
Correction of High-Level Design Defects with Refactorings

Naouel Moha, Saliha Bouden and Yann-Gaël Guéhéneuc

GEODES - Group of Open and Distributed
Systems, Experimental Software Engineering

Department of Informatics and Operations Research
University of Montreal, Quebec, Canada

E-mail: {mohanaou, boudensa, guehene}@iro.umontreal.ca

Abstract

We define design defects as “poor” design solutions
that hinder the maintenance of programs. Thus, their
detection and correction are important to improve the
maintainability and reduce the cost of maintenance.
The detection of design defects has been actively inves-
tigated by the community. However, their correction
still remains a problem to solve. We propose a first
method to correct these defects systematically using
refactorings. Then, we introduce some challenges that
our community must meet.

Keywords: Software Defects, Design Defects, An-
tipatterns, Detection, Correction, Object-Oriented Ar-
chitecture.

1 Introduction

Automatic detection and correction of design de-
fects in object-oriented architectures are important to
improve software quality, to ease the maintenance of
object-oriented architectures, and thus to reduce the
cost of maintenance. Indeed, programs free of design
defects are easier to change and thus to maintain.

We define design defects as “poor” design choices
that hinder the maintenance of programs. They in-
clude bad solutions to recurring problems in object-
oriented design, such as antipatterns [3] (as opposed
to design patterns [6]), defects related to design pat-
terns (abusive or ill-advised uses), and code smells [5]
(symptoms of design defects). We consider antipat-
terns as high-level design problems as opposed to code
smells, which are low-level problems.

We proposed a systematic method to specify design
defects consistently and precisely [11] and to generate
detection algorithms from their specifications automat-

ically. We specify a language based on rules that allows
to define these specifications with structural, semantic,
and measurable properties that characterize a design
defect. This method was a first step towards the sys-
tematic detection of design defects.

The detection of design defects is one problem but
their correction is yet an issue to be solved. The solu-
tion advocated for correcting design defects is to apply
refactorings [3 ; 5 ; 13]. Refactoring is a technique used
to change “the internal structure of software to make
it easier to understand and cheaper to modify without
changing its observable behavior” [5]. However, refac-
torings proposed to solve defects in the literature can
be performed manually and are difficult to automate
since they depend on the context and the environment.
We propose a method based on a language that allows
to specify the refactorings to apply for correcting de-
sign defects. Both languages for the detection and the
correction of design defects are based on a meta-model
that aims to represent programs at different levels of
abstraction. Our meta-model specifies entities such as
a class, a method, a relationship, with which we can
build representations of programs.

Section 2 introduces related work. Section 3
presents the meta-model we designed. The two fol-
lowing Sections 4 and 5 present respectively the detec-
tion and the correction of design defects. We finally
conclude this paper by stating challenges remaining in
correction of design defects.

2 Related Work

Refactoring was first introduced in 1992 by Opdyke
in his thesis [12]. Refactorings can be applied at the
design level (high level or composite refactorings) or
at the code level (low level or primitive refactorings).
High level refactorings can be performed by combining

1

Entity

InterfaceClass

+attachTo(Element)()

Element

Assoc FieldMethod Comment

ClassVariable GlobalVariable

0..*

0..*

0..10..*

DelegatingMethod
0..1

targetAssoc

targetEntity

0..*

+compare(Pattern)()

Pattern

Bridge Observer Composite

0..*

related

Signature

0..*

-name

-visibility

RootElement

inherit

Role

Abstraction

related0..*
0..* 0..*

Composition Agregation

Accessor

has same

name

0..* Parameter

Coupling
0..*

Cohesion

shouldimplement

declares

0..* Relationshipcontains 0..*

targets

Figure 1. PADL Meta-model.

several low level refactorings. Opdyke defined 26 primi-
tive refactorings and 3 composite refactorings and their
associated preconditions, to ensure the behavior preser-
vation after their application. According to Opdyke, as
long as each primitive refactoring preserves the behav-
ior, then the result of the transformation of the com-
position preserves the behavior.

Opdyke has also participated to the book of Martin
Fowler [5], which describes more refactorings to per-
form but in an informal and manual manner. Fowler
proposed a catalogue of refactorings. In one of the
chapter of his book, Kent Beck contributed by describ-
ing how to find bad smells in code and how to clean
them up with refactorings. Bad smells are low-level de-
sign defects in the source code of a program suggesting
that maintainers should apply refactorings [5].

Tichelaar et al. defined a language-independent
meta-model, named FAMIX, for representing object-
oriented programs and for performing refactorings;
they also presented a feasibility study concerning prim-
itive refactorings for Smalltalk and Java [14]. FAMIX
consists of entities including Class, Method, and At-
tribute. This meta-model is supported by the Moose
Refactoring Engine, which is part of the Moose Reengi-
neering Environment [4], a tool environment for reengi-
neering object-oriented systems.

Several tools such as Refactoring Browser [9],

XRefactory [16], or Eclipse are available to perform
refactorings. They allow to automate refactorings in
an easy and quick manner. They provide an environ-
ment to improve the structure of programs, and thus,
reduce the cost of reusability of software.

3 A Meta-model for the Detection and
the Correction of Design Defects

Our meta-model PADL (Pattern and Abstract-level
Description Language) [1] is a language-independent
meta-model to model object-oriented programs and the
structure of the solutions of design patterns [2], includ-
ing binary class relationships [8] and accessors. PADL
offers a set of constituents (classes, interfaces, meth-
ods, fields, relationships, and so on) with which we can
build models of programs (cf. Figure 1). It offers also
methods to manipulate these models easily and to gen-
erate other models, using the Visitor design pattern.
In this work, we choose PADL because it is mature (5
year-old) and is actively maintained in-house.

Our meta-model distinguishes between classes and
interfaces, and also member classes. Thus, we do
not need additional analysis to determine if we are
dealing with Java classes or Java interfaces as with
FAMIX [14]. Moreover, contrary to FAMIX, we do not

2

Taxonomy Modelling

Specification

Detection

A Systematic Method for the Detection of Design Defects

Analysis

Generation

Meta-modelling

A0

Validation

Textual descriptions

of design defects
Vocabulary

1

Taxonomy Rules cards

Meta-model

Models of

design defects

Detection algorithms Suspicious classes
Classes having

design defects

2

3

4

5

6 7 8

Figure 2. Method for the Description and Detection of Design Defects.

represent constructors as methods. We also differen-
tiate global variables from usual attributes. However,
the meta-model FAMIX allows to perform refactorings,
which is not yet fully supported by our meta-model.
We are currently extending it with methods to perform
refactorings for the correction of design defects.

4 Detection of Design Defects

For the detection of design defects, we build a PADL
model of the program and apply our detection algo-
rithms on this model. The meta-model PADL provides
enough accurate information to get efficient results for
the detection of design defects since it enables us to well
specify structural, semantical, and measurable prop-
erties related to design defects. Figure 2 illustrates
our method for the detection of design defects. We
proposed a systematic method to obtain precise spec-
ifications of any kind of design defects and to gener-
ate detection algorithms from these specifications. Our
method decomposes in 8 steps [10].

1. Analysis. We extract key concepts from the tex-
tual descriptions of design defects in the literature.
Key concepts include metric-based heuristics as
well as structural and semantic information. Key
concepts form a consistent vocabulary of reusable
concepts to describe design defects, with no syn-
onym and homonym.

2. Taxonomy. We define a taxonomy of the de-
scribed design defects by classifying their key con-
cepts in disjoint (sub)categories. This taxonomy
is a reference model to distinguish design defects,

to highlight their commonalities and specificities,
and thus, to avoid misunderstanding and misinter-
pretations.

3. Specification. We specify design defects as sets
of rules (and compositions thereof) in rule cards,
using the vocabulary and the taxonomy of de-
sign defects. Rule cards express literary descrip-
tions of design defects synthetically with a uni-
fied vocabulary and in a precise form following
a dedicated BNF grammar. A rule card speci-
fies the structural relationships among the roles
and characterises roles according to their seman-
tics (names), structural and measurable proper-
ties. Roles can be played by any source code
constructs, i.e., classes, methods, parameters, and
so on. For lack of space, we cannot provide
the rule cards of all these design defects. How-
ever, they are available with the material for
replication at http://ptidej.iro.umontreal.
ca/downloads/experiments/propASE06/.

4. Meta-modelling. We enrich the meta-model
PADL to instantiate rule cards of design defects
and thus get (in step 4) models of design defects
with which to generate automatically detection
techniques. Our meta-model for design defects rei-
fies the key concepts used to specify the defects as
rule cards.

5. Modelling. Using the constituents of the SADDL
meta-model, we instantiate the rule cards to build
concretely models of design defects that can be
manipulated programmatically. The set of mod-
elled design defects forms a catalogue, which is
the basis for the automatic detection techniques.

3

We validate manually the models of design defects
with respect to their original literary forms and as-
sociated rule cards, thus ensuring that we can de-
scribe design defects using the constituents of the
SADDL meta-model appropriately. During this
step, we may correct and enrich the meta-model
to improve the descriptions of design defects. This
step is important to refine iteratively the analysis
of key concepts, the taxonomy, the specification,
the meta-model, and the models of design defects.

At the end of these first 5 steps, we obtain precise
definitions, in the form of rule cards and programmatic
models, of any kind of design defects, including code
smells and antipatterns, in terms of both metrics and
structural information. In the two remaining steps:

6. Generation. We generate algorithms to detect
the modelled design defects in programs using the
constituents of the meta-model (and associated
rule cards and key concepts). The algorithms are
based on metric values, on semantic properties,
and on the structures of the programs. The de-
tection source code is based on our SAD frame-
work (Software Architectural Defect), which pro-
vides all the services required to write detection
algorithms of de- sign defects for AOL [2], C++,
and Java programs, be it manually or automati-
cally.

7. Detection. We build a PADL model of the pro-
gram and apply the detection algorithms on this
model, using the services provided by the SAD
framework. The detection algorithms return lists
of suspicious classes.

8. Validation. We validate the detection algorithms
by looking for design defects in open-source pro-
grams and by manually analysing the results. The
validation is performed manually, because only de-
velopers can assess the validity of detected design
defects.

We thus obtain detection algorithms systematically
from the informal descriptions of design defects in the
literature. We apply these algorithms on open-source
programs, which generates a first library of manually
validated design defects for future comparisons and
replications.

5 Correction of Design Defects

We propose to extend our previous method for the
correction of design defects. We focus on high-level de-
sign defects such as antipatterns. An antipattern [3]

is a literary form describing a bad solution to a recur-
ring design problem, which has a negative impact on
the quality of a program architecture. Code smells,
which are low-level defects, are possible symptoms of
higher-level defects.

Like the factorization in mathematics of a complex
expression in a combination of several simple expres-
sions, our method aims at specifying design defects in
a combination of code smells, and similarly, to refactor
a complex defect in a sequence of small refactorings of
code smells.

We enumerate succinctly each step of this first
method for correcting a high-level design defect (cf.
Figure 3).

1. Analysis. A review of the literature in refactor-
ing is necessary to determine which refactorings to
correct which design defect.

2. Taxonomy. We propose to define a taxonomy
of refactorings by distinguishing the primitive and
composite refactorings and also the refactorings
that are localized in a class than those that involve
several classes. This decomposition highlights the
extent of the code inspection required to correct
a design defect and the spread of the changes in
programs caused by the refactorings.

3. Specification. We propose to define a language
based on rules to correct design defects. We did
not yet specify this language but we plan to use the
same syntax of the language for specifying rules of
detection or an extension of thereof. However, we
have a good idea to how to structure. Indeed,
high-level design defects, such as antipatterns, are
constituted of a set of code smells, we propose
to associate to each code smell a set of refactor-
ings. These refactorings can be either primitive
or composite. We propose to perform refactorings
on code smells first because they are small defects
and second because they are less prone of errors.
The sequence of the refactorings associated to code
smells correct the whole design defect.

4. Meta-modelling. We enrich and use the meta-
model PADL to instantiate rules for detecting de-
sign defects and thus get (in step 4) models of de-
sign defects with which to generate automatically
correction techniques. We are currently working
on this step and the next one.

5. Modelling. We instantiate the rules to build con-
cretely the models of the solutions of design defects
i.e., design defects refactored.

4

Taxonomy Modelling

Specification

Correction

A Systematic Method for the Correction of Design Defects

Analysis

Generation

Meta-modelling

A1

Validation

 Textual descriptions

 of refactorings
Design defect « Refactorings

1

Taxonomy Rules cards

Meta-model

Models of

design defects

Correction algorithms Classes refactored Better Design

2

3

4

5

6 7 8

Figure 3. Method for the Description and Correction of Design Defects.

6. Correction. This step consists in applying the
correction algorithms and propose to the user the
solutions for the design defects. We suggest to
developers the list of refactorings to apply and the
solutions expected to improve their design.

7. Validation. The developer can approve or not
the refactorings suggested.

This process is iterative since the application of
refactorings to correct defects can introduce new de-
fects. The preview offers the possibility to the devel-
oper to abort the refactoring since it does not improve
the design.

It is important to highlight that the refactorings that
we propose to apply are at the model level and not in
the code level. Indeed, we apply refactorings on mod-
els of programs, which are instantiated from the meta-
model PADL. However, we plan to apply these refac-
torings on the code level and perform tests to ensure
that the application of refactorings have not introduce
new errors.

5.1 Illustrative Example

Let assume, we want to apply our method to correct
the Blob design defect.

The Blob (called also God class [13]) corresponds to
a large controller class that depends on data stored in
surrounded data classes. A large class declares many
fields and methods with a low cohesion. A controller
class monopolises most of the processing done by a pro-
gram, takes most of the decisions, and closely directs
the processing of other classes [15]. A data class con-
tains only data and performs no processing on these

data. It is composed of highly cohesive fields and ac-
cessors.

The Blob is composed of mainly two code smells:
Large Class and Data Class. According to Fowler, a
large class can be refactored by performing the follow-
ing refactorings: Extract Class [5, p.149] and Extract
Subclass [5, p.330].

The refactoring Extract Class specifies that if “You
have one class doing work that should be done by two,
create a new class and move the relevant fields and
methods from the old class into the new class. [5,
p.149]” So, Fowler suggests to create a new class and
move the fields and the methods of the large class in the
new class using the two primitive refactorings: Move
Field [5, p.146] and Move Method [5, p.142]. However,
in the case of the design defect Blob, instead of creat-
ing a new class to store extra fields and methods of the
large class, the developer would attempt to store these
fields and methods in the surrounded data classes. In-
deed, why the developer would create new classes, if
there are already classes that lack of behavior such as
data classes. As proposed by Brown [3], the refactored
solution of the Blob consists in identifying cohesive sets
of methods and fields that represent the same abstrac-
tions. Then, we need to move these sets to surrounded
data classes. Thus, it simplifies the large class and adds
some behavior to the simple data classes. This refac-
toring provides a better object-oriented design as the
previous suggestion of Fowler.

5.2 A Language for Specifying Refactorings

As described by Fowler, refactorings have to be per-
formed manually and adapted according to the context

5

RULE_CARD: Blob {
RULE: Blob {ASSOC: associated FROM: LargeClass ONE TO: DataClass MANY};
RULE: LargeClass { ExtractClass

|| ExtractSubclass };
RULE: ExtractClass { if (METRIC: LCOM, HIGH) then MoveMethod(LargeClass,DataClass)

&& MoveField(LargeClass,DataClass) };
};

Figure 4. Simplified Rule Card of Correction of the Blob.

of the application and the intentions of the developers,
and so, these refactorings are difficult to automate. To
overcome this limitation, we propose to specify refac-
torings in primitive rules to automate them and avoid
different interpretations. The advantage of a language
is that it enables the developers to specify easily rules
to perform according to the context and the type of
programs. The specification in rules enables to auto-
mate refactorings, re-apply and reuse them for other
programs. We propose a formalisation of these rules in
what we call rule cards.

5.3 Formalisation of Rule Cards

A rule card describes a design defect, its code smells
and their properties, and the relationships among code
smells. It allows also to specify the refactorings to cor-
rect code smells. We formalise rule cards with a BNF
grammar. A BNF grammar determines the exact syn-
tax for a language. For a lack of space, we did not
present this grammar, but the reader can find a de-
scription in [10]. Figure 4 illustrates the grammar with
the rule card of the Blob design defect.

A rule card is identified by the keyword RULE CARD,
followed by the name of the code smell and a set of
rules specifying this specific design defect as a set of
code smells and the associated refactorings. The Blob
design defect is divided in two main code smells: Large
Class and Data Class. These two code smells represent
classes tied by an association relationship (ASSOC). The
code smell LargeClass can be corrected with one of
the following refactorings: Extract Class and Extract
Subclass. The third rule specifies that if in a class
there is a lack of cohesion (LCOM) high, we move the
methods and fields from the large class to the data
classes.

6 Conclusion

This position paper presented succinctly the method
we specified to detect design defects. We extended this

method for the correction of design defects. We illus-
trated our approach with the Blob defect.

In our team, we are currently working on refactor-
ing techniques in the code and the design level. We or-
ganise in a catalog all refactorings that are possible to
implement by specifying the pre- and post-conditions
and the list of elementary actions associated to each
refactoring. Actually, we are implementing these refac-
torings in our framework Ptidej [7].

As the detection, the correction of defects will be
based on models of programs. Thus, it is interesting to
consider and explore graph and model transformation
techniques (the model can be seen as a graph).

Here is a list of challenges that our community must
meet :

• Define a language for specifying the rules for cor-
recting design defects.

• Exploit benefits offered by model transformation
techniques and refactorings. We will apply them
based on the transformation rules defined for each
defect.

• Extend our approach to the code level.

References

[1] Hervé Albin-Amiot, Pierre Cointe et Yann-Gaël
Guéhéneuc. Un méta-modèle pour coupler appli-
cation et détection des design patterns. Michel
Dao et Marianne Huchard, éditeurs, actes du 8e

colloque Langages et Modèles à Objets, volume 8,
numéro 1-2/2002 de RSTI – L’objet, pages 41–58.
Hermès Science Publications, janvier 2002.

[2] Giuliano Antoniol and Yann-Gaël Guéhéneuc.
Feature identification: A novel approach and a
case study. In Tibor Gyimóthy and Vaclav Ra-
jlich, editors, proceedings of the 21st International
Conference on Software Maintenance. IEEE Com-
puter Society Press, September 2005. Best Paper
Award.

6

[3] William J. Brown, Raphael C. Malveau,
William H. Brown, Hays W. McCormick III,
and Thomas J. Mowbray. Anti Patterns: Refac-
toring Software, Architectures, and Projects in
Crisis. John Wiley and Sons, 1st edition, March
1998. isbn: 0-471-19713-0.

[4] Stéphane Ducasse, Michele Lanza, and Sander
Tichelaar. Moose: an extensible language-
independent environment for reengineering object-
oriented systems. In CoSET ’00: Proceedings of
the 2nd International Symposium on Constructing
Software Engineering Tools, June 2000.

[5] Martin Fowler. Refactoring – Improving the De-
sign of Existing Code. Addison-Wesley, 1st edition,
June 1999. isbn: 0-201-48567-2.

[6] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns – Elements
of Reusable Object-Oriented Software. Addison-
Wesley, 1st edition, 1994. isbn: 0-201-63361-2.

[7] Yann-Gaël Guéhéneuc. Ptidej: Promoting pat-
terns with patterns. In proceedings of the 1st

ECOOP workshop on Building a System using
Patterns. Springer-Verlag, July 2005.

[8] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot.
Recovering binary class relationships: Putting ic-
ing on the UML cake. In Doug C. Schmidt, edi-
tor, proceedings of the 19th conference on Object-
Oriented Programming, Systems, Languages, and
Applications. ACM Press, October 2004.

[9] The Refactory Inc. Refactoring browser, October
1999.

[10] Naouel Moha and Yann-Gaël Guéhéneuc. A sys-
tematic method for the detection of design de-
fects. In OOPSLA’06 : Object-Oriented Program-
ming, Systems, Languages and Applications, Oc-
tober 2006. Submitted.

[11] Naouel Moha, Duc-Loc Huynh et Yann-Gá’el
Guéhéneuc. Une taxonomie et un métamodèle
pour la détection des défauts de conception. Roger
Rousseau, éditeur, actes du 12e colloque Langages
et Modèles à Objets. Hermès Science Publications,
March 2006.

[12] William F. Opdyke. Refactoring Object-Oriented
Frameworks. Ph.D. thesis, Department of Com-
puter Science, University of Illinois at Urbana-
Champaign, 1992.

[13] Arthur J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[14] Sander Tichelaar, Stephane Ducasse, Serge De-
meyer, and Oscar Nierstrasz. A meta-model for
language-independent refactoring. In Proceedings
of ISPSE ’00 (International Conference on Soft-
ware Evolution), pages 157–167. IEEE Computer
Society Press, 2000.

[15] Rebecca Wirfs-Brock and Alan McKean. Ob-
ject Design: Roles, Responsabilities and Collabo-
rations. Addison-Wesley Professional, 2002. isbn:
0201379430.

[16] XRef. XRefactory (Previously Named XRef-
Speller), 2000.

7

