A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms. Huo, M., Nie, W., Hutchinson, D. b, & Kwek, L. c d Scientific Reports, 2014. cited By 1
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms [link]Paper  doi  abstract   bibtex   
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
@ARTICLE{Huo2014,
author={Huo, M.-X.a  and Nie, W.a  and Hutchinson, D.A.W.a  b  and Kwek, L.C.a  c  d },
title={A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms},
journal={Scientific Reports},
year={2014},
volume={4},
doi={10.1038/srep05992},
art_number={5992},
note={cited By 1},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905842516&partnerID=40&md5=7bffa8bbcb15b7f9637ed63c68e0ccbb},
affiliation={Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore; Department of Physics, University of Otago, Dunedin, New Zealand; National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, Singapore 639673, Singapore},
abstract={Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.},
references={Banerjee, D., Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench (2012) Phys. Rev. Lett, 109, p. 175302; Zohar, E., Cirac, J.I., Reznik, B., Simulating (2 1 1)-dimensional lattice QED with dynamical matter using ultracold atoms (2013) Phys. Rev. Lett, 110, p. 055302; Banerjee, D., Atomic quantum simulation of U(N) and SU(N) non-abelian lattice gauge theories (2013) Phys. Rev. Lett, 110, p. 125303; Gorshkov, A.V., Two-orbital SU(N)magnetism with ultracold alkaline-earth atoms (2010) Nat. Phys, 6, pp. 289-295; Zohar, E., Cirac, J.I., Reznik, B., Cold-atom quantum simulator for SU(2) yang-mills lattice gauge theory (2013) Phys. Rev. Lett, 110, p. 125304; Tagliacozzo, L., Celi, A., Zamora, A., Lewenstein, M., Optical Abelian lattice gauge theories (2013) Annals of Physics, 330, pp. 160-191; Tagliacozzo, L., Celi, A., Orland, P., Lewenstein, M., Simulation of non-Abelian gauge theories with optical lattices (2013) Nat. Commun, 4, p. 2615; Goldman, N., Gerbier, F., Lewenstein, M., Realizing non-Abelian gauge potentials in optical square lattices: An application to atomic Chern insulators (2013) J. Phys. B: At. Mol. Opt. Phys, 46, p. 134010; Zohar, E., Cirac, J.I., Reznik, B., Quantum simulations of gauge theories with ultracold atoms: Local gauge invariance from angular-momentum conservation (2013) Phys. Rev. A, 88, p. 023617; Dalibard, J., Gerbier, F., Juzeliunas, G., Öhberg, P., Colloquium: Artificial gauge potentials for neutral atoms (2011) Rev. Mod. Phys, 83, pp. 1523-1543; Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., Sen, A., Sen, U., Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond (2007) Advances in Physics, 56 (2), pp. 243-379. , DOI 10.1080/00018730701223200, PII 778175433; Ho, T.-L., Bose-Einstein condensates with large number of vortices (2001) Phys. Rev. Lett, 87, p. 060403; Juzeliunas, G., Öhberg, P., Ruseckas, J., Klein, A., Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta (2005) Phys. Rev. A, 71, p. 053614; Ruseckas, J., Juzelunas, G., Öhberg, P., Fleischhauer, M., Non-abelian gauge potentials for ultracold atoms with degenerate dark states (2005) Phys. Rev. Lett, 95, p. 010404; Juzelunas, G., Öhberg, P., Slow light in degenerate fermi gases (2004) Phys. Rev. Lett, 93, p. 033602; Lin, Y.-J., Bose-einstein condensate in a uniform light-induced vector potential (2009) Phys. Rev. Lett, 102, p. 130401; Lin, Y.-J., Compton, R.L., Jiménez-García, K., Porto, J.V., Spielman, I.B., Synthetic magnetic fields for ultracold neutral atoms (2009) Nature, 462, pp. 628-632; Osterloh, K., Baig, M., Santos, L., Zoller, P., Lewenstein, M., Cold atoms in non- abelian gauge potentials: From the hofstadter "moth" to lattice gauge theory (2005) Phys. Rev. Lett, 95, p. 010403; Jaksch, D., Zoller, P., Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms (2003) New J. Phys, 5, p. 56; Gerbier, F., Dalibard, J., Gauge fields for ultracold atoms in optical superlattices (2010) New J. Phys, 12, p. 033007; Goldman, N., Kubasiak, A., Gaspard, P., Lewenstein, M., Ultracold atomic gases in non-Abelian gauge potentials: The case of constant Wilson loop (2009) Phys. Rev. A, 79, p. 023624; Klein, A., Jaksch, D., Phonon-induced artificial magnetic fields in optical lattices (2009) Europhysics Lett, 85, p. 13001; Aharonov, Y., Bohm, D., Significance of electromagnetic potentials in the quantum theory (1959) Phys. Rev, 115, pp. 485-491; Chambers, R.G., Shift of an Electron Interference Pattern by Enclosed Magnetic Flux (1960) Phys. Rev. Lett, 5, p. 3; Tonomura, A., Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave (1986) Phys. Rev. Lett, 56, pp. 792-795; Caprez, A., Barwick, B., Batelaan, H., Macroscopic test of the aharonov-bohm effect (2007) Phys. Rev. Lett, 99, p. 210401; Shinohara, K., Aoki, T., Morinaga, A., Scalar aharonov-bohm effect for ultracold atoms (2002) Phys. Rev. A, 66, p. 042106; Webb, R.A., Washburn, S., Umbach, C.P., Laibowitz, R.B., Observation of h/e aharonov-bohm oscillations in normal-metal rings (1985) Phys. Rev. Lett, 54, p. 2696; Washburn, S., Webb, R.A., Quantum transport in small disordered samples from the diffusive to the ballistic regime (1992) Rep. Prog. Phys, 55, p. 1311; Timp, G., Observation of the aharonov-bohm effect for vct. 1 (1987) Phys. Rev. Lett, 58, p. 2814; Fuhrer, A., Luscher, S., Ihn, T., Heinzel, T., Ensslin, K., Wegscheider, W., Bichler, M., Energy spectra of quantum rings (2001) Nature, 413 (6858), pp. 822-825. , DOI 10.1038/35101552; Fuhrer, A., Energy spectra of quantum rings (2002) Microelectron. Eng, 63, p. 47; Russo, S., Observation of Aharonov-Bohm conductance oscillations in a graphene ring (2008) Phys. Rev. B, 77, p. 085413; Schelter, J., Recher, P., Trauzettel, B., The Aharonov-Bohm effect in graphene rings (2012) Solid State Comm, 152, pp. 1411-1419. , and references therein; Bayer, M., Optical Detection of the Aharonov-Bohm Effect on a Charged Particle in a Nanoscale Quantum Ring (2003) Phys. Rev. Lett, 90, p. 186801; Ribeiro, E., Govorov, A.O., Carvalho Jr., W., Medeiros-Ribeiro, G., Aharonov-bohm signature for neutral polarized excitons in type-II quantum dot ensembles (2004) Phys. Rev. Lett, 92, p. 126402; Kuskovsky, I.L., Optical Aharonov-Bohm effect in stacked type-II quantum dots (2007) Phys. Rev. B, 76, p. 035342; Bachtold, A., Strunk, C., Salvetat, J.-P., Bonard, J.-M., Forro, L., Nussbaumer, T., Schonenberger, C., Aharonov-Bohm oscillations in carbon nanotubes (1999) Nature, 397 (6721), pp. 673-675. , DOI 10.1038/17755; Zaric, S., (2004) Science, 304, pp. 1129-1131; Caprez, A., Barwick, B., Batelaan, H., Macroscopic test of the aharonov-bohm effect (2007) Phys. Rev. Lett, 99, p. 210401; Ji, Y., Chung, Y., Sprinzak, D., Heiblum, M., Mahalu, D., Shtrikman, H., An electronic Mach-Zehnder interferometer (2003) Nature, 422 (6930), pp. 415-418. , DOI 10.1038/nature01503; Aidelsburger, M., Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice (2011) Phys. Rev. Lett, 107, p. 255301; Amico, L., Osterloh, A., Cataliotti, F., Quantum many particle systems in ring- shaped optical lattices (2005) Phys. Rev. Lett, 95, p. 063201; Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P., Cold bosonic atoms in optical lattices (1998) Phys. Rev. Lett, 81, p. 3108; Porsev, S.G., Derevianko, A., Fortson, E.N., Possibility of an optical clock using the 61S0R63P0 transition in 171, 173Yb atoms held in an optical lattice (2004) Phys. Rev. A, 69, p. 021403; Leek, P.J., Observation of berry's phase in a solid-state qubit (2007) Science, 318, p. 1889; Jones, J.A., Vedral, V., Ekert, A., Castagnoll, G., Geometric quantum computation using nuclear magnetic resonance (2000) Nature, 403 (6772), pp. 869-871. , DOI 10.1038/35002528; Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V., Detection of geometric phases in superconducting nanocircuits (2000) Nature, 407, pp. 355-358; Zwerger, W., Mott-Hubbard transition of cold atoms in optical lattices (2003) J. Opt. B: Quantum Semiclass. Opt, 5, pp. S9-S16; Polkovnikov, A., Sachdev, S., Girvin, S.M., Nonequilibrium Gross-Pitaevskii dynamics of boson lattice models (2002) Phys. Rev. A, 66, p. 053607},
document_type={Article},
source={Scopus},
}

Downloads: 0