Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory. Ferguson, K., Beavan, S., Longdell, J., & Sellars, M. Physical Review Letters, 2016. cited By 0
Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory [link]Paper  doi  abstract   bibtex   
Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr3+ ions doped into a Y2SiO5 crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks. © 2016 American Physical Society.
@ARTICLE{Ferguson2016,
author={Ferguson, K.R.a  and Beavan, S.E.b  and Longdell, J.J.c  and Sellars, M.J.a },
title={Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory},
journal={Physical Review Letters},
year={2016},
volume={117},
number={2},
doi={10.1103/PhysRevLett.117.020501},
art_number={020501},
note={cited By 0},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978066621&partnerID=40&md5=f685254b633559857be4470e6097d071},
affiliation={Centre for Quantum Computation and Communication Technology, Laser Physics Centre, Australian National University, Canberra, ACT, Australia; European Space Agency, Noordwijk, Netherlands; Jack Dodd Centre for Photonics and Ultra-Cold Atoms, Department of Physics, University of Otago, Dunedin, New Zealand},
abstract={Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr3+ ions doped into a Y2SiO5 crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks. © 2016 American Physical Society.},
references={Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N., (2011) Rev. Mod. Phys., 83, p. 33; Knill, E., Laflamme, R., Milburn, G.J., (2001) Nature (London), 409, p. 46; Specht, H.P., Nölleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G., (2011) Nature (London), 473, p. 190; Zhong, M., Hedges, M.P., Ahlefeldt, R.L., Bartholomew, J.G., Beavan, S.E., Wittig, S.M., Longdell, J.J., Sellars, M.J., (2015) Nature (London), 517, p. 177; Marzban, S., Bartholomew, J.G., Madden, S., Vu, K., Sellars, M.J., (2015) Phys. Rev. Lett., 115, p. 013601; Clausen, C., Usmani, I., Bussieres, F., Sangouard, N., Afzelius, M., De Riedmatten, H., Gisin, N., (2011) Nature (London), 469, p. 508; Saglamyurek, E., Sinclair, N., Jin, J., Slater, J.A., Oblak, D., Bussières, F., George, M., Tittel, W., (2011) Nature (London), 469, p. 512; Rieländer, D., Kutluer, K., Ledingham, P.M., Gündoǧan, M., Fekete, J., Mazzera, M., De Riedmatten, H., (2014) Phys. Rev. Lett., 112, p. 040504; Hedges, M.P., Longdell, J.J., Li, Y., Sellars, M.J., (2010) Nature (London), 465, p. 1052; Gündoǧan, M., Ledingham, P.M., Kutluer, K., Mazzera, M., De Riedmatten, H., (2015) Phys. Rev. Lett., 114, p. 230501; Laplane, C., Jobez, P., Etesse, J., Timoney, N., Gisin, N., Afzelius, M., (2016) New J. Phys., 18, p. 013006; Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P., (2001) Nature (London), 414, p. 413; Goldschmidt, E.A., Beavan, S.E., Polyakov, S.V., Migdall, A.L., Sellars, M.J., (2013) Opt. Express, 21, p. 10087; Ledingham, P.M., Naylor, W.R., Longdell, J.J., Beavan, S.E., Sellars, M.J., (2010) Phys. Rev. A, 81, p. 012301; Beavan, S.E., Hedges, M.P., Sellars, M.J., (2012) Phys. Rev. Lett., 109, p. 093603; Kurnit, N.A., Abella, I.D., Hartmann, S.R., (1964) Phys. Rev. Lett., 13, p. 567; Ledingham, P.M., Naylor, W.R., Longdell, J.J., (2012) Phys. Rev. Lett., 109, p. 093602; Equall, R.W., Cone, R.L., Macfarlane, R.M., (1995) Phys. Rev. B, 52, p. 3963; Holliday, K., Croci, M., Vauthey, E., Wild, U.P., (1993) Phys. Rev. B, 47, p. 14741; Fraval, E., (2006), Ph.D. thesis, Australian National UniversityNilsson, M., Rippe, L., Kröll, S., Klieber, R., Suter, D., (2004) Phys. Rev. B, 70, p. 214116; Beavan, S.E., Ledingham, P.M., Longdell, J.J., Sellars, M.J., (2011) Opt. Lett., 36, p. 1272; http://link.aps.org/supplemental/10.1103/PhysRevLett.117.020501, See Supplemental Material at for details of gain measurements, the windowing of the ASE and RASE signals, and the inseparability criterion modelDuan, L.-M., Giedke, G., Cirac, J.I., Zoller, P., (2000) Phys. Rev. Lett., 84, p. 2722; Yuen, H.P., Chan, V.W.S., (1983) Opt. Lett., 8, p. 177; Stevenson, R.N., Hush, M.R., Carvalho, A.R.R., Beavan, S.E., Sellars, M.J., Hope, J.J., (2014) New J. Phys., 16, p. 033042; Williamson, L.A., Longdell, J.J., (2014) New J. Phys., 16, p. 073046; Bao, X.-H., Reingruber, A., Dietrich, P., Rui, J., Dück, A., Strassel, T., Li, L., Pan, J.-W., (2012) Nat. Phys., 8, p. 517; Fraval, E., Sellars, M.J., Longdell, J.J., (2004) Phys. Rev. Lett., 92, p. 077601; Simon, C., De Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N., (2007) Phys. Rev. Lett., 98, p. 190503},
document_type={Article},
source={Scopus},
}

Downloads: 0