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Abstract—In software development, early identification of
fault-prone classes can save a considerable amount of resources.
In the literature, source code structural metrics have been widely
investigated as one of the factors that can be used to identify
faulty classes. Structural metrics measure code complexity, one
aspect of the source code quality. Complexity might affect
program understanding and hence increase the likelihood of
inserting errors in a class. Besides the structural metrics, we
believe that the quality of the identifiers used in the code may also
affect program understanding and thus increase the likelihood
of error insertion.

In this study, we measure the quality of identifiers using the
number of Lexicon Bad Smells (LBS) they contain. We investigate
whether using LBS in addition to structural metrics improves
fault prediction. To conduct the investigation, we assess the
prediction capability of a model while using i) only structural
metrics, and ii) structural metrics and LBS. The results on three
open source systems, ArgoUML, Rhino, and Eclipse, indicate that
there is an improvement in the majority of the cases.

I. INTRODUCTION

The cost of identifying and fixing faults in a system already
in production may be extremely high. To avoid such costs,
developers spend a large portion of the system development
time on testing, to identify faulty classes prior to release. To
assist developers in this respect, various studies have been
conducted in the research community measuring the quality
of the source code using structural metrics [1], [2], [3], [4],
process metrics [5], [6] or previous faults [7], [8]. Structural
metrics are a lightweight alternative and they have been shown
to have good performance for fault prediction [9].

The Chidamber and Kemerer object-oriented metrics suit
(CK metrics) [10] is widely used as a representative of
structural metrics. The underlying idea for using these metrics
is that if the code is complex, it will be also difficult to
understand and maintain; hence, it is susceptible to the in-
troduction of faults. The CK metrics are based on information
about the structure of the source code. Besides the structural
complexity, other researchers have shown the importance of
source code identifiers [11], [12], [13]. We concur with those
works and believe that the lexicon used in naming identifiers
has an impact on the understandability of the code. To measure
the linguistic quality of identifiers we use the catalog of
Lexicon Bad Smells (LBS) defined by Abebe et al. [14].
LBS are potential identifier construction problems that can
compromise the quality of the identifier and hence hinder

program understanding. The advantage of LBS with respect to
other measures is that LBS are easier to understand, interpret
and eventually avoid or fix.

Several factors contribute to the faultiness of a class.
Structural complexity of a source code is one of the factors
which is widely studied to predict fault prone classes. An-
other factor which we believe contributes to the faultiness
of classes is LBS. LBS address the quality of the source
code from the lexicon point of view. Hence, we conjecture
that adding such information to the structural metrics used
in fault proneness prediction will improve the prediction. In
this study, we investigate if this conjecture holds or not. Prior
to such investigation, as a sanity check we have assessed
whether LBS add any new information with respect to the
CK metrics; results are positive. To conduct the prediction, we
first identify the best model that can be obtained with the CK
metrics and then we investigate whether adding LBS to the CK
metrics improves the prediction. The results indicate that there
is an improvement in the majority of the cases. Following the
results, we have also carried out a study to identify those LBS
that contribute the most to the improvement of the prediction.

In Section II, we give background information on the
structural metrics and LBS. The related works are discussed
in Section III. In the next two sections, Sections IV and V,
we describe the steps involved in fault prediction and the case
study conducted, respectively. The threats to the validity of
our study are presented in Section VI. Finally, conclusion of
the study and future works are addressed in Section VII.

II. BACKGROUND

A. Structural metrics

Table I shows the structural metrics considered by Kpodjedo
et al. [15]. The list consists of the set of well-known CK
metrics [10], two metrics measuring the lack of cohesion in
methods (LCOM2 and LCOM5) defined by Briand et al. [16],
and two metrics counting the number of declared attributes and
methods [17].

B. Lexicon bad smells

Besides the structural complexity of the source code, under-
standing a system depends on the quality of lexicon used in
identifier construction [11]. Good quality identifiers contribute
to the understanding of the software, hence making it less



TABLE I
LIST OF CONSIDERED STRUCTURAL METRICS.

Acronym Description
CBO [10] Coupling between objects
DIT [10] Depth of Inheritance Tree
LCOM1 [10] Lack of COhesion in Methods 1
LCOM2 [16] Lack of COhesion in Methods 2
LCOM5 [16] Lack of COhesion in Methods 5
LOC [10] Line Of Code
NAD [17] Number of Attributes Declared
NMD [17] Number of Methods Declared
NOC [10] Number Of Children
RFC [10] Response For a Class
WMC [10] Weighted Methods per Class

susceptible to the introduction of faults [13]. Anomalies that
reduce the quality of identifier names are called lexicon bad
smells (LBS) [14]. Lexicon bad smells can usually be fixed
through renaming. A list of such smells are defined and made
available online1 by Abebe et. al. [14]. In our study we have
used all the LBS currently available online. Below we present
a summary of the LBS with an example. The details are
available online.

a) Extreme contraction: refers to extremely short terms
used in identifiers due to an excessive word contraction,
abbreviation, or acronym. An example of such identifier is
aSz (a=array, sz=size). This rule does not apply to prefixes
introduced due to the naming conventions adopted in the
system (e.g., m is a prefix used in the Hungarian notation to
mark attributes of a class), common programming and domain
terms (e.g., msg, SQL, etc.), and short dictionary words (e.g.,
on, it, etc.).

b) Inconsistent identifier use: refers to two or more
identifiers that refer to a concept in an inconsistent way.
Operationally, an identifier is considered inconsistent when
it is contained in another identifier of the same type (e.g.,
another class/method/attribute name), which is found in the
same container entity (e.g., package, class). An example is
given in Figure 1.

c l a s s Documents {
p r i v a t e S t r i n g a b s o l u t e p a t h ;
p r i v a t e S t r i n g r e l a t i v e p a t h ;
p r i v a t e S t r i n g p a t h ; / / pa t h i s i n c o n s i s t e n t

}

Fig. 1. Example: Inconsistent identifier use LBS

c) Meaningless terms: refers to metasyntactic identifier
names like foo and bar.

d) Misspelling: refers to misspelled words in an identi-
fier.

e) Odd grammatical structure: refers to identifiers con-
structed using inappropriate grammatical structure for the
specific kind of software entity they represents (e.g., a class
name contains a verb, method names do not start with a verb,
etc.). Figure 2 shows an example of class and method identifier
names that are grammatically incorrect.

1http://selab.fbk.eu/LexiconBadSmellWiki/

c l a s s Compute / / compute i s a verb {
p u b l i c vo id a d d i t i o n ( ) ; / / a d d i t i o n i s a noun

}

Fig. 2. Example: odd grammatical structure LBS

f) Overloaded identifiers: refers to identifiers that in-
clude more than one semantics and hence multiple respon-
sibilities of the respective software entities they represent
(e.g., a method name contains two verbs). The method name
create export list(), for example, could refer to two tasks:
creating and exporting a list.

g) Useless type indication: refers to identifiers that pro-
vide redundant information about their type. For example, the
attribute name nameString in the attribute declaration String
nameString gives redundant information about its type. This
rule does not apply for a static attribute used to realize the
singleton design pattern, which usually has the same name
as the class, and individual characters or groups of characters
used to denote the type of the variable, if these are prescribed
in the adopted naming conventions (i.e., in the Hungarian
notation, i is a prefix used in identifiers of integer type).

h) Whole-part: refers to a term used to name a concept
that appears also in the name of its properties or operations.
Figure 3 shows the ambiguous and redundant use of the
concept account. Exceptions to this rule are a static attribute,
used to realize the singleton design pattern and constructor
methods, as they have the same name as the class.

c l a s s Account {
i n t a c c o u n t ; / / Ambiguous use
void computeAccount ( ) ;
/ / Accoun t i s r e d u n d a n t i n f o r m a t i o n

}

Fig. 3. Example: whole-part LBS

i) Synonyms and similar identifiers: refers to synonym
or similar terms used to construct the identifiers representing
different entities declared in the same container, such that
differentiating between their responsibilities is difficult. An
example of this LBS is the use of the synonym terms copy
and replica in identifiers idCopy and idReplica.

j) Terms in wrong context: refers to using terms that
pertain to the domain of another container (e.g., package).
This indicates that the entity named by such terms may be
misplaced. For example, in Figure 4 the class TypeDetector is
wrongly placed in package collections or incorrectly named
as all the other classes that refer to detector are in package
detectors.

Example:

package c o l l e c t i o n s ;
c l a s s I n t A r r a y ;
c l a s s T y p e D e t e c t o r ;
package d e t e c t o r s ;
c l a s s MuonDetector ;
c l a s s P h o s D e t e c t o r ;
c l a s s HLTDetector ;

Fig. 4. Example: terms in wrong context LBS



k) No hyponymy/hypernymy in class hierarchies: refers
to an identifier representing a child class in an inheritance
hierarchy but is not hyponym of the identifier of its parent
class. An example of such LBS is a class named Violin that
extends the class Mammal. This violation is hard to assess
when a class identifier is constructed from more than one term
or contains abbreviations, contractions, or acronyms.

l) Identifier construction rules: refers to identifiers that
do not follow a standard naming convention adopted in the
system, prescribing the use of proper prefixes, suffixes, and
term separators. In a system that adopts the Hungarian nota-
tion, for example, an attribute that does not start with one of
the prefixes defined for the attributes (e.g., m ) is considered
to have this LBS.

III. RELATED WORK

Different approaches have investigated the prediction of
fault proneness using various measures, such as structural met-
rics, applying various models, and considering also linguistic
information. In the following paragraphs we discuss those that
closely relate to our work and only the details that are relevant
to the comparison.

Structural information: Structural information has been
widely used in the literature for fault prediction. Basili et
al. [1] were the first to empirically investigate the ability
of CK metrics to predict fault proneness in medium size
C++ systems. Later Gyimóthy et al. [18] used the CK
metrics for predicting faults in Mozilla. Zhou and Leung [2]
used the CK metrics for predicting high and low severity
faults. Zimmermann et al. [3] predict faults in Eclipse at
different levels of abstraction. Metrics at class level include
NOF (Number Of Fields) and NOM (Number Of Methods).
Kpodjedo et al. [15] used a superset of the CK metrics
and DEM, a set of design evolution metrics. We adopted the
superset of metrics used in the latter work as a base set of
structural metrics.

Linguistic information: Previous work has investigated
the relation between linguistic information and fault proneness.
In [19] and [20] the authors have shown that the conceptual
measures of coupling and cohesion (Cocc and C3) capture
new dimensions not captured by the corresponding families
of structural metrics, i.e., structural coupling and cohesion
respectively. Binkley et al. [21] predict the number of faults
with QALP, LOC, and SLOC. QALP measures the similarity
between method’s code and comment. Arnaoudova et al. [22]
show that HEHCC helps LOC to explain fault proneness.
HEHCC measures the physical and conceptual dispersion of
identifier terms across different entities. We share with those
works the conjecture that linguistic information is important
and capture a new dimension with respect to other types of
metrics. We use lexicon bad smells in addition to the base set
of structural metrics.

Techniques and Prediction models: Poshyvanyk and Mar-
cus [19], [20] used Principal Component Analysis (PCA)
to show that Cocc and C3 capture different dimensions with
respect to the compared structural metrics. Logistic Regression

is mainly used when the explanatory variable is a dichotomous
variable [2], [3], [4], [15], [18], [20], [22]. For Weyuker et
al. random forest was one of the two models that performed
best [8]. Random Forest was also used by [2], [4], [23].
Elish et al. [24] showed that within the context of four
NASA datasets, Support Vector Machine (SVM) performs
better when compared to eight other models, among which
logistic regression and random forest. In this study we have
used PCA, Logistic Regression, Random Forest, and SVM to
analyze, model, and answer our research questions.

Prediction configuration: We share with Kamei et
al. [23] the prediction configuration, i.e., both predicting fault
proneness within the same release using cross validation and
predicting fault proneness for the next release. Bell et al. [25]
use consecutive releases to train the model and predict on the
next release. D’Ambros et al. [9] collect bi-weekly snapshots
up to the prediction release x and use this data to train the
models. The authors predict post release defects for x.

Evaluation metrics: Accuracy, Correctness, Complete-
ness, and F-measure are common measures for evalua-
tion of prediction models and have been used in previous
works [2], [3], [18], [20]. Hassan [6] used the absolute error
to evaluate the models. Mende and Koshke [4] proposed Popt

as an effort-sensitive evaluation metric. Kamei et al. [23]
used Popt to evaluate their prediction models. Weyuker et
al. [8], [25] used the fault-percentile-average. We considered
all of the described measures for the evaluation of the models
as well as Matthew’s Correlation Coefficient (MCC), which is
used in medicine.

IV. FAULT PREDICTION

In this section we describe the theory behind each step of
our approach.

A. PCA

Principal Component Analysis (PCA) is a technique that
uses solutions from linear algebra to project a set of possi-
bly correlated variables into a space of orthogonal Principal
Components (PC), or eigen vectors, where each PC is a linear
combination of the original variables. PCA is used to reveal
hidden patterns that cannot be seen in the original space and
to reduce the number of dimensions. When using PCA it is a
common practice to select a subset of the principal components
and discard those that explain only a small percentage of
the variance. For each principal component, PCA reports the
coefficients of the attributes on the corresponding eigen vector.
Those coefficients are interpreted as the importance of the
attribute on the PC.

B. Prediction models

In the subsequent paragraphs we provide a brief overview
of the three models we considered.

Logistic Regression: The multivariate logistic regression
model is based on the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+...+Cn·Xn

1 + eC0+C1·X1+...+Cn·Xn



where Xi are the characteristics describing the source code
classes, i.e., the independent variables, and 0 ≤ π ≤ 1 is a
value on the logistic regression curve. In a logistic regression
model, the dependent variable π is commonly a dichotomous
variable, and thus, assumes only two values {0, 1}, i.e., it
states whether a class is faulty (1) or not (0). The closer
π(X1, X2, . . . , Xn) is to 1, the higher is the probability that
the entity contains a fault. The Ci are the estimated regression
coefficients, the higher the absolute value, the higher the
contribution of the corresponding independent variable.

Random Forest: Random Forest [26] averages the pre-
dictions of a number of tree predictors where each tree is
fully grown and is based on independently sampled values.
The large number of trees avoids over fitting. Random Forest
is known to be robust to noise and to correlated variables.

Support Vector Machine: SVM is a machine learning
technique that tries to maximize the margin of the hyperplane
separating different classifications. Some of the advantages of
SVM include the possibility to model linear and non-linear
relations between variables and its robustness to outliers.

C. Evaluation metrics

In the literature, various evaluation metrics are used to
evaluate the prediction capability of independent variables
and to compare prediction models [2], [3], [4], [6], [8].
We have categorized these metrics into three groups: rank,
classification, and error metrics. Below we present the details
of each category.

1) Rank: Rank metrics sort the classes based on the value
of the dependent variable assigned to each class. Then a
cumulative measure is computed using the actual values of
the dependent variable over the ranked classes to assess the
model and/or the independent variables. In our study, we have
considered two types of rank metrics: Popt and FPA (Fault
Percentile Average).

a) Popt: is an extension of the Cost Effective (CE)
measure defined in [27]. Popt takes into account the costs
associated with testing or reviewing a module and the actual
distribution of faults, by benchmarking against a theoretically
possible optimal model [4]. It is calculated as 1 − ∆opt,
where ∆opt is the area between the optimal and the predicted
cumulative lift charts. The cumulative lift chart of the optimal
curve is built using the actual defect density of classes sorted in
decreasing order of the defect density (and increasing lines of
code, in case of ties). The cumulative lift chart of the predicted
curve is built like the optimal curve, but with classes sorted
in decreasing order of fault prediction score.

b) FPA: is obtained from the percentage of faults con-
tained in the top m% of classes predicted to be faulty. It is
defined as the average, over all values of m, of such percentage
[8], [25]. On classes listed in increasing order of predicted
numbers of faults, FPA is computed as:

1

NK

K∑
k=1

(k ∗ nk)

where N is total number of actual faults in a system containing
K classes, nk is the actual number of faults in the class ranked
k [8].

In our study, however, we predict the probability of fault
proneness of a class instead of the number of faults. Hence,
we have adapted the metrics by using the predicted probability
of fault proneness to sort the classes, and 0 and 1 are used
as a replacement of the number of defects. 1 is used when a
class is actually faulty; 0 otherwise.

2) Classification: Predicting fault proneness of a class is a
classification problem. Hence, in various studies the confusion
matrix (shown in Table II) is used to evaluate models and
analyze the prediction capability of the independent variables.
From the confusion matrix the following measures are com-
puted to conduct the evaluation.

a) Accuracy (A): measures how accurately both the
actual faulty and non-faulty classes are classified as faulty
and non-faulty by the predictor. It is computed as the ratio
of the number of classes that are correctly predicted as faulty
and non-faulty to the total number of classes A = (TP +
TN)/(TP + TN + FP + FN). A score of 1 indicates that
the model used for the prediction has classified all classes as
faulty and non-faulty correctly.

b) Correctness (P): is the precision of a predictor in
identifying the faulty classes as faulty. It is computed as the
ratio of classes which are correctly predicted as faulty to
the total number of classes which are predicted to be faulty
P = TP/(TP +FP ). A prediction model is considered very
precise if all the classes predicted as faulty are actually faulty,
i.e. if P = 1.

c) Completeness (R): is the recall of a predictor. It tells
how many of the actually faulty classes are predicted as faulty.
Completeness is computed as the ratio of the number of
classes which are correctly predicted as faulty to the total
number of classes which are actually faulty in the system
R = TP/(TP + FN).

d) F-measure (F): is a measure used to combine the
above two inversely related classification metrics, correctness,
and completeness. F-measure is computed as the harmonic
mean of correctness and completeness (F = (2∗P ∗R)/(P +
R)).

e) Matthew’s Correlation Coefficient (MCC): is a mea-
sure commonly used in the bioinformatics community to
evaluate the quality of a classifier [28]. It is a measure which
is quite robust in the presence of unbalanced data. MCC is
computed as:

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The value of MCC ranges from −1 to 1. −1 indicates a
complete disagreement while 1 indicates the opposite.

3) Error: In the last category of the evaluation metric types,
we have absolute error (E). Absolute error is a measure based
on the number of faults incorrectly predicted or missed:

E =

K∑
k=1

|ŷk − yk|2



TABLE II
PREDICTION CONFUSION MATRIX (TP=TRUE POSITIVE, TN=TRUE

NEGATIVE, FP=FALSE POSITIVE, FN=FALSE NEGATIVE)

Actual
Faulty Not faulty

Predicted Faulty TP FP
Not faulty FN TN

where ŷk is the predicted number of faults in class k and yk
the actual number of faults [6]. As we are interested in the
fault proneness of a class and not in the number of faults it
contains, we use 0 and 1, as a replacement of the number of
faults. 1 is used when a class is actually faulty/predicted to be
faulty and 0 otherwise. Unlike the other evaluation metrics, for
absolute error a value closer to 0 indicates better prediction
capability.

V. CASE STUDY

A. Research questions

Structural metrics measure different aspects of the code that
can be used to predict fault proneness of a class. In this study,
we conjecture that the quality of identifiers has also an impact
on the fault proneness of a class, besides the structural metrics.
To prove this conjecture, we have formulated the following
three research questions:

RQ1: Do LBS bring new information with respect to
structural metrics?

RQ2: Do LBS improve fault prediction?
RQ3: Which LBS help more to explain faults?
In the first research question, RQ1, we have investigated if

LBS measure the same aspects of the code as structural metrics
or not. To carry out this investigation, following Marcus et. al.
[20], we have used PCA. PCA aggregates the metrics into few
orthogonal components called principal components (PC). We
use the information captured in the PCs to analyze and answer
RQ1. In particular, we analyze the following two aspects of
the PCs: i) the number of times an LBS contributes to at least
one retained PC, and ii) the number of times an LBS is the
major contributor to at least one retained PC.

In RQ2 we have, then, investigated if our conjecture holds
by assessing LBS’ contribution, in addition to the structural
metrics, in improving the prediction capability of a model.
To assess LBS’ contribution, we have carried out predictions
using as independent variables, on the one hand, only struc-
tural metrics, and on the other hand, structural metrics plus
LBS. The capability of prediction is then evaluated using
the evaluation metrics described in Section IV-C. We then
compare the results using the achieved net improvements and
the average delta percentage. Prior to the comparison of the
two sets of independent variables, we compare and select the
best model in predicting fault prone classes using only the CK
metrics.

The last research question, RQ3, is focused on identifying
those LBS that contribute the most to the prediction of fault

prone classes. To answer this research question, we use the
weights assigned to each LBS by the model and we compute
the median rank of each LBS.

B. Experimental setting

In the following we describe the experimental setting of our
study, starting with the dependent and independent variables
and then continuing with the setting for each research question.

1) Variables: For building the prediction models we con-
sidered the following dependent and independent variables:

Dependent variable: As dependent variable we use
HASB, a dichotomous variable indicating whether a class is
faulty or not. The associated experimental data have been
previously published by Khomh et al. [29].

Independent variables: The overall set of independent
variables consists of the CK set of metrics as considered
by Kpodjedo et al. [15] and the LBS defined by Abebe et
al. [14]. The set of CK metrics has been calculated using the
POM framework [30]. To identify LBS, we have used a suite
of tools called LBSDetectors 2 which have been developed
for use in previous studies [14], [31]. The tool implements
heuristics to automatically detect and report LBS in class,
attribute, and method identifier names.

2) RQ1: To select a subset of the PC we used a threshold
of 95% (similar to [20]). That is, we retained the components
that explain up to 95% of the variance. For each principal
component, we apply a 10% relative threshold to decide
which attributes contribute to the component and we rank the
attributes of each PC based of their importance (weight). If
LBS bring new information with respect to structural metrics
then LBS will be kept in the retained principal components
and will give major contributions to them. To answer this
research question we analyze two aspects: i) the number of
times an LBS contributes to at least one retained PC, and ii)
the number of times an LBS is the major contributor of at
least one retained PC.

3) RQ2: Here we describe the particular settings of each
model. All computations are performed using R3.

Logistic Regression Model: We used the Generalized
Linear Model (package stats) glm (family=binomial(”logit”)).
We perform backward variable elimination and predict using
the retained variables.

Random Forest: We use the function randomForest
(package randomForest) with the number of trees being 500
as did Weyuker et al. [8].

Support Vector Machine: We used the Support Vector
Machine model (package e1071) svm (kernel=”radial”). Elish
et al. [24] used the same kernel, which showed good perfor-
mance.

Common settings: The following settings are common
for all models: As Gyimóthy et al. [18] we standardize all
metrics before performing the calculations (i.e., zero mean and
unit variance). Like in Kamei et al. [23], for each type of

2http://selab.fbk.eu/LexiconBadSmellWiki/
3http://www.r-project.org/



model, we predict faulty classes in two configurations: within
the same version and for the next version. Prediction within
the same version represents scenarios in which there is no
prior record of buggy classes and new systems while the latter
represents scenarios in which a system’s evolution is well
documented. When predicting within the same version, we
use 10-fold cross validation. For each configuration we build
two models: one where the independent variables are the CK
set of metrics alone and the second where the independent
variables are CK and LBS.

4) RQ3: To decide which LBS best help for fault prediction
we rank the attributes based on the their importance in the best
model selected in RQ2. We then calculate the median rank
across the versions of the system and select the top three LBS
separately for each subject system.

C. Subjects
For our case study, we have considered three open source

systems written in Java, ArgoUML 4, Eclipse 5, and Rhino 6.
ArgoUML is a UML modeling tool which includes support for
all standard UML 1.4 diagrams while Eclipse is an IDE which
supports different languages. In this study we have used the
IDE for Java. Rhino is a Java implementation of JavaScript.
The summary of the versions of the systems used in our study
are shown in Table III.

TABLE III
SUMMARY OF THE SYSTEMS

System Version LOC Classes
Total Defective

ArgoUML 0.10.1 154442 863 49
0.12 171746 946 47
0.14 182627 1227 93
0.16 185335 1185 152

0.18.1 196505 1249 52
0.20 186055 1333 127

Eclipse 1.0 1049434 4596 96
2.0 1471858 5985 163

2.1.1 1735010 6748 98
2.1.2 1737345 6750 78
2.1.3 1740487 6754 149

Rhino 1.4R3 43791 94 66
1.5R1 68086 124 22
1.5R3 86937 166 98
1.5R4 92398 180 35
1.5R5 92687 181 39
1.6R1 102511 178 37
1.6R4 102974 180 138
1.6R5 79144 124 37

D. Results
1) RQ1: Table IV shows the percentage of the analyzed

versions that retained the specific LBS in at least one PC.
In Table V we show the percentage of the analyzed versions
where each LBS was ranked first. Table VI shows the weight
and ranking (in parentheses) of the attributes for ArgoUML
v0.16 after the relative threshold is applied.

4http://argouml.tigris.org/
5http://www.eclipse.org/
6http://www.mozilla.org/rhino/

ArgoUML: For all versions of ArgoUML we retained
between 11 and 13 principal components that explain at least
95% of the variance. Two LBS attributes were kept in at
least one PC in all versions and those are: inconsistent terms
and useless types. Between them, useless types was the major
contributor of at least one PC in all versions.

Rhino: The number of components that explain at least
95% of the variance for Rhino is the same as for ArgoUML.
Five LBS attributes were kept in at least one PC in all versions
and those are: inconsistent terms, synonym similar, odd gram-
matical structure, overloaded identifiers, and meaningless. As
in ArgoUML, one LBS attribute was present as a major
contributor in all versions and this is overloaded identifiers.

Eclipse: The number of retained PC is between 13 and
14. The six LBS that are present in all versions are: inconsis-
tent terms, odd grammatical structure, extreme contraction,
overloaded identifiers, useless types, and meaningless. The
majority of them (four) are ranked first: inconsistent terms,
extreme contraction, overloaded identifiers, and meaningless.

Overall: All LBS were present in more than 50% of
the analyzed systems. inconsistent terms was present in at
least one dimension in all analyzed versions meaning that
it is the major LBS attribute that helps to explain a new
variability dimension. Another different variability dimension
in most cases seems to be captured by overloaded identifiers
and useless types.

2) RQ2: For each evaluation metric, Table VII shows the
average values scored by the corresponding model on all types
of prediction (same and next version). CK metrics are used to
build the prediction models. The values in bold are the best
values of the three models considered for the given metrics.
For all the systems, SVM scores first for the majority of the
evaluation metrics. Hence, we have based our investigation of
LBS’ contribution to the improvement of fault prediction on
SVM.

Table VIII shows the number of versions in which CK
plus LBS metrics improve, decrease or keep the prediction
unchanged, when compared to CK metrics alone. The last
two columns show the net improvement within/across versions
and the average delta percentage of LBS plus CK metrics over
CK alone for the various evaluation metrics. Positive values of
net improvements, for all types of evaluation metrics, indicate
that in the majority of the versions CK plus LBS are better
predictors than CK alone, while negative values indicate the
opposite. A zero net improvement means that both sets of
independent variables were found better than the other in an
equal number of versions or that they are equal in all versions.
For all evaluation metrics except absolute error, the same
is true for the average delta percentage, which is computed
on the average values over all versions of the corresponding
system. For absolute error, a negative value means that there
is a reduction in the amount of error and hence indicates an
improvement while the opposite holds for positive values of
absolute error.

The predictions using CK plus LBS metrics have outper-
formed those of CK alone in most of the versions of the three



TABLE IV
LBS RETAINED IN THE PRINCIPAL COMPONENTS.

System Misspelling Inconsistent Synonym Odd grammatical Extreme Overloaded Identifier Useless Meaningless
Terms similar structure contraction identifiers construction types terms

Eclipse 0.0% 100.0% 40.0% 100.0% 100.0% 100.0% 80.0% 100.0% 100.0%
ArgoUML 66.7% 100.0% 50.0% 66.7% 66.7% 83.3% 83.3% 100.0% 16.7%

Rhino 87.5% 100.0% 100.0% 100.0% 75.0% 100.0% 62.5% 87.5% 100.0%
All 57.9% 100.0% 68.4% 89.5% 78.9% 94.7% 73.7% 94.7% 73.7%

TABLE V
LBS RANKED FIRST IN THE RETAINED PRINCIPAL COMPONENTS.

System Misspelling Inconsistent Synonym Odd grammatical Extreme Overloaded Identifier Useless Meaningless
Terms similar structure contraction identifiers construction types terms

Eclipse 0.0% 100.0% 20.0% 20.0% 100.0% 100.0% 80.0% 80.0% 100.0%
ArgoUML 50.0% 83.3% 0.0% 16.7% 33.3% 83.3% 66.7% 100.0% 16.7%

Rhino 0.0% 87.5% 50.0% 0.0% 50.0% 100.0% 62.5% 62.5% 87.5%
Overall 15.8% 89.5% 26.3% 10.5% 57.9% 94.7% 68.4% 78.9% 68.4%

TABLE VI
DETAILED RESULTS OF PCA FOR ARGOUML V0.16.

PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Cumulative proportion 40.9% 51.8% 59.88% 65.54% 71.06% 76.2% 81.02% 85.29% 89.33% 92.91% 95.53%
CBO 0.275(9) 0.203 0.35 0.0741 0.0176 0.0994 0.0954 0.11 0.0853 0.0607 0.0953
DIT 0.0311 0.0551 0.123 0.13 0.772(1) 0.46 0.0998 0.338 0.0457 0.0665 0.107
LCOM1 0.281(7) 0.36 0.0835 0.0277 0.00268 0.0387 0.0503 0.0812 0.184 0.28 0.0641
LCOM2 0.278(8) 0.366 0.0879 0.0272 0.00323 0.0382 0.0507 0.0807 0.188 0.282 0.0685
LCOM5 0.111 0.307 0.00385 0.0976 0.206 0.269 0.0478 0.753(1) 0.35 0.16 0.0615
LOC 0.29(5) 0.15 0.367 0.0276 0.0123 0.0217 0.0729 0.165 0.0668 0.0341 0.134
NAD 0.21 0.101 0.442(1) 0.0404 0.0119 0.0138 0.0763 0.0568 0.368 0.0434 0.604(1)
NMD 0.338(1) 0.0988 0.0846 0.0403 0.0618 0.00984 0.0373 0.0147 0.0764 0.0998 0.108
NOC 0.0205 0.107 0.0854 0.386 0.428 0.774(1) 0.00912 0.113 0.132 0.0118 0.0585
RFC 0.296(4) 0.176 0.274 0.0458 0.0453 0.00323 0.0397 0.0971 0.0342 0.0189 0.0197
WMC 0.318(2) 0.12 0.286 0.0338 0.0116 0.0181 0.0958 0.0996 0.0384 0.0614 0.131
misspelling 0.24 0.201 0.187 0.207 0.255 0.0979 0.0973 0.0529 0.0174 0.211 0.571(2)
inconsistent terms 0.205 0.246 0.147 0.0116 0.0484 0.0543 0.383 0.29 0.189 0.6(1) 0.178
synonym similar 0.288(6) 0.314 0.102 0.00884 0.00461 0.000561 0.155 0.0958 0.0317 0.154 0.241
odd grammatical structure 0.305(3) 0.0148 0.28 0.013 0.048 0.0274 0.173 0.0301 0.0203 0.0892 0.152
extreme contraction 0.0772 0.253 0.266 0.592(1) 0.276 0.212 0.0624 0.166 0.336 0.288 0.15
overloaded identifiers 0.144 0.0224 0.00102 0.236 0.161 0.00659 0.802(1) 0.0575 0.00447 0.467 0.0241
identifier construction 0.14 0.416(1) 0.271 0.266 0.0227 0.143 0.0104 0.0399 0.41 0.139 0.299
useless types 0.0413 0.248 0.236 0.539(2) 0.0042 0.153 0.304 0.318 0.561(1) 0.186 0.00662

systems, when considering both within and across version
prediction. For ArgoUML, the prediction on the same versions
using CK and LBS together has improved in at least 4 of the
6 versions considered, according to the different evaluation
metrics. For Eclipse the improvement observed in all versions
is consistently reported by all evaluation metrics. Figure 5
shows the average values of all versions of Eclipse for the
evaluation metrics. We observe an important improvement for
all metrics except for accuracy where the improvement is
minor. The evaluation metrics result for Rhino shows that there
is improvement in at least half of the versions considered (4
out of 8). The distributions of the evaluation metrics for all
systems are shown in Figure 7.

When predicting on the next version, CK plus LBS have
been found to be good predictors in the majority of Eclipse’s
and Rhino’s versions by some evaluation metrics; according
to other evaluation metrics they are the same as CK alone.
Figure 6 contrasts the predictions of the two models for
Eclipse. For ArgoUML, negative net improvement values are
observed in three of the evaluation metrics while the other
three show that there is a net improvement in at least 3 out of

the 5 versions predicted. Overall, in both types of predictions,
within and across versions, CK plus LBS are better than CK
alone in the majority of the versions. This result is confirmed
by almost all average delta percentage values shown next to
each net improvement. The average delta percentage decreased
only in 7 out of the 36 metrics computed for the three systems.
Hence, we can answer RQ2 affirmatively.

3) RQ3: Table IX shows the ranked LBS according to their
contribution for SVM. Within brackets the median rank across
versions is also indicated. The following observations can be
made across the different systems: synonym similar is in the
top five most important LBS for all systems. inconsistent terms
and overloaded identifiers are in the top three for two of
the systems. Inconsistent terms and synonym similar have a
median rank at most 11. Finally, whole part does not seem to
be important for fault prediction.

We also observe that some LBS tend to have a specific
contribution for particular systems. For instance, extreme con-
traction is ranked first among all LBS for Eclipse, while
misspelling is ranked second for Rhino.
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Fig. 7. All systems: Evaluation metrics for same version prediction.

TABLE VII
AVERAGE VALUES OF EACH MODEL WHILE USING THE CK METRICS AS

INDEPENDENT VARIABLE

System Category Metric LRM RF SVM
ArgoUML Rank Popt 0.468 0.505 0.603

FPA 38.9 4.91 45.8
Error E 91.6 88.7 86.8

Classifi. A 0.922 0.925 0.927
F 0.0797 0.199 0.0812
MCC 0.0991 0.199 0.12

Eclipse Rank Popt 0.458 0.521 0.637
FPA 67 0.444 60.8

Error E 124 127 118
Classifi. A 0.98 0.98 0.981

F 0.0101 0.0985 0.0439
MCC 0.0167 0.139 0.104

Rhino Rank Popt 0.528 0.535 0.568
FPA 21.3 16.3 21.4

Error E 42.8 42.8 41.2
Classifi. A 0.71 0.71 0.717

F 0.552 0.538 0.579
MCC 0.346 0.336 0.375

Fig. 5. Eclipse: Average of the evaluation metrics for same version prediction.

TABLE VIII
CK AND CK + LBS PREDICTION CAPABILITY COMPARISON USING SVM

Systems Predi. Category Metric Imp. Dec. Equal Net Avg.
version imp. delta %

ArgoUML Same Error E 5 0 1 5 -8.94
Rank Popt 5 1 0 4 -5.878

FPA 5 1 0 4 1.917
Classifi. A 5 0 1 5 0.6738

F 5 0 1 5 81.51
MCC 5 0 1 5 56.72

Next Error E 1 3 1 -2 3.165
Rank Popt 2 3 0 -1 4.405

FPA 4 1 0 3 9.948
Classifi. A 1 3 1 -2 -0.2805

F 4 0 1 4 100
MCC 4 0 1 4 -1400

Eclipse Same Error E 5 0 0 5 -11.11
Rank Popt 5 0 0 5 22.91

FPA 5 0 0 5 43.53
Classifi. A 5 0 0 5 0.2176

F 5 0 0 5 314.6
MCC 5 0 0 5 140.8

Next Error E 2 2 0 0 1.212
Rank Popt 2 2 0 0 -3.067

FPA 2 1 1 1 0.8696
Classifi. A 2 2 0 0 -0.02364

F 3 1 0 2 234.3
MCC 3 1 0 2 200

Rhino Same Error E 6 1 1 5 -11.27
Rank Popt 6 2 0 4 3.233

FPA 6 0 2 6 3.518
Classifi. A 6 1 1 5 2.343

F 7 0 1 7 8.521
MCC 6 1 1 5 15.24

Next Error E 2 1 2 1 -0.6042
Rank Popt 3 2 0 1 3.085

FPA 4 0 1 4 8.861
Classifi. A 2 1 2 1 0.4126

F 3 0 2 3 3.925
MCC 3 0 2 3 10.53



Fig. 6. Eclipse: Average of the evaluation metrics for next version prediction.

TABLE IX
RANKED LBS ACCORDING TO SVM.

ArgoUML Rhino Eclipse
Synonym Odd grammatical Extreme
similar (4) structure (6.5) contraction (3)
Inconsistent Misspelling (7.5) Overloaded
terms (6.5) identifiers (4)
Overloaded Inconsistent Identifier
identifiers (8.5) terms (10) construction (4)
Identifier Synonym Useless
construction (9.5) similar (11) types (7)
Odd grammatical Meaningless Synonym
Structure (10) terms (12) similar (8)
Misspelling (10.5) Identifier Odd grammatical

construction (12.5) structure (8)
Useless Extreme Meaningless
types (13) contraction (13) terms (10)
Extreme Overloaded Inconsistent
contraction (15.5) identifiers (14) terms (11)
Meaningless Useless misspelling (14)
terms (20) types (17.5)
Whole part (20) Whole part (20) Whole part (20)

E. Discussion

PCA shows that the majority of LBS (all but three) are
major contributors in at least one dimension for more than
50% of the analyzed versions. The strongest percentages are
obtained by inconsistent terms, overloaded identifiers, and
useless types. The weakest percentages across versions appear
to be odd grammatical structure, misspelling, and synonym
similar.

We have analyzed three types of prediction models to
identify the best model which works with the CK metrics.
Of the analyzed models SVM is found to be the best in the
majority of the cases (see Table VII). Hence, we have used this
model to assess the contribution of LBS to the CK metrics in
predicting fault prone classes. The results shown in Table VIII
indicate that adding LBS to CK improves the predicting
capability of the models. The improvement is observed on
almost all types of evaluation metrics used for the two types
of predictions used in the three systems, within and across
version. This result is also confirmed by the average delta
percentage. Of the two types of predictions, the predictions
conducted on the same versions using LBS plus CK metrics
have shown improvement in more versions than observed in

predictions on the next version. For example, in Eclipse LBS
plus CK metrics improved the prediction in all versions (5
of 5), while across versions the improvement is observed in
at most half of the versions (2 of 4). The difference can be
observed by comparing Figures 5 and 6.

The results of RQ3 show that for fault prediction synonym
similar is in the top five most important LBS. Our findings are
consistent with previous research on program identifiers that
suggest that identifiers using synonyms lack conciseness and
consistency [32]. Overall, synonym similar, inconsistent terms,
and overloaded identifiers seem to be in general the most
important LBS for fault prediction. We also observe that other
LBS are important but specific to the systems, e.g., extreme
contraction for Eclipse and misspelling for Rhino.

VI. THREATS TO VALIDITY

Our study uses the CK metrics considered in [15] and
others as a baseline to investigate the contribution of LBS in
predicting fault proneness of a class. In the literature, however,
there are other metrics which are proposed to achieve the same
goal. In our future work, we plan to investigate if LBS are
complementary also to these metrics.

To identify LBS, we have used a suite of tools that imple-
ment general heuristics that can be configured to accommodate
some variability. The three systems considered in our study are
developed in different environments and hence are influenced
by their respective environments. Using one general configu-
ration for all the systems might affect the results. To handle
this threat, we manually explored their documentations, when
available, and configured the detectors accordingly.

Different evaluation metrics assess different aspects of pre-
diction models and hence might give different results. To see
if our results are consistent across different evaluation metrics,
we based our evaluation on selected evaluation metrics which
assess different aspects and have been commonly used in
recent studies.

The prediction results depend on the used models and their
configurations. We used default configurations or configura-
tions used in other studies. Further tuning of the parameters
however could change the rankings of the models. The best
model from RQ2, SVM, was used with default parameters. Di
Martino et al. [33] suggest the use of genetic algorithms to
select the parameters for further improvement of the results.

In our study, we have considered only three Java systems
which limits its generalizability. However, these systems have
been selected from different domains and with different size
to limit this threat. Besides, they are real world open source
programs which are actively evolving.

VII. CONCLUSION AND FUTURE WORK

In this study, we have investigated whether the identifier
quality contributes to the fault prediction approaches that use
source code structural metrics. We measure the quality of
an identifier in terms of the LBS it contains. The results
show that in the majority of the cases using LBS with the
structural metrics (CK) improves fault prediction. To assess



the improvement, we have used different evaluation metrics
that address different aspects of the prediction. The assessment
shows that the improvement is consistent in almost all types
of evaluation metrics.

Among all LBS, the most important ones are overloaded
identifiers and inconsistent terms. In the majority of the
systems, these are the major contributors of at least one
retained principal component; they are also the most important
contributors for fault prediction. Moreover, for fault prediction
synonym similar is always among the top five most important
LBS. On the other hand, we believe that other LBS, not
included in this list, should not be deemed irrelevant, as
they become important for specific systems, e.g., extreme
contraction and misspelling.

In our future work, we will investigate whether LBS provide
additional contributions to other types of metrics that are
used to predict the fault proneness of a class. We also plan
to validate our results on more systems, possibly written in
different programming languages.
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