Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Freer, M, E, Yim, S, K, Fuller, G, G, Radke, & J, C Langmuir, 20(23):10159--10167, 2004.
Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface [link]Paper  abstract   bibtex   
Proteins adsorbed at fluid/fluid interfaces influence many phenomena: food emulsion and foam stability (Murray et al. Langmuir 2002, 18, 9476 and Borbas et al. Colloids Surf., A 2003, 273, 93), two-phase enzyme catalysis (Cascao-Pereira et al. Biotechnol. Bioeng. 2003, 83, 498; 2002, 78, 595), human lung function (Lunkenheimer et al. Colloids Surf., A 1998, 114, 199; Wustneck et al.; and Banerjee et al. 2000, 15, 14), and cell membrane mechanical properties (Mohandas et al. 1994, 23, 787). Time scales important to these phenomena are broad, necessitating an understanding of the dynamics of biological macromolecules at interfaces. We utilize interfacial shear and dilatational deformations to study the rheology of a globular protein, lysozyme, and a disordered protein, $β$-casein, at the hexadecane/water interface. Linear viscoelastic properties are measured using small amplitude oscillatory flow, stress relaxation after a sudden dilatational displacement, and shear creep response to probe the rheological response over broad experimental time scales. Our studies of lysozyme and $β$-casein reveal that the interfacial dissipation mechanisms are strongly coupled to changes in the protein structure upon and after adsorption. For $β$-casein, the interfacial response is fluidlike in shear deformation and is dominated by interfacial viscous dissipation, particularly at low frequencies. Conversely, the dilatational response of $β$-casein is dominated by diffusion dissipation at low frequencies and viscous dissipation at higher frequencies (i.e., when the experimental time scale is faster than the characteristic time for diffusion). For lysozyme in shear deformation, the adsorbed protein layer is primarily elastic with only a weak frequency dependence. Similarly, the interfacial dilatational moduli change very little with frequency. In comparison to $β$-casein, the frequency response of lysozyme does not change substantially after washing the protein from the bulk solution. Apparently, it is the irreversibly adsorbed fraction that dominates the dynamic rheological response for lysozyme. Using stress relaxation after a sudden dilatational displacement and shear creep response, the characteristic time of relaxation was found to be 1000 s in both modes of deformation. The very long relaxation time for lysozyme likely results from the formation of a glassy interfacial network. This network develops at high interfacial concentrations where the molecules are highly constrained because of conformation changes that prevent desorption.
@article{ Freer:2004vc,
  abstract = {Proteins adsorbed at fluid/fluid interfaces influence many phenomena: food emulsion and foam stability (Murray et al. Langmuir 2002, 18, 9476 and Borbas et al. Colloids Surf., A 2003, 273, 93), two-phase enzyme catalysis (Cascao-Pereira et al. Biotechnol. Bioeng. 2003, 83, 498; 2002, 78, 595), human lung function (Lunkenheimer et al. Colloids Surf., A 1998, 114, 199; Wustneck et al.; and Banerjee et al. 2000, 15, 14), and cell membrane mechanical properties (Mohandas et al. 1994, 23, 787). Time scales important to these phenomena are broad, necessitating an understanding of the dynamics of biological macromolecules at interfaces. We utilize interfacial shear and dilatational deformations to study the rheology of a globular protein, lysozyme, and a disordered protein, $β$-casein, at the hexadecane/water interface. Linear viscoelastic properties are measured using small amplitude oscillatory flow, stress relaxation after a sudden dilatational displacement, and shear creep response to probe the rheological response over broad experimental time scales. Our studies of lysozyme and $β$-casein reveal that the interfacial dissipation mechanisms are strongly coupled to changes in the protein structure upon and after adsorption. For $β$-casein, the interfacial response is fluidlike in shear deformation and is dominated by interfacial viscous dissipation, particularly at low frequencies. Conversely, the dilatational response of $β$-casein is dominated by diffusion dissipation at low frequencies and viscous dissipation at higher frequencies (i.e., when the experimental time scale is faster than the characteristic time for diffusion). For lysozyme in shear deformation, the adsorbed protein layer is primarily elastic with only a weak frequency dependence. Similarly, the interfacial dilatational moduli change very little with frequency. In comparison to $β$-casein, the frequency response of lysozyme does not change substantially after washing the protein from the bulk solution. Apparently, it is the irreversibly adsorbed fraction that dominates the dynamic rheological response for lysozyme. Using stress relaxation after a sudden dilatational displacement and shear creep response, the characteristic time of relaxation was found to be 1000 s in both modes of deformation. The very long relaxation time for lysozyme likely results from the formation of a glassy interfacial network. This network develops at high interfacial concentrations where the molecules are highly constrained because of conformation changes that prevent desorption.},
  annote = {References: Murray, B.S., Cattin, B., Schuler, E., Sonmez, Z.O., (2002) Langmuir, 18, p. 9476; Borbas, R., Murray, B.S., Kiss, E., (2003) Colloids Surf., A, 213, p. 93; Cascao-Pereira, L.G., Hickel, A., Radke, C.J., Blanch, H.W., (2003) Biotechnol. Bioeng., 83, p. 498; Cascao-Pereira, L.G., Hickel, A., Radke, C.J., Blanch, H.W., (2002) Biotechnol. Bioeng., 78, p. 595; Lunkenheimer, K., Winsel, K., Fruhner, H., Fang, J., Wantke, K.D., Siegler, K., (1996) Colloids Surf., A, 114, p. 199; Wustneck, R., Wustneck, N., Grigoriev, D.O., Pison, U., Miller, R., (1999) Colloids Surf., B, 15, p. 275; Banerjee, R., Puniyani, R.R., Bellare, J.R., (2000) J. Biomater. Appl., 15, p. 140; Mohandas, N., Evans, E., (1994) Annu. Rev. Biophys. Biomol. Struct., 23, p. 787; Atkinson, P.J., Dickinson, E., Horne, D.S., Richardson, R.M., (1995) J. Chem. Soc., Faraday Trans., 91, p. 2847; Benjamins, J., Cagna, A., Lucassen-Reynders, E.H., (1996) Colloids Surf., A, 114, p. 245; Benjamins, J., Vader, F.V., (1992) Colloids Surf., 65, p. 161; Beverung, C.J., Radke, C.J., Blanch, H.W., (1999) Biophys. Chem., 81, p. 59; Cicuta, P., Stancik, E.J., Fuller, G.G., (2003) Phys. Rev. Lett., 90, pp. 236101-236101; Dickinson, E., Home, D.S., Phipps, J.S., Richardson, R.M., (1993) Langmuir, 9, p. 242; Graham, D.E., Phillips, M.C., (1979) J. Colloid Interface Sci., 70, p. 415; Graham, D.E., Phillips, M.C., (1979) J. Colloid Interface Sci., 70, p. 427; Graham, D.E., Phillips, M.C., (1980) J. Colloid Interface Sci., 76, p. 227; Graham, D.E., Phillips, M.C., (1980) J. Colloid Interface Sci., 76, p. 240; Grigoriev, D.O., Fainerman, V.B., Makievski, A.V., Kragel, J., Wustneck, R., Miller, R., (2002) J. Colloid Interface Sci., 253, p. 257; Hambardzumyan, A., Aguie-Beghin, V., Panaiotov, I., Douillard, R., (2003) Langmuir, 19, p. 72; Harzallah, B., Aguie-Beghin, V., Douillard, R., Bosio, L., (1998) Int. J. Biol. Macromol., 23, p. 73; Lu, J.R., Su, T.J., Thomas, R.K., Penfold, J., Webster, J., (1998) J. Chem. Soc., Faraday Trans., 94, p. 3279; Lu, J.R., Su, T.J., Thomas, R.K., (1999) J. Colloid Interface Sci., 213, p. 426; Freer, E.M., Yim, K.S., Fuller, G.G., Radke, C.J., (2004) J. Phys. Chem. B, 108, p. 3835; Mellema, M., Clark, D.C., Husband, F.A., Mackie, A.R., (1998) Langmuir, 14, p. 1753; Murray, B.S., (2002) Curr. Opin. Colloid Interface Sci., 7, p. 426; Patino, J.M.R., Sanchez, C.C., Nino, M.R.R., (1999) Food Hydrocolloids, 13, p. 401; Cascao-Pereira, L.G., Theodoly, O., Blanch, H.W., Radke, C.J., (2003) Langmuir, 19, p. 2349; Cascao-Pereira, L.G., Johansson, C., Blanch, H.W., Radke, C.J., (2001) Colloids Surf., A, 186, p. 103; Tupy, M.J., Blanch, H.W., Radke, C.J., (1998) Ind. Eng. Chem. Res., 37, p. 3159; Williams, A., Prins, A., (1996) Colloids Surf., A, 114, p. 267; Fainerman, V.B., Miller, R., Wustneck, R., (1996) J. Colloid Interface Sci., 183, p. 26; Bantchev, G.B., Schwartz, D.K., (2003) Langmuir, 19, p. 2673; Cascao-Pereira, L.G., Johansson, C., Radke, C.J., Blanch, H.W., (2003) Langmuir, 19, p. 7503; Rao, C.S., Damodaran, S., (2000) Langmuir, 16, p. 9468; Svitova, T.F., Wetherbee, M.J., Radke, C.J., (2003) J. Colloid Interface Sci., 261, p. 170; Rotenberg, Y., Boruvka, L., Neumann, A.W., (1983) J. Colloid Interface Sci., 93, p. 169; Larson, R.L., (1999) The Structure and Rheology of Complex Fluids, , Oxford University Press: New York, ; Chapter 3; Monroy, F., Rivillon, S., Ortega, F., Rubio, R.G., (2001) J. Chem. Phys., 115, p. 530; Monroy, F., Ortega, F., Rubio, R.G., (1998) Phys. Rev. E, 58, p. 7629; Naumann, C.A., Brooks, C.F., Fuller, G.G., Knoll, W., Frank, C.W., (1999) Langmuir, 15, p. 7752; Naumann, C.A., Brooks, C.F., Fuller, G.G., Lehmann, T., Ruhe, J., Knoll, W., Kuhn, P., Frank, C.W., (2001) Langmuir, 17, p. 2801; Naumann, C.A., Brooks, C.F., Wiyatno, W., Knoll, W., Fuller, G.G., Frank, C.W., (2001) Macromolecules, 34, p. 3024; Freer, E.M., Svitova, T.F., Radke, C.J., (2003) J. Pet. Sci. Eng., 39, p. 137; Freer, E.M., Radke, C.J., (2004) J. Adhes., 80, p. 481; Freer, E.M., (2004) Interfacial Rheology of Macromolecules, , Ph.D. Thesis, University of California, Berkeley, CA; Lunkenheimer, K., Kretzschmar, G., (1975) Z. Phys. Chem., 256, p. 593; Edwards, D.A., Wasan, D.T., Brenner, H., (1991) Interfacial Transport Processes and Rheology, , Butterworth-Heinemann: Boston, Chapters 3 and 4; Morrison, F.A., (2001) Understanding Rheology, , Oxford University Press: New York, Chapter 8; Brooks, C.F., Fuller, G.G., Frank, C.W., Robertson, C.R., (1999) Langmuir, 15, p. 2450; Brooks, C.F., Thiele, J., Frank, C.W., O'Brien, D.F., Knoll, W., Fuller, G.G., Robertson, C.R., (2002) Langmuir, 18, p. 2166; Graham, D.E., Phillips, M.C., (1979) J. Colloid Interface Sci., 70, p. 403; Lucassen, J., Van Den Temple, M., (1972) Chem. Eng. Sci., 27, p. 1283; Johnson, D.O., Stebe, K.J., (1996) Colloids Surf., A, 114, p. 41; Barentin, C., Ybert, C., Di Meglio, J.M., Joanny, J.F., (1999) J. Fluid Mech., 397, p. 331; Wantke, K.D., Fruhner, H., (2001) J. Colloid Interface Sci., 237, p. 185; Loglio, G., Rillaerts, E., Joos, P., (1981) Colloid Polym. Sci., 259, p. 1221; Stoyanov, S.D., Paunov, V.N., Rehage, H., Kuhn, H., (2004) Phys. Chem. Chem. Phys., 6, p. 596; Benjamins, J., Feijter, J.A.D., Evans, M.T.A., Graham, D.E., Phillips, M.C., (1975) Faraday Discuss, p. 218; Van Den Tempel, M., Lucassen-Reynders, E.H., (1983) Adv. Colloid Interface Sci., 18, p. 281; Tschoegl, N.W., (1989) The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, , Springer-Verlag: New York, Chapters 4 and 11; Anderson, R.E., Pande, V.S., Radke, C.J., (2000) J. Chem. Phys., 112, p. 9167; Leonhard, K.; Prausnitz, J. M.; Radke, C. J. In preparationDefeijter, J.A., Benjamins, J., (1982) J. Colloid Interface Sci., 90, p. 289; Fainerman, V.B., Miller, R., Kovalchuk, V.I., (2002) Langmuir, 18, p. 7748},
  author = {Freer, E M and Yim, K S and Fuller, G G and Radke, C J},
  journal = {Langmuir},
  number = {23},
  pages = {10159--10167},
  title = {{Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface}},
  url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-9144241823\&partnerID=40\&md5=00477c20799859260d5ee102cd3cb6a7},
  volume = {20},
  year = {2004}
}

Downloads: 0