Online Monte Carlo based calculator of human skin spectra and color. Doronin, A. & Meglinski, I. 2012. cited By 0
Online Monte Carlo based calculator of human skin spectra and color [link]Paper  doi  abstract   bibtex   
We present an object oriented GPU-accelerated Monte Carlo tool for the online simulation of reflectance spectra and color of the human skin in visible and near-infrared (NIR) spectral region. Human skin is represented as multi-layered medium. The variations in spatial distribution of blood, pheomelanin, eumelanin, index of blood oxygen saturation, hematocrit, and volume fraction of water are taken into account. The optical properties of skin tissues and the results of simulation of skin reflectance spectra and corresponding skin colors are presented. © 2012 SPIE.
@CONFERENCE{Doronin2012,
author={Doronin, A. and Meglinski, I.},
title={Online Monte Carlo based calculator of human skin spectra and color},
journal={Progress in Biomedical Optics and Imaging - Proceedings of SPIE},
year={2012},
volume={8337},
doi={10.1117/12.923732},
art_number={833702},
note={cited By 0},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858631142&partnerID=40&md5=7a3ff513830e8faab3feca7a07505603},
affiliation={Department of Physics, Biophotonics and Biomedical Imaging Research Group, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand},
abstract={We present an object oriented GPU-accelerated Monte Carlo tool for the online simulation of reflectance spectra and color of the human skin in visible and near-infrared (NIR) spectral region. Human skin is represented as multi-layered medium. The variations in spatial distribution of blood, pheomelanin, eumelanin, index of blood oxygen saturation, hematocrit, and volume fraction of water are taken into account. The optical properties of skin tissues and the results of simulation of skin reflectance spectra and corresponding skin colors are presented. © 2012 SPIE.},
author_keywords={CUDA;  GPU-accelerated;  Human skin color;  Human skin reflectance spectra;  Object-oriented;  Online monte carlo;  Parallel programming},
references={Tuchin, V.V., (2010) Handbook of Photonics for Biomedical Science, , CRC Press, Taylor & Francis Group, London; Doronin, A.V., Meglinski, I.V., Online object oriented Monte Carlo computational tool for the needs of biomedical optics (2011) Biomed. Opt. Express, 9, pp. 2461-2469; Doronin, A.V., Meglinski, I.V., Monte Carlo simulation of photon migration in turbid random media based on the object-oriented programming paradigm (2011) Proc. SPIE, 7907, p. 790709; Doronin, A.V., Meglinski, I.V., GPU-accelerated Object-Oriented Monte Carlo modeling of photon migration in turbid media (2010) Proc. SPIE, 7999, pp. 79990K; Dolin, L.S., Development of radiative transfer theory as applied to instrumental imaging in turbid media (2009) Phys.-Usp., 52, pp. 519-526; Martelli, F., Del Bianco, S., Ismaelli, A., Zaccanti, G., (2009) Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software, , SPIE Press; Wang, L.H., Jacques, S.L., Zheng, L.-Q., MCML - Monte Carlo modeling of photon transport in multilayered tissues (1995) Comput. Meth. Prog. Bio., 47, pp. 131-146; Meglinsky, I.V., Matcher, S.J., Modelling the sampling volume for skin blood oxygenation measurements (2001) Medical and Biological Engineering and Computing, 39 (1), pp. 44-50; Meglinski, I.V., Modeling the reflectance spectra of the optical radiation for random inhomogeneous multilayered highly scattering and absorbing media by the Monte Carlo technique (2001) Quantum Electron., 31, pp. 1101-1107; Meglinski, I.V., Matcher, S.J., Computer simulation of the skin reflectance spectra (2003) Computer Methods and Programs in Biomedicine, 70 (2), pp. 179-186. , DOI 10.1016/S0169-2607(02)00099-8, PII S0169260702000998; Churmakov, D.Y., Meglinski, I.V., Greenhalgh, D.A., Amending of fluorescence sensor signal localization in human skin by matching of the refractive index (2004) J. Biomed. Opt., 9, pp. 339-346; Churmakov, D.Y., Meglinski, I.V., Greenhalgh, D.A., Piletsky, S.A., Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation (2003) J. Phys. D: Appl. Phys., 36, pp. 1722-1728; Meglinski, I.V., Churmakov, D.Y., Spatial localization of biosensor fluorescence signals in human skin under the effect of equalization of the refractive index of the surrounding medium (2004) Opt. Spectrosc., 96, pp. 946-951; Meglinski, I.V., Kirillin, M., Kuzmin, V.L., Myllyla, R., Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method (2008) Opt. Lett., 33, pp. 1581-1583; Kirillin, M., Meglinski, I., Sergeeva, E., Kuzmin, L.V., Myllyla, R., Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach (2010) Opt. Express, 18, pp. 21714-21724; Kirillin, M.Yu., Meglinski, I.V., Priezzhev, A.V., Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media (2006) Quantum Electronics, 36 (3), pp. 247-252. , DOI 10.1070/QE2006v036n03ABEH013130; Romanov, V.P., Churmakov, D.Yu., Berrocal, E., Meglinskii, I.V., Low-order light scattering in multiple scattering disperse media (2004) Optics and Spectroscopy (English translation of Optika i Spektroskopiya), 97 (5), pp. 796-802. , DOI 10.1134/1.1828631; Meglinski, I.V., Romanov, V.P., Churmakov, D.Y., Berrocal, E., Jermy, M.C., Greenhalgh, D.A., Low and high orders light scattering in particulate media (2004) Laser Phys. Lett., 1, pp. 387-390; Kuzmin, V.L., Meglinski, I.V., Coherent multiple scattering effects and monte carlo method (2004) JETP Letters, 79 (3), pp. 109-112. , DOI 10.1134/1.1719124; Meglinski, I.V., Kuzmin, V.L., Churmakov, D.Y., Greenhalgh, D.A., Monte Carlo simulation of coherent effects in multiple scattering (2005) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461 (2053), pp. 43-53. , DOI 10.1098/rspa.2004.1369; Kuzmin, V.L., Meglinski, I.V., Anomalous polarization phenomena of light scattered in random media (2010) J. Exp. Theor. Phys., 137, pp. 742-753; Kuzmin, V.L., Meglinski, I.V., Helicity flip of backscattered circularly polarized light (2010) Proc. SPIE, 7573, pp. 75730Z; Kuzmin, V.L., Meglinski, I.V., Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte-Carlo simulation and Milne-like solutions (2007) Optics Communications, 273 (2), pp. 307-310. , DOI 10.1016/j.optcom.2007.01.025, PII S0030401807000934; Kuz'min, V.L., Meglinski, I.V., Churmakov, D.Yu., Stochastic modeling of coherent phenomena in strongly inhomogeneous media (2005) Journal of Experimental and Theoretical Physics, 101 (1), pp. 22-32. , DOI 10.1134/1.2010658; Berrocal, E., Meglinski, I.V., Greenhalgh, D.A., Linne, M.A., Image transfer through the complex scattering turbid media (2006) Laser Phys. Lett., 3, pp. 464-468; Berrocal, E., Sedarsky, D.L., Paciaroni, M.E., Meglinski, I.V., Linne, M.A., Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution (2007) Optics Express, 15 (17), pp. 10649-10665. , http://www.opticsexpress.org/DirectPDFAccess/8BA35DD5-BDB9-137E- C2C984EFC97C5B68_140712.pdf?da=1&id=140712&seq=0&CFID= 49732020&CFTOKEN=98451790, DOI 10.1364/OE.15.010649; Boas, D.A., Culver, J.P., Stott, J.J., Dunn, A.K., Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head (2002) Opt. Express, 10, pp. 159-170; Ramella-Roman, J.C., Prahl, S.A., Jacques, S.L., Three Monte Carlo programs of polarized light transport into scattering media: Part I (2005) Optics Express, 13 (12), pp. 4420-4438. , http://www.opticsexpress.org/view_file.cfm?doc= %24%29L%27%2AJ0%20%20%0A&id=%25%28%2C%3B%2AJ%2C%2C%20%0A, DOI 10.1364/OPEX.13.004420; Fang, Q., Mesh-based monte Carlo method using fast ray-tracing in Plücker coordinates (2010) Biomed. Opt. Express, 1, pp. 165-175; Shen, H., Wang, G., A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation (2011) Biomed. Opt. Express, 2, pp. 44-57; Meglinski, I.V., Kirillin, M., Kuzmin, V.L., The concept of a unified modelling of optical radiation propagation in complex turbid media (2008) Proc. SPIE, 7142, p. 714204; Schach, S., (2006) Object-Oriented and Classical Software Engineering, , Seventh Ed., McGraw-Hill; McConnell, S., (2004) Code Complete, , Second ed., Microsoft Press; Kirk, D.B., Hwu, W.W., (2010) Programming Massively Parallel Processors: A Hands-on Approach, , MK Publishers; Sanders, J., Kandrot, E., (2010) CUDA by Example: An Introduction to General-Purpose GPU Programming, , Addison-Wesley; (2011) CUDA Programming Guide 4.0; CUBLAS Library; CUFFT Library; CURAND Library, , NVIDIA Corporation; Shklar, L., Rosen, R., (2009) Web Application Architecture: Principles, Protocols and Practices, , John Wiley & Sons Ltd; Doronin, A.V., (2011) GPU-Accelerated Biophotonics & Biomedical Optics, , NVIDEA Corporation, interview, Aug. 28; Saidi, I., Jacques, S., Tittel, F., Mie and Rayleigh modeling of visible-light scattering in neonatal skin (1995) Appl. Opt., 34, pp. 7410-7418; Donner, G., W-Jensen, H., A Spectral BSSRDF for shading human skin (2006) EGSR Symposium; Churmakov, D.Yu., Kuzmin, V.L., Meglinski, I.V., Application of the vector Monte-Carlo method in polarisation optical coherence tomography (2006) Quantum Electronics, 36 (11), pp. 1009-1015. , DOI 10.1070/QE2006v036n11ABEH013339; Kuzmin, V.L., Meglinski, I.V., Backscattering of linearly and circularly polarized light in randomly inhomogeneous media (2009) Opt. Spectrosc., 106, pp. 257-267},
document_type={Conference Paper},
source={Scopus},
}

Downloads: 0