Optimizing fuel consumption and pollutant emissions of gasoline-HEV with catalytic converter. Michel, P.; Charlet, A.; Colin, G.; Chamaillard, Y.; Bloch, G.; and Nouillant, C. Control Engineering Practice, 2015.
Optimizing fuel consumption and pollutant emissions of gasoline-HEV with catalytic converter [link]Paper  doi  abstract   bibtex   
Because of more and more stringent vehicle emission standards, Hybrid Electric Vehicles (HEV) are developed. Gasoline-HEV are equipped with 3-Way Catalytic Converter (3WCC). So the energy management systems of such vehicles, which must reduce not only fuel consumption, but also vehicle pollutant emissions, have to consider the 3WCC heating. A pollutant constrained energy management strategy is presented. A 3WCC multi-0D model is built from physical equations, with a good complexity-performances compromise. An off-line optimal strategy allows the joint minimization of pollution and fuel consumption with only one parameter to tune, while considering all the standardized pollutant emissions. This strategy reduces significantly the vehicle emissions for a minor fuel consumption increase and leads to define 3WCC smart heating. Thus an on-line smart heating strategy is implemented in a HyHIL (Hybrid Hardware In the Loop) test bench, reducing the pollutant emissions of the classical charge sustaining strategy by 30% for CO and 10% for NOX.
@article{michel_optimizing_2015,
	title = {Optimizing fuel consumption and pollutant emissions of gasoline-{HEV} with catalytic converter},
	issn = {0967-0661},
	url = {http://www.sciencedirect.com/science/article/pii/S0967066115300551},
	doi = {10.1016/j.conengprac.2015.12.010},
	abstract = {Because of more and more stringent vehicle emission standards, Hybrid Electric Vehicles (HEV) are developed. Gasoline-HEV are equipped with 3-Way Catalytic Converter (3WCC). So the energy management systems of such vehicles, which must reduce not only fuel consumption, but also vehicle pollutant emissions, have to consider the 3WCC heating. A pollutant constrained energy management strategy is presented. A 3WCC multi-0D model is built from physical equations, with a good complexity-performances compromise. An off-line optimal strategy allows the joint minimization of pollution and fuel consumption with only one parameter to tune, while considering all the standardized pollutant emissions. This strategy reduces significantly the vehicle emissions for a minor fuel consumption increase and leads to define 3WCC smart heating. Thus an on-line smart heating strategy is implemented in a HyHIL (Hybrid Hardware In the Loop) test bench, reducing the pollutant emissions of the classical charge sustaining strategy by 30\% for CO and 10\% for NOX.},
	urldate = {2016-01-04},
	journal = {Control Engineering Practice},
	author = {Michel, Pierre and Charlet, Alain and Colin, Guillaume and Chamaillard, Yann and Bloch, Gérard and Nouillant, Cédric},
	year = {2015}
}
Downloads: 0