Versatile laser system for experiments with cold atomic gases. Deb, A., Rakonjac, A., & Kjærgaard, N. Journal of the Optical Society of America B: Optical Physics, 29(11):3109-3113, 2012. cited By 1
Versatile laser system for experiments with cold atomic gases [link]Paper  doi  abstract   bibtex   
We describe a simple and compact architecture for generating all-optical frequencies required for the laser cooling, state preparation, and detection of atoms in an ultracold rubidium-87 experiment from a single 780 nm laser source. In particular, repump light ∼6.5 GHz away from the cooling transition is generated by using a high-bandwidth fiber-coupled electro-optic modulator (EOM) in a feedback loop configuration. The looped repump light generation scheme solves the problem of the limited power handling capabilities characteristic of fiber EOMs. We demonstrate the functionality of the system by creating a high-atom-number magneto-optical trap (MOT). © 2012 Optical Society of America.
@ARTICLE{Deb20123109,
author={Deb, A.B. and Rakonjac, A. and Kjærgaard, N.},
title={Versatile laser system for experiments with cold atomic gases},
journal={Journal of the Optical Society of America B: Optical Physics},
year={2012},
volume={29},
number={11},
pages={3109-3113},
doi={10.1364/JOSAB.29.003109},
note={cited By 1},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870199021&partnerID=40&md5=7a9f59007d7c9261e519b9bbb8a6a72a},
affiliation={Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, 9054, New Zealand},
abstract={We describe a simple and compact architecture for generating all-optical frequencies required for the laser cooling, state preparation, and detection of atoms in an ultracold rubidium-87 experiment from a single 780 nm laser source. In particular, repump light ∼6.5 GHz away from the cooling transition is generated by using a high-bandwidth fiber-coupled electro-optic modulator (EOM) in a feedback loop configuration. The looped repump light generation scheme solves the problem of the limited power handling capabilities characteristic of fiber EOMs. We demonstrate the functionality of the system by creating a high-atom-number magneto-optical trap (MOT). © 2012 Optical Society of America.},
references={Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I., Controlled collisions for multi-particle entanglement of optically trapped atoms (2003) Nature, 425, pp. 937-940; Jaksch, D., Zoller, P., The cold atom hubbard toolbox (2005) Ann. Phys., 315, p. 5279; Cronin, A.D., Schmiedmayer, J., Pritchard, D.E., Optics and interferometry with atoms and molecules (2009) Rev. Mod. Phys., 81, pp. 1051-1129; Derevianko, A., Katori, H., Colloquium: Physics of optical lattice clocks (2011) Rev. Mod. Phys., 83, pp. 331-348; Köhler, T., Góral, K., Julienne, P.S., Production of cold molecules via magnetically tunable feshbach resonances (2006) Rev. Mod. Phys., 78, pp. 1311-1361; Bongs, K., Brinkmann, W., Dittus, H., Ertmer, W., Göklü, E., Johannsen, G., Kajari, E., Van Zoest, T., Realization of a magneto-optical trap in microgravity (2007) J. Mod. Opt., 54, pp. 2513-2522; Ménoret, V., Geiger, R., Stern, G., Zahzam, N., Battelier, B., Bresson, A., Landragin, A., Bouyer, P., Dual-wavelength laser source for onboard atom interferometry (2011) Opt. Lett., 36, pp. 4128-4130; Sané, S.S., Bennetts, S., Debs, J.E., Kuhn, C.C.N., McDonald, G.D., Altin, P.A., Close, J.D., Robins, N.P., 11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of rubidium (2012) Opt. Express, 20, pp. 8915-8919; Lienhart, F., Boussen, S., Carraz, O., Zahzam, N., Bidel, Y., Bresson, A., Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm (2007) Appl. Phys. B, 89, pp. 177-180; Diao, W., He, J., Liu, Z., Yang, B., Wang, J., Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9 GHz current-modulated diode laser (2012) Opt. Express, 20, pp. 7480-7487; Appel, J., MacRae, A., Lvovsky, A.I., Versatile digital GHz phase lock for external cavity diode lasers (2009) Meas. Sci. Technol., 20, p. 055302; Kowalski, R., Root, S., Gensemer, S.D., Gould, P.L., A frequency-modulated injection-locked diode laser for two-frequency generation (2001) Rev. Sci. Instrum., 72, pp. 2532-2534; Feng, P., Walker, T., Inexpensive diode laser microwave modulation for atom trapping (1995) Am. J. Phys., 63, pp. 905-908; Myatt, C.J., Newbury, N.R., Wieman, C.E., Simplified atom trap by direct microwave modulation of a diode laser (1993) Opt. Lett., 18, pp. 649-651; Streed, E.W., Chikkatur, A.P., Gustavson, T.L., Boyd, M., Torii, Y., Schneble, D., Campbell, G.K., Ketterle, W., Large atom number bose-einstein condensate machines (2006) Rev. Sci. Instrum., 77, p. 023106; Süptitz, W., Wokurka, G., Strauch, F., Kohns, P., Ertmer, W., Simultaneous cooling and trapping of 85 rb and 87 rb in a magneto-optical trap (1994) Opt. Lett., 19, pp. 1571-1573; Buchkremer, F.B.J., Dumke, R., Buggle, Ch., Birkl, G., Ertmer, W., Low-cost setup for generation of 3 GHz frequency difference phase-locked laser light (2000) Rev. Sci. Instrum., 71, pp. 3306-3308; Connelly, M.J., (2002) Semiconductor Optical Amplifiers, , Kluwer; Bolpasi, V., Von Klitzing, W., Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW (2010) Rev. Sci. Instrum., 81, p. 113108; Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hellemeier, P.F., Maack, D., Bossi, D.E., A review of lithium niobate modulators for fiber-optic communication systems (2000) IEEE J. Sel. Top. Quantum Electron., 6, pp. 69-82; Davis, C.C., (1996) Lasers and Electro-optics: Fundamentals and Engineering, , Cambridge University; Silander, I., Ehlers, P., Wang, J., Axner, O., Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk (2012) J. Opt. Soc. Am. B, 29, pp. 916-923; Caballero-Calero, O., García-Cabañes, A., Cabrera, J.M., Carrascosa, M., Alczar, A., Optical damage in x-cut proton exchanged LiNbO3 planar waveguides (2006) J. Appl. Phys., 100, p. 093103; Rakonjac, A., Deb, A.B., Hoinka, S., Hudson, D., Sawyer, B.J., Kjærgaard, N., Laser based accelerator for ultracold atoms (2012) Opt. Lett., 37, pp. 1085-1087; Nyman, R.A., Varoquaux, G., Villier, B., Sacchet, D., Moron, F., Le Coq, Y., Aspect, A., Bouyer, P., Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments (2006) Rev. Sci. Instrum., 77, p. 033105; Van Zoest, T., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Reichel, J., Bose-einstein condensation in microgravity (2010) Science, 328, pp. 1540-1543; Louchet-Chauvet, A., Appel, J., Renema, J.J., Oblak, D., Kjærgaard, N., Polzik, E.S., Entanglement-assisted atomic clock beyond the projection noise limit (2010) New J. Phys., 12, p. 065032; Chen, Z., Bohnet, J.G., Weiner, J.M., Thompson, J.K., A low phase noise microwave source for atomic spin squeezing experiments in 87 rb (2012) Rev. Sci. Instrum., 83, p. 044701; Vewinger, F., Heinz, M., Fernandez, R.G., Vitanov, N.V., Bergmann, K., Creation and measurement of a coherent superposition of quantum states (2003) Phys. Rev. Lett., 91, p. 213001; Oberst, M., Vewinger, F., Lvovsky, A.I., Time-resolved probing of the ground state coherence in rubidium (2007) Opt. Lett., 32, pp. 1755-1757},
document_type={Article},
source={Scopus},
}

Downloads: 0