Nonparametric recursive estimation of the copula. Camirand Lemyre, F. & Decrouez, G. Statistics & Probability Letters, 168:108929, 2021. Paper doi abstract bibtex This paper introduces two nonparametric recursive estimators of the copula. These estimators employ a recursive estimation of the quantile achieved using a stochastic approximation algorithm. Their asymptotic properties and numerical performance are investigated in the context of i.i.d. data.
@article{camirand_lemyre_nonparametric_2021,
title = {Nonparametric recursive estimation of the copula},
volume = {168},
issn = {0167-7152},
url = {https://www.sciencedirect.com/science/article/pii/S0167715220302327},
doi = {https://doi.org/10.1016/j.spl.2020.108929},
abstract = {This paper introduces two nonparametric recursive estimators of the copula. These estimators employ a recursive estimation of the quantile achieved using a stochastic approximation algorithm. Their asymptotic properties and numerical performance are investigated in the context of i.i.d. data.},
journal = {Statistics \& Probability Letters},
author = {Camirand Lemyre, Félix and Decrouez, Geoffrey},
year = {2021},
keywords = {Asymptotic theory, CVC-Articles de revue, Copula, FRQS-Documents revus et publiés, Journal Article, Nonparametric estimation, Recursive methods, Stochastic approximation},
pages = {108929},
}
Downloads: 0
{"_id":"GFQ8v37EpC7CFYwge","bibbaseid":"camirandlemyre-decrouez-nonparametricrecursiveestimationofthecopula-2021","author_short":["Camirand Lemyre, F.","Decrouez, G."],"bibdata":{"bibtype":"article","type":"article","title":"Nonparametric recursive estimation of the copula","volume":"168","issn":"0167-7152","url":"https://www.sciencedirect.com/science/article/pii/S0167715220302327","doi":"https://doi.org/10.1016/j.spl.2020.108929","abstract":"This paper introduces two nonparametric recursive estimators of the copula. These estimators employ a recursive estimation of the quantile achieved using a stochastic approximation algorithm. Their asymptotic properties and numerical performance are investigated in the context of i.i.d. data.","journal":"Statistics & Probability Letters","author":[{"propositions":[],"lastnames":["Camirand","Lemyre"],"firstnames":["Félix"],"suffixes":[]},{"propositions":[],"lastnames":["Decrouez"],"firstnames":["Geoffrey"],"suffixes":[]}],"year":"2021","keywords":"Asymptotic theory, CVC-Articles de revue, Copula, FRQS-Documents revus et publiés, Journal Article, Nonparametric estimation, Recursive methods, Stochastic approximation","pages":"108929","bibtex":"@article{camirand_lemyre_nonparametric_2021,\n\ttitle = {Nonparametric recursive estimation of the copula},\n\tvolume = {168},\n\tissn = {0167-7152},\n\turl = {https://www.sciencedirect.com/science/article/pii/S0167715220302327},\n\tdoi = {https://doi.org/10.1016/j.spl.2020.108929},\n\tabstract = {This paper introduces two nonparametric recursive estimators of the copula. These estimators employ a recursive estimation of the quantile achieved using a stochastic approximation algorithm. Their asymptotic properties and numerical performance are investigated in the context of i.i.d. data.},\n\tjournal = {Statistics \\& Probability Letters},\n\tauthor = {Camirand Lemyre, Félix and Decrouez, Geoffrey},\n\tyear = {2021},\n\tkeywords = {Asymptotic theory, CVC-Articles de revue, Copula, FRQS-Documents revus et publiés, Journal Article, Nonparametric estimation, Recursive methods, Stochastic approximation},\n\tpages = {108929},\n}\n\n","author_short":["Camirand Lemyre, F.","Decrouez, G."],"key":"camirand_lemyre_nonparametric_2021","id":"camirand_lemyre_nonparametric_2021","bibbaseid":"camirandlemyre-decrouez-nonparametricrecursiveestimationofthecopula-2021","role":"author","urls":{"Paper":"https://www.sciencedirect.com/science/article/pii/S0167715220302327"},"keyword":["Asymptotic theory","CVC-Articles de revue","Copula","FRQS-Documents revus et publiés","Journal Article","Nonparametric estimation","Recursive methods","Stochastic approximation"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://api.zotero.org/groups/2298129/items?key=Di2aUrSQXpXlWmYdUvNGDXyv&format=bibtex&limit=100","dataSources":["3byWrivAb63dcxozq"],"keywords":["asymptotic theory","cvc-articles de revue","copula","frqs-documents revus et publiés","journal article","nonparametric estimation","recursive methods","stochastic approximation"],"search_terms":["nonparametric","recursive","estimation","copula","camirand lemyre","decrouez"],"title":"Nonparametric recursive estimation of the copula","year":2021}