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Abstract 
In this paper, we carefully explore the assumptions behind 
using information capacity equivalence as a measure of 
correctness for judging transformed schemas in schema 
integration and translation methodologies. We present a 
classification of common integration and translation tasks 
based on their operational goals and derive from them the 
relative information capacity requirements of the original 
and transformed schemas. We show that for many tasks, 
information capacity equivalence of the schemas is not strictly 
required. Based on this, we present a new definition of 
correctness that reflects each undertaken task. We then 
examine existing methodologies and show how anomalies 
can arise when using those that do not meet the proposed 
correctness criteria. 

1 Introduction 

Formal work on schema equivalence has largely been ig- 
nored within practical schema integration and transla- 
tion tools. Practitioners have felt that theoretical work 
is too narrow in scope to be applicable to the problems 
they face [RR89]. A s a result their work is driven by 
an intuitive, rather than formal, notion of correctness. 
Some recent work on translation and integration has suc- 
cessfully used information capacity equivalence as a ba- 
sis for judging the correctness of transformed schemas 
[Hu186, MS92, RR87, and others]. Such work formally 
provides sets of equivalence preserving transformations 
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of schemas for specific data models. 

We take a closer look at the assumptions behind 
using information capacity equivalence as a measure of 
correctness by examining a number of common tasks that 
require schema integration or translation. We present a 
classification of these tasks based on their operational 
goals and derive from them the information capacity 
requirements of the original and transformed schemas. 
For many tasks, information capacity equivalence of 
the schemas is not required. Rather it is sufficient 
to guarantee dominance of either the original or the 
transformed schemas. Based on this result, a new 
definition of correctness for transformed schemas is 
presented that takes into account the integration task 
and its operational goals. 

We examine the literature on schema transformations 
with this new definition of correctness in mind. We iden- 
tify many transformations, proposed within several dif- 
ferent methodologies, that do not achieve their opera- 
tional goals, and articulate the additional assumptions 
required to rectify the problem. As part of this process, 
we highlight the anomalies that can arise due to errors in 
the transformation rules and show how query mappings 
that are based on incorrect schema transformations can 
produce incomplete or inconsistent answers. 

We then extend our definition of correctness to pro- 
hibit the generation of transformed schemas contain- 
ing a conflict. We distinguish heterogeneity of schemas 
(structural or constraint mismatch) from conflicts cre- 
ated by constraints on schemas that cannot be simulta- 
neously satisfied and show that determining if a trans- 
formed schema contains a conflict is undecidable in gen- 
eral. However, in many practical situations a tool can 
detect conflict and use this knowledge to correct errors 
in the specification of schemas. 

We conclude by showing the value of this work to prac- 
titioners. The new definition of correctness lends itself 
to use in practical tools. Translation and integration 
tools must work with incomplete information. However, 
knowledge of the assumptions necessary to ensure correct 
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transformations can be included in a tool and used to 
intelligently ask a designer about additional constraints 
that may hold in the schemas to be integrated. Because 
correctness is based on information capacity, not preser- 
vation of opaque dependencies, missing information that 
must be inferred by the system can be formulated in 
terms familiar to the designer. 

2 Information Capacity 
Before introducing the notion of information capacity, 
we define some useful concepts that may be interpreted 
differently in different contexts. 
Definition 2.1 Let A and B be sets. A mapping 
(binary relation) f : A + B is functional if for any 
a E A there exists at most one b E B such that f(u) = b; 
injective if its inverse is functional; total if it is defined on 
every element of A; and surjective (onto) if its inverse is 
total. A functional, injective, total, surjective mapping 
is a bijection. 

Let I(S) denote the set of all valid instances of some 
schema S. A schema S conveys information about 
the universe it models. This information is essentially 
captured by I(S) which contains all the possible states 
of the modeled universe. From a different perspective, 
the information capacity of S determines its set of 
instances 1(S). T wo schemas can be compared based 
on information capacityl, where intuitively, a schema 
S2 has more information capacity than a schema Sl if 
every instance of Sl can be mapped to an instance of 
S2 without loss of information. Specifically, it must be 
possible to recover the original instance from its image 
under the mapping. The above are made precise below. 

Definition 2.2 An information capacity preserving 
mapping (or information preserving mapping) between 
the instances of two schemas Sl and S2 is a total, injec- 
tive function f : I(S1) + I(S2). 
Definition 2.3 If f : I(S1) + I(S2) is an information 
capacity preserving mapping, then SZ dominates Sl via 
f, denoted Sl 5 S2. 

Definition 2.4 An equivalence preserving mapping be- 
tween the instances of two schemas Sl and S2 is a bijec- 
tion f : T(S1) + I(S2). 
Definition 2.5 If f : I(S1) -+ I(S2) is an equivalence 
preserving mapping, then Sl and S2 are equivalent via 
f, denoted Sl E S2. 
Example 2.1 To illustrate the above, consider the 
simple relational schemas Sl: empl(eno, ename, sal) 
and S2: emp2(eno, ename, Sal, age). The attribute eno 
is the key in both tables. One may define many intuitive 
information preserving mappings from I(S1) to I(S2), 
where each instance of empl is mapped to some instance 
of emp2 with the same employees (i.e., the same eno, 

1 Information capacity has been used extensively in the trans- 
lation and integration literature [AABM82, BC86, Bor78, Eic91, 
Hu186, HY84, MS92, His82, RR87, and others]. While the precise 
details of the definitions differ among authors, we present defini- 
tions that are in keeping with the spirit of the existing literature. 

but also the same ename and Sal), ignoring the values of 
age. Therefore, S2 dominates Sl (Sl 3 S2), which is to 
be expected, since more information is captured in emp2 
than in empl. 0 

In principle, arbitrary mappings f may be used to 
satisfy the above definitions of dominance and equiva- 
lence. In fact, the definitions do not even require that 
the mappings be finitely specifiable; they can simply be 
an infinite list of pairs of schema instances. Clearly, such 
mappings are of little use in a practical context. Various 
restricted classes of mappings have been proposed in the 
past [Hu186], for example, internal mappings, which only 
reorganize and do not invent values, and mappings that 
are queries in some query language. While such map- 
pings have many desirable properties, many of them are 
still unacceptable in a practical environment, because 
schema instances with no intuitive relationship between 
them are allowed to be associated via the mappings. 

In practice, the notions of dominance and equivalence 
are most useful if the associated mappings are required to 
capture a meaningful semantic correspondence between 
schemas. None of the classes of mappings discussed in 
the literature has been shown to guarantee this [H~186]. 
In fact, existing systems operate at the schema level 
(using transformations between schema components) 
rather than at the instance level. 

Definition 2.6 Let Sl and 32 be families (sets) of 
schemas. A (schema) transformation is a total function 
F : Sl + S2. If Sl and S2 are specified in different 
data models, the transformation F is sometimes called a 
translation. 

A schema transformations should induce a mapping 
between the sets of instances of the schemas. A 
transformation is desirable if it induces an equivalence 
preserving mapping. 

Definition 2.7 A transformation F : Sl + S2 is an 
equivalence preserving transformation if for all Sl E Sl, 
Sl E F(Sl)? 

Schema transformations are not arbitrary functions, 
but are usually defined by a bijection (respectively a to- 
tal, injective function) between components of the orig- 
inal and the transformed schema when schema equiv- 
alence (respectively dominance) is desired. Moreover, 
they are usually constrained to induce only internal map- 
pings on instances. Since schema transformations are de- 
fined on finite schemas, they can be finitely specified, and 
so ideally can the instance mappings that they induce. 

Our treatment of integration and translation in this 
paper is based entirely on schema transformations and 
on instance mappings that these induce. In the next 
section, we show that by ensuring that such mappings 

ZNote that this condition implies the data model commutative 
mapping principle described elsewhere [Ka190] and corresponds to 
the definition of lossless schema transformations [Tro93]. 
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are in fact information capacity preserving some very 
important operational goals can be achieved. 

3 Taxonomy of Schema Integration and 
Translation Tasks 

Schema translation and integration are necessary com- 
ponents of several diverse tasks with very different goals 
and operational requirements. Unfortunately, in many 
discussions of schema integration and translation, the 
specific task in mind is not made explicit, which results 
in occasional errors and misconceptions. 

Our approach to developing correctness criteria for 
integration and translation consists of two steps. First, 
we identify a collection of operational goals that arise 
in the context of different integration tasks involving 
a pair of schemas. For each goal, we identify what 
relationship exists between the two schemas in terms of 
information capacity (Section 3.1). Second, we identify 
the operational goals implicit in a given integration task. 
We then use the analysis of goals presented earlier to 
determine what information capacity based constraints 
must hold with respect to schemas involved in the 
integration task (Sections 3.2, 3.3, and 3.4). In Section 5, 
we use the formal basis for correctness developed in this 
section and examine several transformations proposed in 
the literature in conjunction with different integration 
tasks. 

3.1 Operational Goals and Relative 
Information Capacity 

Let 5’1 and S2 be two schemas in some data model(s). 
Consider a system where Sl is used at the user-interface 
level and S2 is used at the database level. That 
is, users interact with the system through Sl, while 
the data is stored under S2. We call such a system 
unidirectional. We identify three possible operational 
goals for unidirectional systems. In what follows, il E 
I(Sl), i2 E 1(S2), and il = f(i2) for some mapping f 
being discussed. 

(Gl) Querying through Sl the data stored under 
S2. This is the minimum possible- operational goal 
and captures the case where Sl is a view of S2 in the 
traditional sense. To achieve Gl, any query on Sl must 
correspond to a unique query on S2 that returns the 
same answer. For that, it is sufficient for the view 
dejinition to induce at the instance level a total function 
f : I(S2) -t I(S1). In that case, for a query q on il, the 
following holds: 

q(i1) = q(f(i2)) = q 0 f(i2). (1) 
That is, the query q on il is mapped to the unique 

query q o f on i2. Based on the required properties of f 
(a total function), we conclude that f does not have to 
be information preserving to achieve Gl: the information 
capacities of Sl and S2 may be incommensurate. 

(G2) The goal Gl, plus viewing through Sl the entire 
database stored under S2. To achieve G2, we need a 
total function f : I(S2) -+ I(S1) as above, but we 
also need f to not lose any information. An instance 
of Sl should uniquely determine an instance of S2, i.e., 
f should also be injective so that its inverse f-l is well 
defined (albeit possibly not for all instances in I(S1)). 
Then, by the equalities of(l), one may use f-l as a query 
on il to retrieve/view the entire database instance i2. 
More formally, f-‘(il) = f-‘(f(i2)) = i2. Therefore, 
based on the required properties of f (a total injective 
function), we conclude that f must be an information 
preserving mapping to achieve G2: Sl must dominate 
s2. 

(G3) The goal G2, plus updating through Sl the data 
stored under S2. To achieve G3, at a minimum we need 
a total injective function as above. Consider an update ‘11 
that changes il to a new instance il’, i.e., am = il’. To 
perform the update on the underlying database, any il’ 
must determine a unique instance i2’ of S2, i.e., f must 
also be surjective (onto I(S1)). In that case, because f is 
injective, f-’ is also uniquely defined on any il’. Hence, 
21(il) = il’ W u(f(i2)) = f(i2’) * f-l(u(f(i2))) = 
f-‘(f(i2’)) = i2’ Th e composition f-l ouo f corresponds 
to the update on S2 that generates the unique new 
instance i2’. Therefore, based on the required properties 
off (a bijection), we conclude that both f and f-’ must 
be information preserving mappings to achieve G3: S2 
and Sl must be equivalent.3 

In addition to the above, consider a system where some 
data is stored under Sl and some under S2. Moreover, 
some users interact with the system through Sl and some 
through S2. We call such a system bidirectional. As 
an example, two heterogeneous independent applications 
exchanging data in a distributed environment form a 
bidirectional system. We identify a unique operational 
goal for such a system. 

(G4) Querying through Sl the data stored under S2 
and vice-versa. For practical purposes, a single instance- 
level mapping is desired. Clearly, this goal is equivalent 
to Gl for both directions between Sl and S2. Therefore, 
f should be a total function (for one direction) and 
a surjective injection (for the other direction), i.e., a 
bijection. Therefore, to achieve G4 S2 and Sl must be 
equivalent. Given this, updates can be done through 
both Sl and S2. 

Summarizing the above, we have identified several 
possible operational goals for systems that involve 
two schemas. For each one of these goals, we have 

3We note that goals Gl-G3 also put implicit constraints on the 
query and update languages of Sl and S2. For Gl (respectively 
G2), 9 o f (respectively j-‘) must be a query on S2. For G3, 
f -’ ouof must be a valid update on S2. Such language constraints 
are discussed elsewhere [Ka190]. 
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demonstrated whether or not the two schemas must 
be in a dominance or equivalence relation. This 
is extremely valuable in analyzing various integration 
and translation tasks in the following subsections. In 
addition, we have shown how such properties are 
necessary to be able to translate queries and updates 
between schemas automatically, an absolute necessity for 
practical heterogeneous systems. 

3.2 Database Integration 

Database integration or global schema design is 
a process that takes several, possibly heterogeneous, 
schemas and integrates them into a view that provides a 
uniform interface for all the schemas [ADD+Sl, BLN86, 
DH84, LNE89, MB81, ME84, et al]. If the local schemas 
are specified in different data models, they may be 
translated into a common model before integration is 
performed. The process is depicted in the top part of 
Figure 1, where both an integration and a translation 
step are shown. 

DATAtiASE INTEGRATION 

Intprgrted Translated 
Schemas 

4 f 0 0 
queries 

integration 0 2-O @ 
translation I 

0 0-J 
VIEW INTEGRATION 

User 
Views 

Tr;r$sfed Integrated 
Schema 

-0 0 
queries 

0 
t f 

-----S-- 0 
translation integration 

-0 0 
Figure 1: Information capacity requirements of tasks. 

Clearly, database integration generates a unidirec- 
tional system, where Sl is the, integrated view and S2 
is the union of the local schemas. Given that this is an 
integration task, the view must faithfully represent the 
integration of all schemas. Hence, the operational goals 
of the system resulting from the integration may be G2 
and possibly G3 if updates are allowed through the view. 
By the analysis in Section 3.1, in the former case the in- 
tegrated view (Sl) must dominate the union of the local 
schemas (S2), while in the latter case the two must be 
equivalent. The composition of the integration mapping 
f and the translation mapping t shown in Figure 1 is 
the information (equivalence) preserving mapping from 

I(S2) to I(Sl), SO both f and t must be information 
(equivalence) preserving as well. 

3.3 View Integration 

View integration or logical database design is a 
process that takes a set of user views and logically 
integrates them into a single conceptual schema [BLN86, 
BC86, SZ91, LNE89]. Th ese views contain requirements 
for the portion of a database of interest to different 
users. The result of their integration is the schema 
for an actual database. The user views are optionally 
maintained to permit users to query the database 
using their own customized interface. If the views 
are specified in different data models they may be 
translated into a common model before the integration 
is done. Depending on the model used for integration, 
the resulting conceptual schema may also be translated 
into a target schema in a final step. For example, the ER 
model is commonly used for schema integration and the 
relation model used for the target schemes. The process 
is depicted in the bottom part of Figure 1, where both an 
integration and two optional translation steps are shown. 

As in database integration, when the user views are 
maintained, view integration generates a unidirectional 
system. However, the roles of Sl and S2 are reversed: 
Sl corresponds to the collection of the user views and 
S2 is the integrated schema. The goals remain the 
same as before, G2 and possibly G3, and therefore the 
conclusions are reversed: for G2, the integrated schema 
(S2) must be dominated by the user views (Sl), while 
for G3,. the two must be equivalent. Analogously to the 
previous case, the inverses of the integration mapping f 
and the translation mappings t and t’ (Figure 1) must 
be information preserving. 

If the user views are not maintained and no interaction 
with the data is performed through them, then the 
resulting system is in some sense ‘nondirectional’, and 
does not have any operational goals of the type discussed 
in Section 3.1. Therefore, it may not be strictly necessary 
for the integrated schema to be dominated by the user 
views. However, by the nature of the view integration 
process, the integrated schema often contains additional 
constraints, including interschema constraints, that are 
not expressed on any of the individual views. Moreover, 
the constraints on the views capture useful information 
that must be preserved in the integrated schema as well. 
Therefore, it is again desirable for the integrated schema 
to be of less information capacity. 4 

41nformalIy, the constraints may be treated as information 
that must be preserved and perhaps enhanced during the design 
process. These constraints commonly restrict the information 
capacity of the views. In such cases, it may still be a desirable 
(though no longer strictly necessary) goal to preserve these 
constraints by preserving information capacity. 
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3.4 Schema Translation 

As we saw earlier, schema translation is often combined 
with database integration [ADD+911 or view integration 
[RR87, MS921 m a heterogeneous environment. The 
information capacity requirements on the translated 
schemas depend on the task at hand. This difference is 
often not recognized in practice. Schema translation may 
also be required in situations not involving integration. 
In a unidirectional system, where both Sl and S2 are 
individual schemas, the mapping from S2 to Sl involves 
only a translation. Assuming that G2 is the most 
common goal for such systems, Sl should dominate S2 
(where for database integration, Sl is the integrated 
view and for view integration Sl is the set of original 
user views). Also, in a bidirectional system, data is 
exchanged between the two parts of the system that must 
be translated. Having G4 as the goal, the two schemas 
must be equivalent. 

3.5 Comments 

In practice, in the process of any of the two types of inte- 
gration tasks discussed above, designers may provide ad- 
ditional information that affects the information capacity 
of the original schemas in the opposite direction from the 
one described in Sections 3.2 and 3.3. For database inte- 
gration, the reason is that the original schemas are often 
incomplete because they are specified in a model that 
does not support the expression of all constraints that 
hold in the universe of discourse. Additionally, there 
may be interschema constraints that hold in the inte- 
grated view but are not specified in any one of the orig- 
inal schemas. For view integration, the reason is that it 
may be revealed during integration that the constraints 
on the views are not valid in the integrated schema. In 
both cases, such information may lead to an integrated 
schema that is not in the appropriate dominance relation 
with the original schemas as described above. However, 
the additional information provided by the designer may 
be considered as part of the original schemas; the fact 
that the designer is the source is irrelevant. Taking this 
into account, the dominance relations are as described. 
We discuss how such missing or inconsistent constraints 
may be taken into account in Section 7. 

4 The SIG Formalism 
In Section 5, we study several methodologies that have 
been proposed for yiew integration or database integra- 
tion in light of the information capacity requirements 
that we have described above. The methodologies that 
we consider use various data models to express the trans- 
formations. To ease the task of analyzing and presenting 
the transformations, we use a single data model for de- 
scribing the relevant schema families. Specifically, we 
employ schema intension graphs (SIGs), a formalism de- 
fined elsewhere [MIR]. Within SIGs, constraints that im- 

pact the information capacity of a schema are explicitly 
represented in a simple graph notation. These graphs 
are therefore a convenient tool for proving or disproving 
equivalence of schemas5 

We define informally the features of SIGs that are 
relevant to our subsequent discussion. A schema 
intension graph is a graph G = (N, E) defined by two 
finite sets N and E. The set N contains (i) a typed 
set of symbols each used to represent a finite set of data 
values, and (ii) arbitrary products and sums of these 
symbols used to denote cross products and unions of the 
corresponding sets, respectively. 

The set E contains labeled edges between two nodes. 
Edges are used to represent binary relations on the sets 
assigned to the nodes. An edge e is denoted by e : X-Y 
indicating that it is an edge between nodes X and Y. 
The set E may contain edges between product and sum 
nodes as well as multiple edges between the same pair 
of nodes. Some of the edges of E may be designated as 
projection or selection edges. A selection edge, denoted 
u : X-Y, indicates that the set assigned to the node X is 
a subset of the set assigned to Y. The edge u represents 
the identity relation ,on the elements of X. A projection 
edge, denoted z$xy : X x Y - X or ~5,~ : X x Y - Y, 
represents the projection on X (respectively Y) values. 

An instance S of a schema intension graph G (i.e., a 
database state) is a function defined on the sets N and 
E that assigns specific sets to nodes (denoted S[X] for 
X E N) and specific binary relations to edges (denoted 
S:[e] for e E E). The set of all instances of G is 
I(G) = {Cs ] S is an instance of G}. 

Each edge of a SIG is annotated with a (possibly 
empty) set of properties. Each property is a constraint 
that restricts the valid set of binary relations that may 
be assigned to an edge by an instance. Specifically, 
an annotation of a SIG G = (N, E) is a function A 
whose domain is the set of edges E. For all e E E, 
d(e) c {f, i, s, t). An instance 9 of G is a valid instance 
of A if for all e E E, if f E d(e) (respectively i, s or 
t E d(e) ) then s:[e] is a functional (respectively injective, 
surjective or total) binary relation. 

In reasoning about SIGs, edges may be combined using 
two constructors <, >> and [[, I]. 

l Two edges ei : Z - X, es : Z - Y can be combined 
into the edge < ei,ez >>: Z - (X x Y) called the 
constructed product of ei and ez. In any instance of 
the constructed edge, (z, 
(2, r) E gi[el] and (z, y) E 

E cS[<< ei,ez >] iff 

5We are not recommending that practitioners take a step 
backward in time and start using a simpler rather than more 
expressive data model for integration. We use SIGs here as an 
expository tool. We also stress that SIGs are in fact powerful 
enough to express the relational schemas with functional and 
inclusion dependencies as well as schemas expressed in models with 
inheritance [MIR]. 
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l 

5 

Two edges ei : X-Z, ez : Y -2 can be combined into 
the edge [[ei, ex]] : (X+Y)-2 called the constructed 
sum of ei and e2. In any instance of the constructed 
edge (W,Z E 9[ [[ei,ez]] ] iff (w,z> E Q[ei] or 
(w, z) E Ds e2]. r’ 

Analysis of Transformations 

Using the SIG formalism, we have examined a large 
number of database or view integration methodologies 
that have been proposed in the literature. Based on the 
stated operational goals of each methodology, we have 
used the taxonomy of Section 3 to study the transfor- 
mations proposed within the methodology and under- 
stand their properties with respect to information ca- 
pacity. While in most cases the notion of correctness 
is not explicitly stated in the original references, based 
on intuitive assumptions, we have been able to classify 
most of the previous work. The entire effort has been 
very beneficial. First, transformation rules originally de- 
scribed in the context of very diverse models, have been 
unified under the SIG formalism. This has permitted 
the identification of common themes underlying many 
transformations. Second, the analysis of transformations 
based on information capacity has identified many errors 
in the existing literature. Several transformations have 
been found to not preserve information capacity, imply- 
ing that any methodology incorporating them would fail 
to achieve its stated operational goals. Third, for each 
incorrect transformation, we have used information ca- 
pacity arguments to identify the missing assumptions 
that would validate the transformation. Fourth, we have 
obtained a better understanding of how queries can be 
transformed between schemas using the instance-level 
mappings induced by the transformations that preserve 
information. 

All these points have convinced us of the importance 
of using information capacity preservation as a correct- 
ness criterion for integration and translation. We illus- 
trate the above by focusing on three broad classes of 
transformations. For each class, we have chosen one or 
two transformations from different methodologies among 
those studied and present the details of our analysis. The 
specific transformations were chosen because they have 
similar counterparts in other methodologies. For each 
transformation, we discuss (1) the methodology in which 
it is proposed; (2) our formulation of the transformation 
in SIGs; (3) a natural instance mapping induced by the 
transformation; (4) under what assumptions the map- 
ping meets the goals of Section 3.1; (5) how the trans- 
formation may be correctly used in an integration task; 
(6) how queries can be translated based on the trans- 
formation; and (7) related transformations. In all cases, 
we only present the essential properties of the transfor- 
mation and omit details that are not pertinent to our 
analysis. 

5.1 Merging through Generalization 

For both view and database integration, several method- 
ologies have been proposed that begin with two or more 
schemas, union the schemas into a single schema, and 
perform restructuring (or merging) transformations on 
components of the new schema. The restructuring trans- 
formations are designed to identify common structures 
which are then combined to produce a conceptually 
cleaner schema. One of the most common types of trans- 
formations merges two or more object classes with over- 
lapping attributes using generalization. In the following 
subsections, we analyze one such transformation from a 
specific methodology. 
5.1.1 Description of Methodology 
The specific transformation that we consider belongs to a 
database integration methodology that uses a simple se- 
mantic model containing classes and two types of binary 
relationships, corresponding to attribute relationships 
(key and non-key) and generalization [MB81, Mot87]. 
The stated goal of the work is to provide a faithful repre- 
sentation of the underlying schemas and to allow queries 
on the integrated view (referred to as a superview) to be 
automatically transformed into queries against the com- 
ponent schemas. This is goal G2 which requires that the 
integrated schema dominate the original schemas. 
5.1.2 Description of Transformation 

The meet transformation restructures a schema contain- 
ing two classes with a common key. The two classes typ- 
ically come from different schemas that are integrated. 
In the transformed schema, all common attributes are 
removed from the original classes and a superclass with 
these attributes is created. 

F R a 
A - Original Schema (Sl) 

; . . . . . . . I. I. -, 

i Eion i e........... :. 
i Functiona! 
:---: 
-..........I 4. 
i lnjectlve i 
a--: 
I............ ;. 
i Total i 
i-i 
r . . . . . . . . . . . :. 
:Surjectivei 
;+: . . . . . . . . . . . . . 

B - Transformed Schema (S2) 

Figure 2: The meet transformation. 

Let S and T be classes with a common key composed 
of the attributes {Ki,Kq, . . ..Kk} = Ii’. Let R = 
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{RI, Rz, . . . . RP} be the set of all common non-key 
attributes. Additionally, S has non-key attributes P = 
{Pi, Pz, . . . . Pp} and T has non-key attributes Q = 
(91, Qz, . . . , Qq}. The SIG representing this schema is 
shown in Figure 2A (Schema S1).6 For any set of nodes 
N, the node N represents the product of all nodes in N. 
In the SIG representation, we typically do not depict all 
projection edges. Intuitively, an attribute relationship 
from S to Pi is represented by the composition of the 
edge p and the projection edge rr:. 

The meet transformation converts Sl into S2, shown 
in Figure 2B. Schema S2 contains a new class S + T 
representing the generalization of S and T. All common 
attributes are made attributes of S+T. The edges gl and 
g2 represent generalization relationships. The classes 
S and T “inherit” all attributes in K and R via the 
composition of the generalization edges with the edges 
k’ and PI. 

5.1.3 Induced Mapping on Instances 

While instance level mappings are not explicitly defined 
in the discussion of the meet transformation, the authors 
suggest the following mapping. Let f : I(S1) + I(S2) 
and 9 E I(S1). 

l The new node S + T is populated with the union of 
elements in S and T, f(Q)[S + T’j = S[Sj U Q[T’j. 

l For all other nodes X in S2, f(S)[X] = 3[X]. 
l The edges are populated as follows: 

fw.PY = w ; f(Wdl = %I; 
f(‘W-‘I = Q[ b-l,~211 I; f(W’1 = s;[ Pl, WI I; 
f(w711 = &[s$ 
fW[4 = %x1. 

f( 3;) [d] = &[T] ; 

To be correct, the transformation must induce a 
mapping that is a total function. Therefore, the authors 
state that if an element of S and an element of T have 
the same key then they must agree on all attributes of R. 
Otherwise, the relation 3[ [[rl, r2]] ] (which determines 
the nonkey attributes of the merged class) would not 
necessarily be functional, and not every valid instance of 
Sl could be mapped to a unique valid instance of S2. 

5.1.4 Additional Requirements for Information 
Capacity Preservation 

Even under the above constraint, the meet transforma- 
tion is not information preserving, i.e., S2 does not dom- 
inate Sl. The relation cS[ [[kl, k2]] ] is not guaranteed to 
be functional or injective. Hence, it does not always form 
a valid instance of the edge k’. To illustrate this, con- 
sider schemas Sl and S2 of Figure 3 which conform to the 
structure of the abstract schemas in Figure 2. According 
to the constraints on Sl, two different people, an instruc- 
tor i and a student s; may both be named “A. Walker”. 

61n this figure and later figures, we represent information 
from the two original schemas together in the schema Sl. The 
transformed schema is 92. 

The edge Name in the integrated schema, which is pop- 
ulated with [[Std- name, Inst - name]], would therefore 
contain the pairs (s, “A. Walker”) and (i, “A. Walker”). 
So the Name edge is not injective. Conversely, if the 
same person p is an instructor and a student, he or she 
may have St&name “A. Walker” and Inst-name “Dr. 
Walker”. The edge Name would then contain the pairs 
(p, “A. Walker”) and (p, “Dr. Walker”). So Name is 
not guaranteed to be functional. 

Student ( I Std~name ) 
Inst-name 

Name<-,hStructor 

A - Original Schema (Sl) 
Name 

Person- Name 

iti ii-i, 

B - Transformed Schema (S2) 

Figure 3: The meet transformation on a specific schema. 

The additional requirement necessary to ensure Sl 5 
S2 is that two elements in s;[Sl and %[T] share the same 
key if and only if they are identical. Formally, ifs E $;[A 
and t E C?[Tl then s = t if and only if for a unique k 
(s, k) E 3[kl] and (t, k) E %[k2]. Keys must be unique 
not only within a node but across nodes that are to be 
merged. 

If the additional constraint on uniqueness of keys is 
imposed on instances of Sl then f is an information 
preserving mapping. This mapping is not surjective, 
however, since a valid instance of S2 may populate the 
edges gl and g2 with relations other than the identity 
relation. These instances are not in the range of f. In 
fact, no information preserving mapping from S2 to Sl 
exists and so S2 5 Sl. Intuitively, in any mapping 
of instances of S2 to instances of Sl, the two binary 
relations gl and g2 are lost. 
5.1.5 Usage 

Before this transformation is used in a database integra- 
tion methodology it should be verified that the constraint 
on keys holds across the component schemas. The exis- 
tence of the mapping f confirms that the goal G2 can 
be met for all instances meeting this constraint. This 
transformation is not appropriate for view integration 
methodologies (even if the uniqueness constraint holds) 
since the integrated schema has strictly more informa- 
tion capacity. The transformation could be modified to 
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produce a schema in which the edges gl and g2 are re- 
ctricted to be selection edges (that is edges that must be 
populated with the identity relation). It is a straight- 
forward exercise to show that such a schema is domi- 
nated by the original schema. Equivalence would hold 
for this new transformation if the key uniqueness con- 
straint holds in the original schema. With this change, 
goal G3 is achieved. 

5.1.6 Mapping Queries 

We have shown that the information preserving mapping 
f is necessary to ensure that the G2 operational goal can 
be achieved. We now demonstrate how this is done in 
practice by giving an example of transforming queries on 
the superview S2 to queries on the underlying schema 
Sl. Below is a sample query on the schema S2 of Figure 
3.? 

Range of P is Person 
Retrieve P where Name(P) = “A. Walker” 

Cd) 

This query must be translated into a query on the 
underlying schema Sl. The schema transformation can 
be used to automatically generate the set of queries q2. 

Range of Pl is Student (4) 
Range of P2 is Instructor 
Retrieve Pl where Std-name(P1) = “A. Walker” 
union 
Retrieve P2 where Inst-name(P1) = “A. Walker” 

The two queries in q2 are the result of composing ql 
with the mapping f. The node Person is mapped by 
f to the union of Student and Instructor and so the 
query ql is replaced by two queries. The edge Name 
maps to the constructed sum of the edges Std-name 
and I&-name. Hence, in each of the two transformed 
queries Name is replaced by Std-name and In&name, 
respectively. The queries of q2 produce the same result 
as ql on any potential instance of the database, i.e., 
q2(i2) = q2 0 f(i1) = ql(i1). 

Consider what would happen if the constraint on 
uniqueness of keys across Student and Instructor in- 
stances did not hold. Let S be an instance of Sl contain- 
ing a student and an employee both named A. Walker. 
Each person is unique and therefore has a different iden- 
tifier stored in the Student and Instructor nodes. In S2, 
Name is a key for people so the user is expecting query ql 
to return a single person. Query q2, however, will return 
both people. In fact, the response to any query on Sl 
must either omit information contained in 3 about one of 
these two people or violate the constraints of the schema 
S2. This simple example demonstrates the importance 
of verifying the correctness of a transformation. 

7We use an intuitive QUEL-like query language to illustrate 
query modification. 

5.1.7 Related Work 

Other methodologies describe related transformations by 
example or provide mechanisms for defining views with 
similar effects [DH84, EicSl]. Similar assumptions are 
typically required to ensure these transformations create 
equivalent schemas. This same example can also be 
modified to show that the information ordering used in 
other schema merging proposals does not correspond to 
information capacity dominance [BDK92]. 

5.2 Merging Object Classes 

An alternative strategy to unioning schemas and then 
performing restructuring transformations is to superim- 
pose structures that have been identified as referring to 
the same set of real world concepts. We examine one 
such transformation in the following subsections. 

5.2.1 Description of Methodology 

The specific methodology we consider is designed to be 
used in both view integration and database integration 
[NEL86, LNE89]. T o achieve this goal, the transformed 
schema must have equivalent information capacity to the 
original schemas (Section 3). The methodology uses the 
entity-category-relationship (ECR) model, an extension 
to the ER model [EHW85]. 

5.2.2 Description of Transformation 

We describe a merge transformation for entity classes 
with a single attribute as key. We present only one 
alternative of a family of transformations from this 
methodology [LNE89, NEL86]. Consider two schema-s 
containing two entity classes with key nodes h’i and 
K2 respectively. Both entity classes have common 
attributes S = {Sr , . . . . Ss}. Additionally, Kl has 
attributes A = {Al, . . ..AA} and Ii2 has attributes 
B = {Bl, ..‘, BB}. Suppose these two classes have been 
identified as referring to the same real world concept, 
so there is a bijective correspondence between instances 
of the two classes. This scenario is represented by the 
schema Sl of Figure 4A representing the union of the 
two schemas with the bijective correspondence explicitly 
represented by the edge e. This schema is transformed 
into the integrated schema S2 of Figure 4B containing 
the single class Kr which is associated with the union of 
the two attribute sets. 

5.2.3 Induced Mapping on Instances 

While the authors do not discuss an instance level 
mapping, an intuitive mapping f : I(S1) --+ I(S2) can 
be defined as follows. Let S E I(S1). 

l For all nodes X in S2, f(S)[X] = s;[X]. 
l For the edge f3, f(s)[f3] = oS[<< fl, (~40 f2oe) >I. 
l Projection edges are mapped to the corresponding 

projection edges of Sl. When there are two possible 
edges in Sl (resulting from the multiple paths to the 
nodes of S) projections involving a2 are used. 
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Kl -EE K2 

f’ t t ‘2 

A - Original Schema (Sl) 

Kl A AxBxS 

? 
x5 

s 
B - Transformed Schema (S2) 

Figure 4: The result of merging two entities. 

The combination of two total functional edges with 
the <<, >> constructor is necessarily a total function, so 
f3 is only populated with total functions. The map f is 
therefore a total function mapping every valid instance 
of Sl to a unique valid instance of S2. 

5.2.4 Additional Requirements for Information 
Capacity Preservation 

The map f is clearly not injective since it loses infor- 
mation about the node K2 (and edge ~3). Any two 
instances of Sl that are identical except for values as- 
signed to the node K2 will map to the same instance of 
S2. The following assumptions are sufficient for f to be 
an information preserving mapping. Since S2 does not 
represent values of K2 or the bijection e, K2 can be con- 
strained to be identical to Kl (that is K2 and Kl must 
be assigned identical values in any valid instance) and 
e constrained to the identity map. Furthermore, in Sl, 
there are two distinct paths representing binary relations 
between Kl and S. If these two paths are constrained 
to be identical then an instance of the two paths can be 
uniquely represented by the single path from Kl to S 
in S2. This second constraint corresponds to the rela- 
tionship uniqueness assumption (RUA), often asserted in 
relational theory, that a schema represents at most one 
relationship between any given set of attributes [AP82]. 
Under this assumption, and the assumption that the keys 
of the object classes are identical, the map f is an infor- 
mation preserving mapping and Sl 3 S2. 

Now consider the inverse mapping function g : 
I(S2) + I(S1) defined on instances 9 E 1(S2). 

l For all nodes X # K2 in Sl, g(ZZ)[X] = 9[X] and 
g(Q)[K2] = Q[Kl]; 

l g(S)[e] = id~[~~l; g(Q)[fl] = Q,[7rAxS 0 f3]; 
g(3)[f2] = 3[7PXS 0 f3]. 

The map g is an information preserving mapping that 

carries every instance of S2 to a unique instance of Sl 
without losing any information. Hence, S2 5 Sl. 

5.2.5 Usage 

The information preserving mapping g carries instances 
of the integrated schema to instances of the original 
schema and does not require any constraints or assump- 
tions on the original schemas. Hence, g is sufficient to 
guarantee that the goal G2 can be achieved for view 
integration. However, instances of the original schema 
must satisfy the RUA and the relationship between key 
values restricted to the identity in order for f to be an 
information preserving transformation. Under these con- 
straints, f is sufficient to guarantee that the goal G2 can 
be achieved for database integration. Furthermore, un- 
der these same constraints g = f-l and both f and g 
are equivalence preserving. Hence, Sl G S2 and goal G3 
can be met. 

5.2.6 Mapping Queries 

We consider an example in which the merge transfor- 
mation is used for database integration so that queries 
on the integrated view S2 are translated into queries 
on the underlying schemas. Consider schemas Sl and 
S2 of Figure 5, which conform to the structure of the 
abstract schemas in Figure 4. Schema Sl contains two 
sets of nodes describing student records; the first is from 
the Registrar’s view and the second from the Bursar’s 
view. The edge e represents an interschema constraint 
not present in either user view. 

Student -&Customer 

Std-aftr 
+ t 

CM-attr 

GPA x Name Tuition x Name 

d *Name %ition GPA 

Registrar’s View Bursars’s View 

A - Original Schema (Sl) 

atlr 
Student I GPA x Tuition x Name 

(All projection edges 
are labeled by the 
terminating node.) $A Tion ime 

B - Transformed Schema (S2) 

Figure 5: The merge transformation on a specific 
schema. 

Consider the following query on the integrated view. 
Range of C is Student (4) 
Retrieve C where Name(attr(C)) = “A. Walker” 

This query must be translated into a query on the 
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underlying schemas. The mapping f can be used to 
automatically generate the query 92. 

Range of C is Student (q2) 
Retrieve C where Name(Std-attr(C)) = “A. Walker” 

The node Student in S2 is mapped by f to the Student 
node in Sl. The path Name o attr is mapped to the 
path Name o Std - attr (the mapping takes advantage 
of the definition of the <<, >> constructor). 

The mapping f always transforms a query about 
names into a query on the Name edge of the Registrar’s 
schema. There is no way to query the Name edge of 
the Bursar’s schema through the integrated view S2. 
If the same student has a different name within the 
Registrar’s schema and the Bursar’s schema then the 
view does not faithfully represent the full integration of 
the two underlying schemas. The reason for this is that 
the mapping f is information capacity preserving only 
under the assumption that names of identical people in 
the two schemas are identical. 

5.2.7 Related Work 

Additional merging transformations are suggested under 
the same proposal. Again, most of the transformations 
add constraints and so guarantee that the integrated 
schema is dominated by the original schemas. If the 
original schemes are assumed to satisfy the RUA then 
many of the transformations also guarantee dominance 
in the opposite direction. 

Similar transformations are included in methodologies 
based on the relational model to merge two relations 
[BC86]. In that work, the precondition for applying 
the transformation is the existence of an integration 
constraint asserting that the projection of the two 
relations on the common attributes (including the key) 
is identical in all instances. This constraint is sufficient 
to ensure that the transformed schema has equivalent 
information capacity to the original. Other relational 
work has used less restrictive preconditions for merging 
two relations [MS92]. Null dependencies and general 
inclusion dependencies are used to ensure information 
capacity is preserved. 

5.3 Structural Mismatch 

The merging of schemes (whether via unioning or super- 
imposition) is often preceded by a “conflict” resolution 
phase. During this phase similar information that is rep- 
resented in different constructs within different schemas 
is identified and the mismatch is resolved by chang- 
ing one of the structures. Methodologies baaed on the 
ER model typically have transformations to change at- 
tributes to entities (and vice versa) and entities to rela- 
tionships (and vice versa) [BL84]. Methodologies using 
richer models including specialization or generalization 
have a greater array of transformations to handle the 
greater number of possible mismatches [SZ91, WE79]. 

5.3.1 Description of Methodology 

We focus on a view integration methodology included in 
a database design tool [SZ91]. The tool recognizes struc- 
tural differences and either applies a single resolution 
transformation or provides the designer with a choice of 
resolution transformations. We examine two situations 
and show how considering information capacity can 1) 
suggest an alternative transformation that may be ap- 
propriate under certain conditions and 2) guide the de- 
signer in the choice of transformations to apply. The 
proposal that we consider uses the Binary-Relationship 
(BR) model which models objects and binary relation- 
ships between objects. 
5.3.2 Description of Transformation 1 - 

Entity-Relationship Mismatch 

The first structural mismatch transformation concerns 
an entity-relationship (object-relationship) mismatch. 
An object class 01 in one schema is identified as having 
the same meaning as a relationship rl in another (i.e., 
there is a bijective correspondence between instances of 
01 and instances of ~1). We consider the case where the 
relationship is n:l as depicted in Figure 6A. According 
to the described integration methodology, the mismatch 
is resolved by adding a 1:l relationship between 01 and 
the determining object class of the relationship. The new 
schema (S2) is depicted in Figure 6B. 

rl 
01 02 -03 

A - Original Schema (St) 
Constraint: a bijedive correspon- 
dence between instances of 01 
and instances of rl . 

e 
Ol--02----3- r’ 03 

B - Transformed 
Schema (S2) 

02 
d 
F fl 

OLE 02’ ~--+--s- 03 

C - Alternative Transformed Schema (S3) 

Figure 6: An entity and relationship that refer to the 
same concept. 

5.3.3 Additional Requirements for Information 
Capacity Preservation 

Schema S2 allows instances that do not correspond to 
instances of the original schema. Specifically, let 01 
be the class Research-Assistantship (RAship) containing 
attributes for the salary, semester and job description of 
an RA. Let rl be the relationship RAship, 02 the class 
of graduate students, and 03 the class of professors. So 
rl represents student-professor pairs containing students 
that hold an RAship with a specific professor. A valid 
instance of S2 could associate an RA salary with a 
graduate student (via the edge e) who is not employed 
as an RA by any professor (via the edge rl). Such an 
instance violates the constraint in Sl that every instance 
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of the RAship class 01 must correspond to a unique 
instance of the RAship relationship rl (and vice versa). 
So S2 has more information capacity than Sl. This 
transformation therefore may not be appropriate for view 
integration. 

Clearly, every instance of Sl could be mapped to an 
instance of S2 via an information preserving mapping. 
So Sl 5 S2 and this transformation is appropriate to 
meet the goal G2 in a database integration context. 
However, G3 cannot be achieved. 

To ensure that only graduate students participating 
in the relationship rl (and therefore doing work for a 
specific professor) can be associated with an instance 
of 01 (and earn a salary), the set of graduate students 
holding RAs must be explicitly represented as in Figure 
6C. There is a natural bijective mapping function 
between instances of Sl and S3 and so Sl 3 S3 and this 
modified transformation may be used in view integration 
and also to achieve goal G3. 

5.3.4 Description of Transformation 2 - 
Relationship-Generalization Mismatch 

The next transformation involves a mismatch between a 
relationship edge and a generalization edge, both defined 
on the same two object classes. The two edges have 
been identified as referring to the same concept. Figure 
7 shows the two constructs with one possible set of 
annotations of the relationship edge. To resolve this 
mismatch, the designer is given the option of changing 
either the relationship edge to a generalization edge or 
vice versa [SZSl]. The two constructs are then merged 
(superimposed). However, an analysis of information 
capacity can be used to guide the designer in making 
a choice. 

Ol-*Q--n2 01&02 01402 

Schema I Schema II 

A - Original Schemas B - Transformed Schema 
(One Option) 

Figure 7: A generalization edge and a relationship edge 
that refer to the same concept. 

5.3.5 Additional Requirements for Information 
Capacity Preservation 

If the annotations on e are consistent with the general- 
ization edge (d(e) C {f, i, t}) then Schema II dominates 
Schema I. Schema I does not dominate Schema II since 
instances of the edge u must be subsets of the identity. 
If d(e) = {f, i, s, 1) the two schemas are incomparable 
in terms of information capacity. Not every bijective re- 
lation is a subset of the identity and not every subset of 
the identity is a bijection. Constraints must therefore be 

added or deleted to arrive at a schema that dominates 
(or is dominated by) both schemas. 

5.3.6 Comments 

There is a subtle distinction between the assumptions be- 
hind the resolution of this mismatch and the resolution 
of entity-relationship mismatches. The assertion that 
an entity and relationship refer to the same real world 
concept was interpreted as the existence of a bijection 
between instances of the two constructs. In the trans- 
formed schema this bijection is explicitly represented. In 
resolving mismatches between two types of relationships, 
however, the same assertion was interpreted as stating 
that instances of the two constructs are identical. This 
distinction is important in considering information ca- 
pacity. In the first case, the designer is asserting that 
there is a new correspondence between values that is not 
captured in the original schemas and should be added in 
the integrated schema. In the second case, the designer 
is asserting the identity of values in two schemas to be 
integrated. This distinction is often glossed over in inte- 
gration strategies and a designer may not realize that the 
same statement is being interpreted in different ways. 

6 Conflicts 

We have shown that schema translation and integration 
may require putting additional constraints on a schema 
or set of schemes. Any time the information capacity 
of the original schemas is reduced (even by the addi- 
tion of interschema constraints) the possibility of an ir- 
reconcilable conflict in the schemas must be considered. 
As mentioned above, the word conflict has traditionally 
been used within the integration literature to indicate a 
mismatch or heterogeneity in the original schemas. For 
instance, a structural mismatch, where the same infor- 
mation is represented by different constructs of the data 
model, is often called a structural conflict. However, it 
is important to recognize the distinction between hetero- 
geneity and true conflict. We reserve the term conflict 
to mean constraints in a schema or set of schemas that 
cannot be simultaneously satisfied.’ 

Information capacity can be used to formally under- 
stand and reason about conflicts. A conflict forces the 
information capacity of a schema or part of a schema 
to be the empty set.g The potential for conflict will de- 
pend on the language used to express constraints. In 
some data models, including the relational model with 
just functional dependencies, conflicts may not be pos- 
sible. In more expressive formalisms, including schema 
intension graphs, conflicts may arise. 

‘We also note that conflict applies to a schema rather than to 
an instance of a schema that may hold contradictory information. 
Instance level conflicts are beyond the scope of this paper. 

‘Other authors refer to such schemas as inconsisfent [AP86]. 
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It is critical that a schema transformation tool rec- 
ognize potential conflicts and use this information to 
guide the designer in correctly specifying constraints and 
choosing transformations. A tool that blindly takes the 
union of constraints specified on constructs may produce 
a schema for which certain constructs have no informa- 
tion capacity. These constructs could be removed from 
t#he schema without changing the information capacity of 
the schema. Clearly, such a situation could be very con- 
fusing. Furthermore, the burden should not be placed 
on the designer to recognize such situations. 

6.1 An Example of Conflict 

We consider an example of a conflict that may arise in 
view integration and discuss how a tool can guide the 
designer in resolving the conflict. Views I and II in 
Figure 8A represent two user views of information about 
students and workstation allocation in a university. 
From the CS Department’s point of view, all students 
are either teaching assistants (TAs) or research assistants 
(RAs) and not both (so the node students is the disjoint 
sum of TAs and RAs). The department has the resources 
to dedicate at least one workstation to every student. 
The Bursar’s office controls the grant money used to pay 
for resources allocated to RAs. Each grant assigned to 
a student may be used to pay for only one workstation. 
Every RA is assigned a workstation under at least one 
grant and furthermore, every workstation paid for by 
grant money must be associated with some student. 
These two different views are depicted in Figure 8A. 

GElIlk 
Resoufce Work- 

RA+-----btation 

TA RA 
View I - CS Dept. View II - Bursar 

A - Original Schemas (Sl) 
Allocated Work- 

2fq---;z!f~ 

TA RA 
B - Integrated Schema (S2) 

Figure 8: Integration of schemas via superimposition. 
Integrated schema has a conflict. 

Suppose the designer has indicated that the node 
Workstation in View I is identical to the node Worksta- 
tion in View II. An integration methodology that recog- 
nizes Allocated and Grant-Resource as distinct relation- 
ships and superimposes user views would create Schema 
S2. The constraints on instances imposed by the edges 
Allocated, Grant-Resource and a2 imply that for any 

valid instance 3, IS[Student]l 5 I9[Workstation]I < 
IDs[RA]I < JS[Student]l ( a simple inference rule can be 
used to deduce this). Hence, in any valid instance of the 
schema there are exactly as many students as RAs. As 
a result, there can never be any TAs (since the sets TAs 
and RAs are defined to be disjoint). It is unlikely that 
this is the intent of the schemas. Rather, it is proba- 
bly the case that the set of workstations in View II is a 
subset of the workstations in View I. 

It should not be up to the designer to recognize that 
this schema contains a conflict. Rather a tool should 
identify the conflict and guide the designer in resolving 
the conflict. Appropriate questions include: “Are there 
no TAs?” or (‘1s it always the case that there is a 
one-to-one correspondence between every RA and every 
workstation?” These questions can be used to determine 
that the edge Grant-Resource should not be surjective 
onto the Workstation node in the integrated schema. 

6.2 Conflicts in SIGs 

For SIGs, we can precisely define the notion of conflict. 
SIGs contain only sets and binary relations on sets. A 
conflict can occur if there are no valid instances for a 
node or edge due to the constraints contained in a specific 
graph. 

Definition 6.1 For a SIG G = (N, E) with annotation 
function A, a node X E N is a conflict node if for all 
valid instances 3, 3[X] = 8. An edge e E E of G is a 
conflict edge if for all valid instances 3, 3[e] = 8. 

An edge is a conflict edge if one of the incident nodes 
is a conflict node. So for SIGS we characterize conflicts 
by the existence of a node that is constrained to have no 
members in any valid instance. Ideally, a tool would be 
able to test for the presence of conflicts in an arbitrary 
schema. However, testing for conflicts (even in SIGs 
without selection, projection, or constructed edges) is 
undecidable in general. 

Theorem 6.1 Let G = (N, E) be a SIG with annota- 
tion function A. Testing whether a node X E N is a 
conflict node is undecidable. lo 

The proof of this theorem uses the fact that annota- 
tions on edges can be used to express complex cardi- 
nality constraints on the size of nodes in any valid in- 
stance. Similar cardinality constraints can be expressed 
in most data models so the result generalizes. Schema 
III of Figure 8 expresses the equation TA + RA 5 RA 
where the variable TA represents the size of the teaching 
assistant node and the variable RA represents the size 
of the research assistant node. Clearly, the only solu- 
tion to this equation (in positive integers) is TA = 0. 
While the problem of deciding if an arbitrary polyno- 
mial has nonzero (integer) solutions is undecidable, the 
constraints arising in practice are likely to be such that 

“The proof is contained in the full version of this paper. 
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simple algebraic techniques can be used to detect con- 
flicts in many of these cases. In particular, schemas will 
often express only linear systems of equations (as in the 
above example). 

‘7 Practical Tools and Information 
Capacity 

In earlier sections, we argued that understanding schema 
transformations in terms of information capacity offered 
significant benefits in terms of i) identifying all rele- 
vant assumptions clearly, and ii) understanding the ap- 
propriateness of a transformation for a given integra- 
tion/translation task. In this section, we address the 
question of what role such formally justified transforma- 
tions have in a practical tool. Our discussion is brief, 
but we hope to convince the reader of two points. First, 
formally justified transformations offer some significant 
benefits. Second, they continue to be of value even when 
used in conjunction with other, non-rigorously justified, 
transformations and integration steps, as is to be ex- 
pected in a practical setting for integration. 
7.1 Outline of a Tool 

The scope of an integration tool clearly goes beyond 
just schema transformations. For example, a tool 
must provide book-keeping support for several kinds 
of domain and catalog information, guidance to the 
user in identifying semantic matches between different 
elements of schemas to be integrated, and capabilities 
for graphical viewing of schemas. However, support 
for schema transformations is a very important aspect 
of such a tool, with great potential for automation, 
and it is this aspect that we consider here. A tool 
must contain a catalog of transformations for the data 
model(s) of interest. For each transformation, some 
information is maintained, for example: preconditions 
on the applicability of the transformation (e.g., there 
must be two classes that share a key and possibly some 
nonkey attributes), the induced instance mapping, and 
its properties. 

A set of transformations can be used in several ways. 
A user could choose to apply a given transformation 
on a given pair of input schemas (or fragments of 
schemas). Alternatively, after the user specifies a certain 
amount of information, the system automatically chooses 
transformations and schema fragments on which to apply 
them. 
7.2 Benefits of Including Support for Schema 

Transformations 

Having the system explicitly support transformation 
rules has several important benefits: 

1) All assumptions implicit in a transformation can 
be automatically checked each time the transformation 
is applied. If the tool does not have enough informa- 
tion to verify some assumptions, the user can be intelli- 

gently prompted using easily understood questions, for 
instance: “Are the values of attribute X always identical 
to attribute Y?” or “Is every instance of class X associ- 
ated with an instance of class Y?“. 

2) Where more than one transformation can be ap- 
plied, and there is not enough information to determine 
which is appropriate, the tool can ask the user, and of- 
fer meaningful suggestions. For example, consider the 
schemas of Figure 7. Suppose 01 is the set of gradu- 
ate students and 02 the set of university employees and 
that both are identified by their university id numbers. 
In Schema I, graduate students have been represented as 
a subclass of employees (denoted by the selection edge 
o), while in Schema II there is a functional relationship 
(which the user may have labeled “is-a”) from students 
to employees. Rather than asking the designer which 
schema is correct, a tool could ask the designer if any 
employee in Schema II can be related to more than one 
graduate student (that is, whether the “is-a” edge is in- 
jective). If not, the next question should be whether a 
student can be related to an employee with a different 
id number. If the answer to both questions is negative, 
then the choice of Schema I as the integrated schema 
is appropriate. Otherwise, the tool must consider the 
possibility that Schema I is incorrectly specified or that 
these two relationships are not identical. 

3) As we illustrated in earlier sections, using transfor- 
mation rules at the schema level can lead to automatic 
query transformation as well. 

4) The sequence of transformation steps in an actual 
integration may be automatically recorded and serve as 
a history of the integration. Such a record is valuable 
both during the course of integration (e.g., to check 
assumptions made thus far) and subsequently, as meta- 
information about the integrated schema. 
7.3 The Role of Information Capacity 

In order to realize the full potential of a system that 
supports schema transformations, it is important to 
thoroughly understand the assumptions associated with 
a rule and the mappings between schema elements. 
We have argued that a good way to obtain such 
an understanding is to analyze these rules from the 
standpoint of information capacity. A potential further 
benefit, of course, is that in addition to achieving a sound 
integration at the schema level, we also obtain a sound 
query-level mapping. 

We have studied several proposed transformations but 
we have not come close to exhausting the possible trans- 
formations that a designer may formulate in the con- 
text of a specific integration task, based on a semantic 
understanding of the data. However, if a designer pro- 
poses a new transformation and provides the correspond- 
ing instance mapping, a tool may still make use of this 
information in combination with the automated trans- 
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formations. Such ad hoc transformations may therefore 
be integrated into our methodology. Given a fully spec- 
ified ad hoc transformation, translation of queries and 
instances may still be done automatically. (An interest- 
ing question is whether a tool can be developed to exam- 
ine arbitrary schema transformations from the point of 
view of information capacity, and automatically identify 
missing assumptions and mappings.) 

8 Conclusions and Future Work 
We have examined schema integration and translation 
tasks and proposed a definition of correctness that ac- 
counts for the different goals of related tasks. By an- 
alyzing the correctness of proposed schema transforma- 
tions, we have shown how potentially severe anomalies 
can be avoided. Additionally, we have demonstrated how 
the notion of correctness provides an opportunity for in- 
creased intelligence in an interactive schema transforma- 
tion tool. 
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