No previous approaches used either SVM or users’ feed-
back to detect anti-patterns.

User Feedback: As with SVM, users’ feedback is a mech-
anism widely used in various domains with good results. In
the field of image retrieval, Yihua et al. [25] used relevance
feedback along with SVM to allow users to unblur images.
Sethia et al. [22] also used both SVM and relevance feedback
to improve image retrieval, exploiting the users’ feedback
on the initial results to achieve better results based on the
feedback. Takashi et al. [20] proposed an approach for
an interactive document retrieval using only non-relevant
documents information. Cohn et al. [26] used a clustering
algorithm to iteratively integrate feedback.

Similar to SVM, there has been no work on taking into
account users feedback in anti-patterns detection.

III. SMURF: SVM USING FEEDBACK

SMURF is based on Support Vector Machines (SVM)
to detect occurrences of anti-patterns. We provide some
backgrounds on SVM before describing our approach in
details.

A. Background

SVM is a set of techniques based on statistical theory of
supervised learning introduced by Vapnik [27]. It relies on
the existence of a linear classifier in an appropriate space
and uses a set of training data to train the parameters of
the classifier. SVM is based on the use of functions called
kernel, which allows an optimal separation of data into two
categories by a hyperplane.

Assuming some training data x = x1 . . .xn and their labels
y = y1 . . .yn that are vectors in the space Rn, which has a
dot product, where yi ∈ {−1,1}, SVM builds a function
f to assign for a given xi, the label yi. The function f
uses a hyperplane to assign the labels by separating the
hyperspace in two. There are many valid hyperplanes but
SVM can compute the optimal hyperplane, which intuitively
passes in the “middle”’ of the two sets of data. Formally,
the SVM finds the hyperplane for which the minimum
distance to the training examples is maximal. The margin
is the distance between the hyperplane and the closest
example. These margins are called support vectors The
optimal separating hyperplane is the one that maximises
the margin. A hyperplane is defined as a set of points x
satisfying h(x) = w · x+b = 0 where · is the dot product; w

3

Figure 1. SMURF process overview

is the normal vector to the hyperplane; and the parameter
b
||w|| is the perpendicular distance from the hyperplane to the
origin. Therefore, there are two support vectors: x+marge for
the support vector (positive border) near to positive class C+

and x−marge for the support vector (negative border) near to
negative class C−.

The computation of the maximum margin and the search
procedure of separating hyperplane can often only be re-
solved linearly through separable discrimination problems.
SVM suggests reconsidering the problem of the lack of
linear separator in a higher dimensional space (possibly
infinite dimensional).

The kernel function allows to perform the computations in
the original space, which is much less expensive than high-
dimensional dot product. Further, the transformation ϕ does
not need to be known explicitly, only the kernel function is
involved in the computations.

The kernel function may lead to complex transformations
and even re-description of spaces of infinite dimension [28].

B. SMURF Process

Our approach to detect anti-patterns, SMURF, is based
on a SVM using a polynomial kernel, and can take into ac-
count practitioners’ feedback. We use SMURF to detect the
well-known anti-patterns: Blob, Functional Decomposition,
Spaghetti code, and Swiss Army Knife. For each anti-pattern
detection, the detection process is identical. Figure 1 shows
the overview of SMURF, which we illustrate with the Blob
anti-pattern for the sake of clarity. We define:
• T DS = {Ci, i = 1, . . . , p}, a set of classes Ci derived

from an object-oriented system that constitute the train-
ing dataset;

• ∀i,Ci is labelled as Blob (B) or not (N);
• DDS is the set of the classes of a system in which we

want to detect Blob occurrences.
To detect the Blob classes in the set DDS, we apply

SMURF through the following steps:

Step 1 (Object Oriented Metric Specification): SMURF
takes as input the training dataset T DS. For each class from

T DS, we calculate object-oriented metrics that will be used
as the attributes xi for each class in T DS. We use POM1

to compute metrics for all the studied systems. POM is an
extensible framework, based on the PADL meta-model [29],
which provides more than 60 metrics [30], including the
well-known metrics by Chidamber and Kemerer.

Step 2 (Train the SVM Classifier): We train the SVM
classifier using the dataset T DS and the set of metrics
computed in Step 1. We define the training dataset as:
T DS = {(xi,yi)|xi ∈ Rp,yi ∈ {−1,1},∀i ∈ (1, . . . ,n)} where
yi is either 1 or −1, indicating respectively if a class xi is
a Blob occurrence or not. Each xi is a p-dimensional real
vector with p the number of metrics.

The objective of the training step is to find the maximum-
margin hyperplane that divides the classes into the two
different groups, Blob or Not-Blob.

Step 3 (Construction of the dataset DDS and detection of
the occurrences of an anti-pattern): We build the dataset
of the system on which we want to detect an anti-pattern as
follows: for each class of the system, we compute the same
set of metrics as in Step 1. We use the SVM classifier trained
in Step 2 to detect the new occurrences of the anti-pattern
in the dataset DDS.

Step 4 (Interactive learning and practitioners’ feedback):
After detecting occurrences of an anti-pattern using SMURF,
the practitioner may label some of the classes reported as
being anti-pattern according to whether they are indeed
instances of this anti-pattern or not. We then give the set
of labelled classes to the SVM as supplement to its training
dataset to build a new optimal hyperplane that provides more
accurate results in the subsequent detection. Practitioners can
repeat Steps 2 to 4 as many times as desired.

IV. EMPIRICAL STUDY

The goal of our empirical study is, by comparing our
approach, SMURF with DETEX [7] and BDTEX [13], to
validate that SMURF can overcome the four limitations
(mentioned before) of the previous approaches. The quality
focus of our study is the accuracy of SMURF, in terms of
precision and recall. The perspective is that of researchers
and practitioners interested in verifying if SMURF can be
effective in detecting various kinds of anti-patterns, in taking
into account feedback, and in overcoming the previous
limitations.

A. Research Questions

The goal of our empirical study is to evaluate the accuracy
of SMURF and the impact of practitioners’ feedback on
the anti-patterns detection results. We also seek to com-
pare SMURF with DETEX [7] and BDTEX[13], the best
two state of the art approaches, respectively, in exact and

1http://wiki.ptidej.net/doku.php?id=pom

4

probabilistic anti-patterns detections. DETEX and SMURF
are both exact anti-patterns detection approaches. Thus, we
could perform a full comparison between the two approaches
using the same set of programs used by Moha et al. [7]
in their experiment. In the case of BDTEX, which is a
probabilistic anti-patterns detection approach, we use the
data provided by the authors to perform a comparison of
BDTEX and SMURF.

Our experiment is divided in four steps.
First, we train SMURF on a set of known occurrences of

one anti-pattern and non anti-pattern classes. Then, we apply
SMURF on a set of classes of anti-patterns and non anti-
patterns occurrences. The selection of anti-patterns and non
anti-patterns classes is random. We also apply DETEX on
the same set of classes (we reproduce this experiment four
times: as many times as the number of anti-patterns). The
first set of experiments allows us to show whether SMURF
overcomes the first, second, and fourth limitations.

Second, we train SMURF on a set of known occurrences
of one anti-pattern and then apply it on the classes of an
entire subject system. We also apply DETEX on the same
system. The second experiment allows us to compare the
number of occurrences of Blob which SMURF detected,
with that of DETEX in a realistic setting to verify whether
SMURF overcomes the first, second, and fourth limitations.

Third, we train SMURF on a set of known occurrences
of one anti-pattern from one system and then apply it on the
classes of another system. We then add feedback to SMURF
in the form of additional known occurrences of the anti-
pattern. The last set of experiments allows us to compare the
accuracy of SMURF with/without feedback and the impact
of practitioners’ feedback on its accuracy to verify whether
SMURF overcomes the first, second, and third limitations.

Finally, we train and apply SMURF on the same data that
was used by BDTEX for training and testing 2 . We then
compare the results of the two approaches.

• RQ1: How does the accuracy of SMURF compare with
that of DETEX, in terms of precision and recall? We
decompose RQ1 as follows:

– RQ11: How does the accuracy of SVMDetect com-
pare with that of DETEX, in terms of precision and
recall, when applied on a same subset of a system?

– RQ12: How many occurrences of Blob SVMDetect
can detect when comparing with that of DETEX
on a same entire system?

• RQ2: How does the accuracy of SMURF compare with
that of BDTEX, in terms of precision and recall when
applied on a same entire system?

• RQ3: How does the accuracy of SMURF change when
trained/applied on the same system and trained/applied
on different systems, in terms of precision and recall?

2http://www.ptidej.net/downloads/experiments/jss10/

• RQ4: How does the accuracy of SMURF, with rele-
vance feedback, compare with that of SMURF without
feedback, in terms of precision and recall?

B. Objects

The objects3 of our study are ArgoUML v0.19.8 (1,230
classes), Azureus v2.3.0.6 (1,449 classes), and Xerces v2.7.0
(513 classes), three open-source Java systems. We chose
these systems due to several factors. First, we selected
open-source systems that are freely available so that other
researchers can replicate our study. Second, we selected
systems that have been used by other researchers to allow
comparisons [7]. Moha et al. [7] used these three systems,
thus we use these three systems for the comparison between
DETEX and SMURF. Khomh et al [13] used only one the
three systems (Xerces v2.7.0) and thus, we compare BDTEX
and SMURF using that system.

C. Subjects

The subjects of our study are the following four anti-
patterns: Blob, Functional Decomposition (FD), Spaghetti
Code (SC), and Swiss Army Knife (SAK). We chose these
four anti-patterns because they are well known and com-
monly studied anti-patterns and also for the comparison
purpose with Moha et al. [7] and Khomh et al. [13]. Indeed,
Moha et al. [7] used these four anti-patterns and Khomh et
al. [13] three of them.

D. Data Collection and Oracles

Moha et al. [7] built four oracles of four anti-patterns,
for three systems based on the results of DETEX. For each
system and each anti-pattern, the detected classes have been
checked by independent engineers to assess whether they
are true or false positive. The engineers manually validated
the detected classes depending on the anti-pattern definition
and their context.

We reuse these oracles to assess both the precision and
recall of DETEX and SMURF.

For the comparison of BDTEX and SMURF, we used the
oracles provided by Khomh et al. [13] 4. They manually
checked each class of the programs to assess whether it is
an occurrence of anti-pattern or no.

We use Weka5 to implement SMURF, using its SVM
classifier. In all the experiments, we train SMURF on
training datasets T DS and apply it on detection datasets
DDS.

E. Analysis Methods

For the purpose of the comparison of DETEX with
SMURF, we build for each system and each anti-pattern,

3argouml.tigris.org/, azureus.sourceforge.net/, and xerces.apache.org/
xerces-c/

4

5http://www.cs.waikato.ac.nz/ml/weka/

5

three datasets that are composed of two parts: anti-patterns
and non-anti-pattern classes in equal numbers. For example,
if we consider Blob and ArgoUML, we build three datasets
DDS1, DDS2, and DDS3.

To build each dataset we use 30 Blob classes in ArgoUML
(identified with the oracles) and add 30 non-Blob classes
by choosing them randomly in the remaining classes of
ArgoUML. We then divide the 60 classes randomly into
the three datasets DDS1, DDS2, and DDS3, making sure
that each dataset contains 10 Blob classes and 10 non-Blob
classes. To answer our research questions, we perform a 10-
fold cross validation.

For the comparison of SMURF with BDTEX, we use the
same trained and test data used by Khomh et al. [13].

1) RQ1: To answer RQ11 (respectively RQ12), we train
SMURF on a dataset DDS1 and detect occurrences of an
anti-pattern on DDS2 (respectively on the rest of the whole
system). We compute the precision and recall of SMURF
on DDS2 (respectively we compute the number recovered
occurrences of BLOB on the rest of the whole system). We
then run DETEX on the same dataset, DDS2 (respectively
on the rest of the whole system), and compute its precision
and recall.

2) RQ2: To answer RQ2, we train SMURF and detect
occurrences of an anti-pattern on respectively the same
trained dataset and test dataset used by Khomh et al. [13] for
the system Xerces for the three anti-patterns they studied.
We compute the precision and recall of SMURF on that test
dataset. We then compute the precision and recall of BDTEX
at different threshold levels according to its results on that
test dataset.

3) RQ3: To answer RQ3, we train SMURF on a dataset
DDS1 from one system and detect occurrences of an anti-
pattern on DDS2, from either the same system or another
system. We compute the precision and recall of SMURF
applied to the DDS2 of the same system and also that of
SMURF applied to the DDS2 of another system. We then
run DETEX on the same dataset DDS2 of the same/other
system, and compute its precision and recall.

4) RQ4: To answer RQ4, we first train SMURF on DDS1
and apply it on DDS2 and compute, as for the other RQs,
its precision and recall. We then simulate the practitioners
providing their feedback by adding to the trained dataset
DDS1 of SMURF, different percentage (25%, 75% and,
100%) of the content of DDS3. Indeed, DDS3 contains a
set of labelled anti-patterns and non anti-patterns and then
can constitute the set that practitioners would incrementally
constitute when validating the detected occurrences as true
or false occurrences. For each level of added feedback, we
train SMURF on the new trained dataset and re-apply it on
DDS2 and again compute its precision and recall.

Table I
PRECISION OF SMURF VS. DETEX IN SUBSETS WITHOUT FEEDBACK

ArgoUML (%) Azureus (%) Xerces (%)

Blob DETEX 0.00 0.00 0.00
SMURF 97.09 97.32 95.51

FD DETEX 0.00 0.00 0.00
SMURF 70.68 72.01 66.93

SC DETEX 0.00 0.00 0.00
SMURF 85.00 88.00 86.00

SAK DETEX 10.00 10.00 0.00
SMURF 75.46 84.54 80.76

Table II
RECALL OF SMURF VS. DETEX IN SUBSETS WITHOUT FEEDBACK

ArgoUML (%) Azureus (%) Xerces (%)

Blob DETEX 0.00 0.00 0.00
SMURF 84.09 91.33 95.29

FD DETEX 0.00 0.00 0.00
SMURF 57.50 84.28 70.00

SC DETEX 0.00 0.00 0.00
SMURF 71.00 89.00 86.00

SAK DETEX 0.00 0.00 0.00
SMURF 77.14 85.71 75.50

V. RESULTS

This section reports the results of our empirical study.
These results are discussed in Section VI. The data for repli-
cation purpose and the other results are available online6.

A. RQ1

RQ11: Tables I and II report the precision and recall values
when applying DETEX and SMURF on subsets (DDS2
dataset). The results for DETEX are mostly zeroes because
DETEX cannot detect occurrences of anti-patterns without
the entire system being present, as it uses boxplots and
thresholds to identify anti-patterns. In the contrary, SMURF
has acceptable precision and recall values.

RQ12: Table V shows the total number of anti-patterns’
occurrences of Blob detected by DETEX and SMURF. It
can be clearly seen that SMURF detects more number of
occurences than DETEX for all the three entire systems.

Thus, we answer RQ1 as follows: on subsets of systems,
SMURF dramatically outperforms DETEX, while on
entire systems, SMURF detects more occurrences of Blob
than DETEX

.

B. RQ2

Figures 2 and 3 show the accuracy of SMURF and
BDTEX when detecting respectively occurrences of blob
and spaguetti code on Xerces system. It shows that SMURF
perform better than BDTEX and is more stable. Due to the
lack of space, we present only the results for the anti-patterns
Blob and Spaguetti Code.

Thus, we answer RQ2 as follows: SMURF has a better
precision and recall than BDTEX.

6http://www.ptidej.net/download/experiments/wcre12a/

6

Figure 2. Trends in the increase of precision and recall when decreasing the probabilty of being an antipattern for Blob and Xerces

Figure 3. Trends in the increase of precision and recall when decreasing the probabilty of being an antipattern for Spaguetti Code and Xerces

Table III
PRECISION OF SMURF IN INTER-SYSTEMS WITHOUT FEEDBACK

ArgoUML (%) Azureus (%) Xerces (%)
Blob 92.00 96.00 89.00
FD 57.00 62.00 36.00
SC 77.00 74.00 91.00
SAK 56.00 73.00 90.00

Table IV
RECALL OF SMURF IN INTER-SYSTEMS WITHOUT FEEDBACK

ArgoUML (%) Azureus (%) Xerces (%)
Blob 62.00 48.00 94.00
FD 40.00 100.00 20.00
SC 96.00 88.00 91.00
SAK 68.00 84.00 56.00

C. RQ3

Tables III and IV report the values of precision and recall
in the inter-system configuration in which SMURF is trained
using the classes of one system (chosen randomly) and
applied on the subsets of classes of another system. In most
cases, SMURF has quite acceptable values for precision and
recall, for inter-system configurations.

Thus, we answer RQ3 as follows: SMURF has a better
precision and recall than DETEX. Even in the inter-
system configuration, its precision and recall are accept-
able in the most of cases excepted for the functional
decomposition in the programs ArgoUML (the recall is
40%) and Xerces (the precision is 36% and the recall
20%).

D. RQ4

Figure 4 shows the changes in precision and recall values.
We observe that the more feedback, the better the precision,

Table V
TOTAL RECOVERED OCCURRENCES OF BLOB BY DETEX AND

SMURF

DETEX SMURF
ArgoUML 25 40
Azureus 38 48
Xerces 39 55
Total 102 143

up to 100%. For recall, the more feedback, the better
the recall but with a slight decrease when we use 100%
feedback.

Thus, we answer RQ4 as follows: both precision and
recall values increase when taking into account practi-
tioners’ feedback.

VI. DISCUSSION

We now provide detailed discussion on SMURF, results,
feedback, and some of our observations.

A. SMURF vs. DETEX

Subsets of Systems: When applied on subsets of systems,
we observe that DETEX could not detect occurrences of
some anti-patterns and, when it did, the precision and recall
values were quite low, mostly 0. We explain this observation
by the use of boxplots and thresholds by DETEX . When
DETEX analyses a few classes, its use of boxplots and
thresholds yield most of the classes to fall under (respec-
tively above) the thresholds and hence, not to be reported.
The problem does not arise when analysing an entire system
because then the boxplots quartiles are different and more
classes fall within the threshold values set in the rules.
SMURF can work on the whole system and as well as on

7

Figure 4. Trends in the increase of precision and recall when integrating incremental feedback

part of a system. In most of cases, for all configurations
(intra or inter-system), SMURF provides acceptable recall
and precision values. However we observe that for functional
decomposition in the inter-system configuration, the recall is
low for ArgoUML(40%) and Xerces (20%) and the precision
is low for Xerces (36%). We can explain these results by the
fact that, we did not have enough detected occurrences of
this anti-patterns.

Complete System: When applied on the whole system for
detecting a particular anti-pattern Blob, Table V shows that
SMURF, on an average, performed better than DETEX.
DETEX could detect 102 Blob occurrences whereas SMURF
could detect 143 Blob occurrences, in spite of DETEX
being able to perform at its best when detecting Blob.
Further, we applied SMURF using a trained dataset of one
system A for detecting an anti-pattern of another system
B. For example, trained dataset of ArgoUML was used
to detect anti-patterns of the whole system Xerces. The
results obtained were significantly better than DETEX and
the results can be generalised for any system. We could not
perform experiment on other anti-patterns detection due to
the lack of manually validity oracle. However, looking at
the nature of Blob detection, we believe that SMURF would
even perform better when detecting other anti-patterns.

B. SMURF vs. BDTEX

BDTEX is a probabilistic approach which provides proba-
bilities that a class is an occurrence of anti-pattern. However
our SMURF approach is an exact detection approach which
is a boolean detection approach telling that a class is an
occurrence of an anti-pattern or not. Because the user is not
necessarily an expert in the field of anti-patterns, she will
refer to a threshold to make her decision to consider a class
as an anti-pattern or not. And to compare the precisions
and recalls of BDTEX versus SMURF, we consider several
decisions thresholds based on probability. We consider that
the decision is made to consider a class as an instance of
anti-pattern when the probability is 1, then we compute
the precision and recall. Then we consider a probability
threshold of 0.9 and we compute again the precision and
recall. And so on by decreasing probability. The results of

this comparison are shown with the figures 2 and 3 for Blob
and Spaguetti Code on Xerces system. The results show that
BDTEX contains a high level of uncertainty. For Example,
for spaghetti code, while the precision of SMURF is 90%,
from a probability threshold of 0.8, the accuracy begins to
drop below 50% quickly and significantly. For the Blob
while SMURF is 90% precision BDTEX remains at 0%
precision even if the probability constraint relaxes up to 0.7.
Its from 0.6 probability that the accuracy of BDTEX goes up
without reaching the level of that of SMURF and decreases
immediately after. The recall is almost zero when at the
beginning the requirement is high, but when we decided to
release the constraint, it rises to the level of SMURF or even
exceed, which is quite normal since in this case BDTEX
accepts most classes. Thus, at this level, BDTEX has high
recall but bad precision.

C. Other Anti-patterns/Systems

SMURF requires labelled data to train its SVM. Having
this labelled data is a limitation of our approach. However,
we claim that it is easier for practitioners to label classes
as being occurrences of some anti-patterns than to write
rules and choose right threshold values. Indeed, it is easier
for practitioners to recognise an anti-pattern when seeing
one rather than to define the rules to detect it [4]. This
observation relates to the concept of “quality without a
name” by Alexander [31], who suggested that it is easy
to assess the quality of something when seeing it but
difficult to define this very same quality ex nihilo. Thus, we
claim that practitioners can easily and incrementally build
their own oracles to train SMURF. SMURF would fit in
their context and, thanks to the feedback loop in SMURF,
practitioners could keep on improving its results as time
goes, by adding/removing more labelled data as they find
new occurrences of some anti-patterns and decide that an
existing occurrence should not be reported any longer or
not.

D. Practitioners’ Feedback

SMURF allows practitioners to provide their feedback.
The feedback is an easy and valuable way to improve the
approach accuracy as confirmed by the results in figure 4. In

8

most of the cases, when we increase the feedback provided
to SMURF, the recall and the precision increase. However,
we observe that when using 100% of the feedback, the recall
of SMURF decreases slightly when compared to 75% of
the feedback (but is still higher than when not using any
feedback). We explain this observation by the fact that our
oracles, obtained from a previous work [7], may not be
completely accurate and, thus, integrating their data could
lead to misclassification of some true positive occurrences.
Future work includes revising entirely the oracles to identify
misclassified occurrences, if any.

E. SMURF and Practitioners

Previous approaches depended heavily on rules and
thresholds. To define rules, a practitioner must have a
detailed technical knowledge of anti-patterns and the under-
lying framework. There is no general rule to define what an
anti-pattern is. Thus, it is difficult for a practitioner to write
a rule. For example, it is quite possible for a practitioner
to state that a Blob class must contain 300 LOC and for
another practitioner this could be 30,000 LOC. Defining a
wrong threshold and–or rule would negatively impact the
results of the approach and would make it useless for the
practitioners. SMURF overcomes both of these limitations,
i.e., use of anti-pattern rules and thresholds. SMURF can
detect occurrences of anti-patterns in object-oriented systems
without having to manually set rules for detection. Also,
SMURF has a good precision and recall, even in the inter-
system configuration. Finally, SMURF provide better results
to practitioners as they integrate their feedback.

VII. THREATS TO VALIDITY

We now discuss threats to the validity of our results [32].

Internal Validity:
Concerning the potential dependence of the obtained

results on the chosen anti-patterns and systems, our study is
not affected. Indeed, we used four well-known and represen-
tative anti-patterns. These occurrences of these anti-patterns
have been manually validated by independent engineers.
These anti-patterns also have been used in previous works.
Further, we applied our approach to three open-source
systems with different size and these systems have also been
used by previous researchers.

Reliability Validity: Reliability validity threats concern the
possibility of replicating the study concerned. To mitigate
this threat, we used open-source systems that can be freely
downloaded from the Internet. We attempted to provide all
the necessary details to replicate our study. Moreover, the
results of the validation and the datasets are available online.

External Validity: Threats to external validity concern
the possibility to generalise our results. We studied three
systems with different sizes and different domains. In spit of
the fact that three systems might not be a very large number

that can be generalized, as the systems were of varying
sizes, and domains, we can claim that the results can be
generalized with certain degree of confidence. Further, we
also used a representative subset of anti-patterns. However,
we will apply SMURF on other systems and anti-patterns in
future work to negate the threat completely.

VIII. CONCLUSION AND FUTURE WORK

Anti-patterns are a fact of developers’ life when develop-
ing software systems under the conditions prevailing nowa-
days: distribution in time and space, time pressure, complex-
ity. In particular, anti-patterns impede program comprehen-
sion [5] and thus have negative impact on both development
and maintenance activities. We observed that current anti-
pattern detection approaches had four limitations: (1) they
require extensive knowledge of anti-patterns, (2) they have
limited precision and recall, (3) they are not incremental,
and (4) they cannot be applied on subsets of systems.

To overcome these limitations, we introduced a novel
approach to detect anti-patterns, SMURF, based on support
vector machines (SVM). SVM allows (1) learning the detec-
tion rules from a set of known occurrences of anti-patterns
and non anti-patterns, and (2) improving accuracy. Thus,
SMURF, overcomes the previous limitations. Practitioners
can easily produce the needed set according to their needs
and context.

We designed an empirical study that allowed us to
compare the results of DETEX [7] and BDTEX [13], the
best two state of the art approaches, respectively, in exact
and probabilistic anti-patterns detections, with the results
of SMURF. We performed more than 300 experiments to
show how SMURF performs on a set of three programs
(ArgoUML v0.19.8, Azureus v2.3.0.6, and Xerces v2.7.0)
using four anti-patterns (Blob, Functional Decomposition,
Spaghetti Code, and Swiss Army Knife).

We showed that the accuracy of SMURF is greater than
that of DETEX and BDTEX when detecting anti-patterns on
a set of classes or on the whole system. We also showed that
SMURF can be applied in both intra-system and inter-system
configurations. Finally, we reported that SMURF accuracy
improves when using practitioners’ feedback.

We thus conclude that our conjecture is correct: SVM-
based approach can overcome the four limitations of
previous approaches and could be more readily adopted
by practitioners.
Future work includes performing an empirical study about

the use of SMURF in real-world environments. We will ask
our industrial partners help in realising such a study. Further,
we would also reproduce the study with other systems
and other anti-patterns to increase our confidence in the
generalisability of our conclusions. Another study could be
the evaluation of the impact of the quality of feedback on
SMURF results.

9

REFERENCES

[1] M. Fowler, Refactoring – Improving the Design of Existing
Code, 1st ed. Addison-Wesley, June 1999.

[2] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[3] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed.
M & T Books, February 1995.

[4] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray, Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis, 1st ed. John Wiley and
Sons, March 1998.

[5] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol,
“An empirical study of the impact of two antipatterns, blob
and spaghetti code, on program comprehension,” in CSMR,
15th European Conference on Software Maintenance and
Reengineering, T. Mens, Y. Kanellopoulos, and A. Winter,
Eds. IEEE Computer Society, 2011, pp. 181–190.

[6] F. Khomh, M. D. Penta, and Y.-G. Guéhéneuc, “An ex-
ploratory study of the impact of antipatterns on class change-
and fault-proneness,” Journal of Empirical Software Engi-
neering (EMSE), 2011.

[7] Naouel Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L.
Meur, “DECOR: A method for the specification and detec-
tion of code and design smells,” Transactions on Software
Engineering (TSE), 2009.

[8] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in In Proceedings of the IEEE 20th
International Conference on Software Maintenance. IEEE
Computer Society Press, 2004, pp. 350–359.

[9] E. H. Alikacem and H. A. Sahraoui, “Détection d’anomalies
utilisant un langage de règle de qualité,” in LMO. Hermes
Science Publications, 2006, pp. 185–200.

[10] J. Bedo, C. Sanderson, and A. Kowalczyk, “An efficient
alternative to svm based recursive feature elimination with ap-
plications in natural language processing and bioinformatics,”
in AI 2006: Advances in Artificial Intelligence, ser. Lecture
Notes in Computer Science, A. Sattar and B.-h. Kang, Eds.
Springer Berlin Heidelberg, 2006, vol. 4304, pp. 170–180.

[11] M. J. Choi, A. Torralba, and A. S. Willsky, “A tree-based
context model for object recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, pp. 240–252, Feb. 2012.

[12] M. Abdou, A. Nasir, B. Neelesh, S. Aminata, G. Yann-Gaël,
A. Giuliano, and A. Esma, “Support vector machines for anti-
pattern detection,” in ASE, 2012.

[13] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“Bdtex: A gqm-based bayesian approach for the detection of
antipatterns,” J. Syst. Softw., vol. 84, no. 4, pp. 559–572, Apr.
2011.

[14] N. B. Rahma Fourati and H. B. Abdallah, “A metric-based
approach for anti-pattern detection in uml designs,” in COM-
PUTER AND INFORMATION SCIENCE 2011, ser. CISW
’07. SpringerLink, 2011, pp. 287–290.

[15] D. Ballis, A. Baruzzo, and M. Comini, “A rule-based method
to match software patterns against uml models,” Electron.
Notes Theor. Comput. Sci., vol. 219, pp. 51–66, November
2008.

[16] ——, “A minimalist visual notation for design patterns
and antipatterns,” in Proceedings of the Fifth International
Conference on Information Technology: New Generations.
Washington, DC, USA: IEEE Computer Society, 2008, pp.
51–56.

[17] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-
based analysis of quality for large-scale software systems,” in

Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, ser. ASE ’05. ACM,
2005, pp. 214–223.

[18] D. Settas, A. Cerone, and S. Fenz, “Enhancing ontology-
based antipattern detection using bayesian networks,” Expert
Syst. Appl., vol. 39, no. 10, pp. 9041–9053, Aug. 2012.

[19] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from
perfection is a better criterion than closeness to evil when
identifying risky code,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering,
ser. ASE ’10. New York, NY, USA: ACM, 2010, pp. 113–
122.

[20] T. Onoda, H. Murata, and S. Yamada, “Non-relevance feed-
back document retrieval based on one class svm and svdd,” in
Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2006, part of the IEEE World Congress
on Computational Intelligence, WCCI 2006, Vancouver, BC,
Canada, 16-21 July 2006, 2006, pp. 1212–1219.

[21] G. Cao, J.-Y. Nie, J. Gao, and S. Robertson, “Selecting
good expansion terms for pseudo-relevance feedback,” in
Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, SIGIR 2008, Singapore, July 20-24, 2008. ACM,
2008, pp. 243–250.

[22] L. Setia, J. Ick, and H. Burkhardt, “Svm-based relevance feed-
back in image retrieval using invariant feature histograms,” in
In Proc. of the IAPR Workshop on Machine Vision Applica-
tions, 2005, pp. 542–545.

[23] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Software Eng.,
vol. 34, no. 2, pp. 181–196, 2008.

[24] Lucia, D. Lo, L. Jiang, and A. Budi, “Active refinement of
clone anomaly reports,” in Proceedings of the 2012 Interna-
tional Conference on Software Engineering, ser. ICSE 2012.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 397–407.

[25] Y. Zhou, W. Shi, L. Duan, and C. Niu, “A relevance feedback
algorithm based on svm model’s dynamic adjusting for image
retrieval,” in Proceedings of the 2007 International Confer-
ence on Computational Intelligence and Security Workshops,
ser. CISW ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 287–290.

[26] S. Basu, I. Davidson, and K. Wagstaff, Constrained Clus-
tering: Advances in Algorithms, Theory, and Applications,
1st ed. Chapman & Hall/CRC, 2008.

[27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, pp. 273–297, 1995.

[28] N. C. John Shawe-Taylor, “Support vector machines and other
kernel-based learning methods,” Cambridge University Press,
2000.

[29] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multi-
layered framework for design pattern identification,” Trans-
actions on Software Engineering (TSE), vol. 34, no. 5, pp.
667–684, September 2008, 18 pages.

[30] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi, “Finger-
printing design patterns,” in Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE), E. Stroulia and
A. de Lucia, Eds. IEEE Computer Society Press, November
2004, pp. 172–181, 10 pages.

[31] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel, A Pattern Language, 1st ed.
Oxford University Press, August 1978.

[32] R. K. Yin, Case Study Research: Design and Methods (Ap-
plied Social Research Methods). Sage Publications, Inc,
2008.

10

