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Abstract

The exploration of hybrid quantum-classical algorithms and programming models on noisy

near-term quantum hardware has begun. As hybrid programs scale towards classical intrac-

tability, validation and benchmarking are critical to understanding the utility of the hybrid

computational model. In this paper, we demonstrate a newly developed quantum circuit sim-

ulator based on tensor network theory that enables intermediate-scale verification and vali-

dation of hybrid quantum-classical computing frameworks and programming models. We

present our tensor-network quantum virtual machine (TNQVM) simulator which stores a

multi-qubit wavefunction in a compressed (factorized) form as a matrix product state, thus

enabling single-node simulations of larger qubit registers, as compared to brute-force state-

vector simulators. Our simulator is designed to be extensible in both the tensor network

form and the classical hardware used to run the simulation (multicore, GPU, distributed).

The extensibility of the TNQVM simulator with respect to the simulation hardware type is

achieved via a pluggable interface for different numerical backends (e.g., ITensor and Exa-

TENSOR numerical libraries). We demonstrate the utility of our TNQVM quantum circuit

simulator through the verification of randomized quantum circuits and the variational quan-

tum eigensolver algorithm, both expressed within the eXtreme-scale ACCelerator (XACC)

programming model.

1 Introduction

Quantum computing is a computational paradigm that relies on the principles of quantum

mechanics in order to process information. Recent advances in both algorithmic research,

which has found remarkable speed-ups for a growing number of applications [1–3], and hard-

ware development [4, 5] continue to progress the field of quantum information processing.
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The near-term state of quantum computing is defined by the noisy intermediate-scale quan-

tum (NISQ) paradigm which involves small-scale noisy quantum processors [6] being used in

a hybrid quantum-classical framework. In this context, recent experimental demonstrations

[7–11] of hybrid computations have reinforced the need for robust programming models and

classical validation frameworks.

The successful integration of quantum processors into conventional computational work-

loads is a complex task which depends on the programming and execution models that define

how quantum resources interact with conventional computing systems [12, 13]. Many

different models have been proposed for programming quantum computers and a number of

software development efforts have begun focusing on high-level hybrid programming mecha-

nisms capable of integrating both conventional and quantum computing processors together

[14–21]. For example, recent efforts have focused on Python-based programming frameworks

enabling the high-level expression of quantum programs in a classical context, which may tar-

get numerical simulators or a variety of physical quantum processing units (QPUs) [22–24].

The eXtreme-scale ACCelerator programming model (XACC) is a recently-developed quan-

tum-classical programming, compilation, and execution framework that enables program-

ming across multiple languages and QPU targets, including both virtual and physical QPUs

[25].

In all cases, the verification of quantum program correctness is a challenging and complex

task due to the intrinsically noisy nature of near-term QPUs, and this is additionally compli-

cated by remote hosting. As a remedy, numerical simulation techniques can greatly expedite

the analysis of quantum-classical programming efforts by providing direct insight into the pre-

pared quantum states, as well as serving to test a variety of quantum computing hardware

models. Modeling and simulation is essential for designing effective program execution mech-

anisms because it provides a controlled environment for understanding how complex compu-

tational systems interact, subsequently generating feedback based on the state machine

statistics. For example, the performance of existing QPUs is limited by the hardware connec-

tivity [4] and numerical simulations can draw on a broad range of parameterized models to

test new processor layouts and architectures.

In practice, exact brute-force simulations of quantum computing are notoriously inefficient

in memory complexity due to the exponential growth in resources with respect to the system

size. These brute-force methods explicitly solve the Schrodinger equation, or a mixed-state

master equation, using a full representation of the quantum state in its underlying (exponen-

tially large) Hilbert space. Limits on available memory place upper bounds on the size of the

vectors or density operators that can physically be stored, severely restricting the size of the

simulated quantum circuit. Even with the availability of current large-scale HPC systems,

including the state-of-the-art supercomputing systems, recent records for quantum circuit

simulations are limited to less than 50 qubits [26, 27]. The performance of the brute-force

quantum circuit simulators on current supercomputing architectures is also limited by the

inherently low arithmetic intensity (Flop/Byte ratio) of the underlying vector operations

(sparse matrix-vector multiplications) required for simulating a discrete sequence of one- and

two-qubit gates.

The inherent inefficiency of the brute-force state-vector quantum circuit simulators has

motivated a search for approximate numerical simulation techniques increasing the upper

bound on the number of simulated qubits. As we are interested in general-purpose (universal)

quantum circuit simulators, we will omit efficient specialized simulation algorithms that target

certain subclasses of quantum circuits, for example, quantum circuits composed of only Clif-

ford operations [28]. As a general solution, we advocate for the use of tensor network (TN)

theory as a tool for constructing factorized approximations to the exact multi-qubit wave-
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function tensor. The two main advantages offered by the tensor-network based wave-function

factorization are (1) the memory (space) and time complexity of the quantum circuit simula-

tion reflect the level of entanglement in the quantum system, (2) the numerical action of quan-

tum gates on the factorized wave-function representation results in numerical operations

(tensor contractions) which become arithmetically intensive for entangled systems, thus

potentially delivering close to the peak utilization of modern HPC platforms.

2 Quantum circuit simulation with tensor networks

Tensor network theory [3, 29] provides a versatile and modular approach to dimensionality

reduction in high-dimensional tensor spaces. For the following discussion, a tensor is a gener-

alization of a vector that is defined in a linear space constructed as the direct (tensor) product

of two or more primitive vector spaces. Consequently, the components of a tensor Ti1...in
are

enumerated by a tuple of indices, instead of by a single index as is the case for vectors. From

the numerical perspective, a tensor can be viewed as a multi-dimensional array of objects,

which may be real or complex numbers. In this work, following the physics nomenclature, we

shall refer to the number of indices in a tensor Ti1...in
as its rank, which is n in this case (in math

nomenclature n is the tensor order). Each index represents a distinct vector space contributing

to the composite space defined by the tensor product. The extent of the range of each index

gives the dimension of the corresponding vector space. In their essence, tensor networks aim

at decomposing a higher-rank tensor into a contracted product of lower-rank tensors (tensor

factors) such that this factorized product of lower-rank tensors reconstructs the original tensor

with sufficient accuracy (i.e. a variant of lossy compression in linear spaces). In principle, any

tensor can be approximated by a tensor network with arbitrary precision [30], however the

size of the constituent tensor factors may become prohibitively large in worst case examples,

showing that the chosen tensor network delivers a poor compression. Tensor factorizations,

which we also refer to as decompositions, are not unique in general and the problem of finding

the optimal tensor decomposition is a difficult non-convex optimization problem [31].

In practice, tensor network factorization is typically specified by a graph in which the nodes

are the tensor factors and the edges represent physical or auxiliary vector spaces which are

associated with the indices of the corresponding tensor factors. In this representation, a graph

node with n edges is a rank-n tensor with each of its n indices uniquely associated with a spe-

cific edge. A closed edge, that is, an edge connecting two nodes, represents a contracted index

shared by two tensor factors over which a summation is to be performed. In a standalone ten-

sor network, contracted indices are associated with auxiliary vector spaces. An open edge, that

is, an edge connected to only one node, represents an uncontracted index of that correspond-

ing tensor factor. Uncontracted indices in a standalone tensor network are typically associated

with physical vector spaces. Different tensor network architectures differ by the topology of

their representative graphs. Furthermore, one can define even more general tensor network

architectures by replacing graphs with hypergraphs, in which case an edge may connect three

or more tensors, thus representing a summation over the repeated index in three or more ten-

sors, respectively. In the subsequent discussion, however, we will only deal with conventional

graph topologies.

A quantum many-body wave-function, including a multi-qubit wave-function, is essentially

a high-rank tensor (its rank is normally equal to the number of simulated quantum particles,

quasi-particles, or quantum spins) [29]. A number of different tensor network architectures

have been suggested for the purpose of factorizing quantum many-body wave-functions,

including the matrix-product state (MPS) [32, 33], the projected entangled pair state (PEPS)

[34, 35], the tree tensor network state (TTNS) [36–38], the multiscale entanglement
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renormalization ansatz (MERA) [39, 40], as well as somewhat related non-conventional

schemes like the complete-graph tensor network (CGTN) [41]. All of the above tensor network

ansaetze differ in the factorization topology, that is, in how the tensor factors are contracted

with each other to form the final quantum many-body wave-function tensor. In a good tensor

network factorization, the graph topology is induced by the entanglement structure of the

quantum many-body state under study. Many physical systems are described by many-body

Hamiltonians with only local interactions—in many cases, nearest neighbor only—with corre-

lation functions decaying exponentially for non-critical states. In such cases, the locality struc-

ture of the many-body Hamiltonian induces the necessary topology required to properly

capture the quantum correlations present in the system of interest. The factorization topology

also strongly affects the computational cost associated with the numerical evaluation/optimiza-

tion of a specific tensor network architecture. Another important characteristic of a tensor net-

work is its so-called maximal bond dimension, χ, that is, the maximal dimension of auxiliary

vector spaces (auxiliary vector spaces are those contracted over). Provided that the maximal

bond dimension is bounded, many tensor network factorizations can be efficiently evaluated

due to a moderate polynomial computational cost (in the bond dimension) associated with the

computed physical expectation values. In practice, the entanglement structure of the underly-

ing quantum many-body state determines the maximal bond dimension in a given tensor net-

work for a given error tolerance. A poorly chosen tensor network topology will necessarily

lead to rapidly increasing (exponentially at worst) bond dimensions in order to keep the fac-

torization error within the tolerable error threshold [30].

The entanglement structure in a multi-qubit wave-function is determined by the quantum

circuit and may be unknown in general. Consequently, there is no well-defined choice of a ten-

sor network architecture (topology) that could work equally well for all quantum circuits,

unless it is some kind of an adaptive topology. In practice, the choice of a tensor network

architecture for representing a multi-qubit wave-function is often dictated by numerical con-

venience and ease of implementation. For example, one of the simplest tensor network archi-

tectures, the MPS ansatz illustrated in Fig 1, was used to simulate Shor’s algorithm for integer

factorization [42]. Although the inherently one-dimensional chain topology of the MPS ansatz

Fig 1. Decomposition of the multi-qubit wave-function tensor into the matrix-product state (MPS) tensor network, replacing a single node

(tensor) having N (open) edges with N nodes (tensor factors) having at most three edges each.

https://doi.org/10.1371/journal.pone.0206704.g001
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often results in severely growing bond dimensions, and this can be remedied by a more judi-

cious tensor network form [38], its computational convenience and well understood theory

makes the MPS factorization an appealing first candidate for our quantum virtual machine

(quantum circuit simulator). In future, we plan on adding more advanced tensor network

architectures, however.

In order to simulate a general quantum circuit over an N-qubit register with the tensor net-

work machinery the following steps will be necessary (see Fig 2):

1. Specify the chosen tensor network graph that factorizes the rank-N wave-function tensor

into a contracted product of lower-rank tensors (factors). For example, one may choose the

MPS factorization as done in Fig 2.

2. Transform the quantum circuit into an equivalent quantum circuit augmented with SWAP

gates in order to maximize the number of accelerated gate applications (see below). This is

an optional step.

Fig 2. Graphical illustration of the general quantum circuit simulation algorithm with the multi-qubit wave-function factorized as the MPS

tensor network. Gate coloring represents aggregation of individual gates into super-gates, which act as a whole. The figure shows progression of super-

gate actions on the MPS tensor network. Multiple super-gates may be involved in a single action. Each action results in an updated MPS tensor network

(output tensor network). Note that the application of a super-gate does not necessarily affect all output MPS tensors, only requiring an update of a

subset of them that is actually affected by the super-gate. In general, the affected tensors are determined by the qubits involved in the super-gate as well

as the specific tensor network architecture.

https://doi.org/10.1371/journal.pone.0206704.g002
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3. Group quantum gates into larger aggregates (super-gates) which will act as a whole on the

relevant part of the multi-qubit wave-function. In the simplest case, all elementary quantum

gates will be distinguished individually, with no aggregation. The purpose of the aggrega-

tion step is to reduce the total number of gates in the quantum circuit and to increase the

compute intensity associated with their action on the wave-function tensor network. This is

an optional step.

4. Apply aggregated super-gates (or individual gates when no aggregation occurred) to the rel-

evant parts of the wave-function tensor network, thus evolving towards the output state.

Multiple super-gates can be applied simultaneously. In general, the application of a super-

gate will affect the qubits associated with that super-gate as well as possibly other qubits

affected indirectly because of the specific form of the tensor network. For example, in the

MPS factorization case the application of a 2-body super-gate to qubits i and j may need to

also update the MPS tensors associated with the internal qubits located between the qubits i
and j.

In the above general algorithm, the action of the super-gates (or just individual gates) on a

multi-qubit wave-function tensor network consists of the following steps:

1. Append a given set of super-gates (or just individual gates) to the input wave-function ten-

sor network TNinp, thus obtaining a larger tensor network TNmid. An n-body super-gate,

represented by a rank-2n tensor, is appended to the tensor network graph by pairing its n
edges with the corresponding edges of the tensor network that are associated with the

qubits the super-gate acts on. This is illustrated in the bottom part of Fig 2 where one or

more super-gates are appended to the input tensor network depicted as a graph of circles

on the left (followed by a closure by the output tensor network depicted as a graph of circles

on the right).

2. If there are 2- or higher-body super-gates present, check whether they are applied to the

qubit pairs or triples, etc. that allow accelerated gate application (for example, in MPS fac-

torization, these would be the adjacent qubit pairs, triples, and so on). If yes, evaluate their

action in an accelerated fashion (see below). Otherwise, resort to the general algorithm in

the next steps.

3. Instantiate a new tensor network TNout by cloning TNinp and complex conjugating all con-

stituent tensors.

4. Close TNmid with TNout by pairing all edges between the two tensor networks, thus obtain-

ing a closed tensor network TNopt which does not have open edges (see the bottom part of

Fig 2). TNopt evaluates to a scalar since all tensor indices have been contracted. It represents

the inner product between the state obtained by the action of the super-gate(s) on the input

tensor network and the state parameterized by the output tensor network. Thus, we can

approximate the state obtained by the action of the super-gate(s) on the input tensor net-

work by maximizing the obtained inner product while keeping the output tensor network

normalized.

5. In the obtained inner product, contract away some or, if possible, all tensors that will not

undergo any changes in value, thus reducing the total number of tensors in TNopt (see Fig

3). As mentioned above, depending on the tensor network architecture, only a subset of

output tensors may need to be updated for a given super-gate(s) application. Note that such

a simplification of TNopt is not always practical as the contraction of the unaffected tensors

Validating quantum-classical programming models with tensor network simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0206704 December 10, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0206704


may yield unmanageably large higher-rank tensors, in which case it should be abandoned,

either partially or fully.

6. Optimize the affected tensors of TNout to maximize the TNopt scalar, subject to keeping

TNout normalized. For example, one can follow a general algorithm suggested in Ref. [40]

where the optimization procedure is based on the evaluation of the gradients of TNopt with

respect to each optimized tensor of TNout and using SVD for keeping the updated constitu-

ent tensor factors isometric, which should preserve their normalization as a byproduct (iso-

metric tensors are composed of orthonormal columns when they are flattened in a matrix

over specific tensor modes). Alternatively, one can add the output tensor network normali-

zation condition (as well as other necessary conditions on tensor factors) to the inner prod-

uct TNopt to get a constrained optimization problem, as shown in Fig 4. In practice, the

optimized output tensors are updated one or two (if adjacent) at a time, based on the corre-

sponding constrained gradients, and the full optimization epoch includes a sweep over all

optimized tensors. The advantage of optimizing a pair of connected tensor factors at a time

is that one can perform an SVD on the combined tensor to get the updated tensor factors.

7. If the maximum TNopt value is not acceptable after some predefined number of iterations,

increase dimensions of the auxiliary spaces in the affected tensors of TNout and repeat

Step 6.

In cases where an accelerated gate application is possible (for example, a 2-body gate is

applied to the adjacent qubits in the MPS-factorized wave-function), one can restrict the

update procedure only to the tensor factors directly affected by the gate action. In case of MPS

factorization, in order to apply a 2-body gate to two adjacent qubits one can contract the gate

tensor with the two MPS tensors representing the affected qubits and then perform a singular

value decomposition (SVD) on the tensor-result, thus immediately obtaining new (updated)

MPS tensors as illustrated in Fig 5.

The above general algorithm demonstrates the procedure the TNQVM simulator is

designed to use for approximate simulation of quantum circuits based on the tensor network

factorizations. For the sake of completeness, we should also mention quantum circuit simula-

tors which use tensor representations for a brute-force simulation of quantum circuits with no

approximations [27, 43]. This is different from our approach which is based on the explicit

Fig 3. Graphical illustration of the simplification of the inner product being optimized: Some tensors that do not undergo an update can be

contracted in order to reduce the total number of tensors while keeping memory requirements mostly intact.

https://doi.org/10.1371/journal.pone.0206704.g003
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factorization of the multi-qubit wave-function tensor. In these other tensor-based schemes the

entire quantum circuit as a collection of gate tensors is considered as a tensor network which

is subsequently contracted over in order to compute observables or evaluate output probability

distributions. In Ref. [27], a clever tensor slicing technique was introduced that avoided the

evaluation of the full wave-function tensor, thus reducing the memory footprint and bypassing

the existing 45-qubit limit on large-scale HPC systems. Yet, despite enabling simulations of

Fig 4. Graphical illustration of the constrained optimization problem for the output MPS tensor network with a simple constraint of

normalization to N. In general, additional constraints can apply to the tensor network factors, for example requirement of isometry or unitarity (see

Ref. [40]).

https://doi.org/10.1371/journal.pone.0206704.g004

Fig 5. Graphical illustration of an accelerated evaluation of the action of a two-body gate on a pair of adjacent qubits in the MPS representation.

The SVD procedure decomposes the rank-4 tensor into a pair of contracted rank-3 tensors, thus immediately producing the updated MPS tensors.

https://doi.org/10.1371/journal.pone.0206704.g005
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somewhat larger qubit counts, this technique does not lift the asymptotic bounds of the exact

simulation cost.

3 Quantum virtual machines

In order to evaluate the correctness of a quantum program and its implementation via a

decomposition into primitive gate operations, it is necessary to model both the conventional

computing and quantum computing elements of the system architecture. In particular, it is

necessary to expose the interface to the available instruction set architecture (ISA) and meth-

ods to support quantum program execution, scheduling, and layout. There are currently many

different technologies available for testing and evaluating quantum processing units, and each

of these technologies presents different ISAs and methods for program execution [44].

As shown in Fig 6, a quantum virtual machine (QVM) provides a portable abstraction of

technology-specific details for a broad variety of heterogeneous quantum-classical computing

architectures. The hardware abstraction layer (HAL) defines a portable interface by which the

underlying quantum processor technology as well as other hardware components such as

memory are exposed to system libraries, runtimes and drivers running on the host conven-

tional computer. The implementation of the HAL provides an explicit translation of quantum

program instructions into native, hardware-specific syntax, which may be subsequently

executed by the underlying quantum processor. The HAL serves as a convenience to ensure

portability of programs across different QPU platforms, while the QVM encapsulates the envi-

ronment in which applications can be developed independently from explicit knowledge of

QPU details. This environment is provided by the integration of the HAL with programming

tools, libraries, and frameworks as well as the host operating system.

Application performance within a QVM depends strongly on the efficiency with which

host programs are translated into hardware-specific instructions. This includes the communi-

cation overhead between the HAL and hardware layers as well as the overhead costs for man-

aging these interactions by the host operating system. Both algorithmic and hardware designs

impact this performance by deciding when and how to allocate computational burden to spe-

cific devices. Presently, there is an emphasis on the development and validation of hybrid pro-

grams, which loosely integrates quantum processing with conventional post-processing tasks.

This algorithmic design introduces a requirement for transferring memory buffers between

the host and QPU systems. Memory management therefore becomes an important task for

application behavior. While current QPUs are often accessed remotely through network inter-

faces, long-term improvements in application performance will require fine grain control over

memory management.

4 Tensor network quantum virtual machine

Our implementation of a QVM presented in this work is based on a previously developed

hybrid quantum-classical programming framework, called XACC [25], combined with a quan-

tum circuit simulator that uses tensor network theory for compressing the multi-qubit wave-

function. We provide an overview of the Tensor Network Quantum Virtual Machine

(TNQVM) and its applications, including its software architecture and integration with the

XACC programming framework. Since XACC integrates directly with TNQVM, compiled

programs can in principle be verified instantaneously on any classical computer including

workstations as well as HPC clusters and supercomputers. The support of different classical

computer architectures (single-core, multi-core, GPU, distributed) for performing numerical

simulations is achieved by interchangeability of the numerical backends in our TNQVM simu-

lator. These backends are numerical tensor algebra libraries which perform all underlying
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tensor computations on a supported classical computer. In this work, we detail the HAL

implementation of TNQVM using ITensor [45] for serial simulations, with some example

applications demonstrating the utility of TNQVM. We also sketch some details on the upcom-

ing ExaTENSOR backend that will enable large-scale quantum circuit simulations on distrib-

uted homo- and heterogeneous HPC systems. Independent verification of hybrid programs

within TNQVM provides an increased confidence in the use of these codes to characterize and

validate actual QPUs.

4.1 XACC

The eXtreme-scale ACCelerator programming model (XACC) has been specifically designed

for enabling near-term quantum acceleration within existing classical high-performance

Fig 6. A schematic design how a quantum virtual machine (QVM) manages access to an underlying QPU through

the hardware abstraction layer. A program binary exists within an application framework that accesses system

resources through libraries. Library calls are managed by the host operating system, which manages and schedules

requests to access hardware devices including attached QPUs. The hardware abstraction layer (HAL) provides a

portable interface by which these requests are made to the underlying QPU technology.

https://doi.org/10.1371/journal.pone.0206704.g006
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computing applications and workflows [25, 46]. This programming model and associated

open-source reference implementation follow the traditional co-processor model, akin to

OpenCL or CUDA for GPUs, but takes into account the subtleties and complexities arising

from the interplay between classical and quantum hardware. XACC provides a high-level

application programming interface (API) that enables classical applications to offload quan-

tum programs (represented as quantum kernels, similar in structure to GPU kernels) to an

attached quantum accelerator in a manner that is agnostic to both the quantum programming

language and the quantum hardware. Hardware agnosticism enables quantum code portability

and also aids in benchmarking, verification and validation, and performance studies for a wide

array of virtual (simulators) and physical quantum platforms.

To achieve language and hardware interoperability, XACC defines three important abstrac-

tions: the quantum intermediate representation (IR), compilers, and accelerators. XACC com-

piler implementations map quantum source code to the IR—the in-memory object key to

integrating a diverse set of languages to a diverse set of hardware. IR instances (and therefore

compiled kernels) are executed by sub-types of the accelerator, which defines an interface for

injecting physical or virtual quantum hardware. Accelerators take this IR as input and delegate

execution to vendor-supplied APIs for the QPU, or an associated API for a simulator. This

forms the hardware abstraction layer, or abstract device driver, necessary for a general quan-

tum (virtual) machine.

The IR itself can be further decomposed into instruction and function abstractions, with

instructions forming the foundation of the IR infrastructure and functions serving as composi-

tions of instructions (see Fig 7). Each instruction exposes a unique name and the set of qubits

that it operates on. Functions are a sub-type of the instruction abstraction that can contain fur-

ther instructions. This setup, the familiar composite design pattern [47], forms an n-ary tree of

Fig 7. Architecture of the XACC intermediate representation demonstrating sub-type extensibility for instructions, and the associated instruction

visitor abstraction, enabling runtime extension of concrete instruction functionality.

https://doi.org/10.1371/journal.pone.0206704.g007
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instructions where function instances serve as nodes and concrete instruction instances serve

as leaves.

Operating on this tree and executing program instructions is a simple pre-order traversal

on the IR tree. In order to enhance this tree of instructions with additional functionality,

XACC provides a dynamic double-dispatch mechanism, specifically an implementation of

the familiar visitor pattern [48]. The visitor pattern provides a mechanism for adding virtual

functions to a hierarchy of common data structures dynamically, at runtime, and without

modifying the underlying type. This is accomplished via the introduction of a visitor type

that exposes a public set of visit functions, each one taking a single argument that is a con-

crete sub-type of the hierarchical data structure composition (see Fig 7). For gate model

quantum computing, XACC exposes a visitor class that exposes a visit method for all concrete

gate instructions (X, H, RZ, CX, etc. . .). All instructions expose an accept method that

takes as input a general visitor instance, and invokes the appropriate visit method on the visi-

tor through double-dispatch. XACC instruction visitors thereby provide an extensible mech-

anism for dynamically operating on, analyzing, and transforming compiled IR instances at

runtime.

4.2 Tensor network accelerator and instruction visitors

The integration of a tensor network quantum circuit simulator with XACC can be accom-

plished through extensions of appropriate XACC components. In essence, this is an extension

of the quantum virtual machine hardware abstraction layer that enables existing high-level

programs and libraries to target a new virtual hardware instance. Injecting new simulators

into the XACC framework requires a new implementation of the accelerator. Enabling that

simulator to be extensible in the type of tensor networks, algorithmic execution, and the library

backend requires different mappings of the IR to appropriate simulation data structures. This

can be accomplished through individual implementations of the instruction visitor.

Our open-source implementation of the Tensor Network Quantum Virtual Machine

(TNQVM) library extends the XACC accelerator with a new derived class that simulates pure-

state quantum computation via tensor network theory [49]. This library provides the TNAcce-

lerator (Tensor Network Accelerator) that exposes an execute method that takes as input

the XACC IR function to be executed. Generality in the tensor network graph structure and

the simulation algorithm is enabled through appropriate implementations of the instruction

visitor. For example, an instruction visitor can be implemented to map the incoming XACC

IR tree to tensor operations on a matrix product state (MPS) ansatz. Walking the IR tree via

pre-order traversal and invoking the instruction visitor accept mechanism on each instruc-

tion triggers invocation of the appropriate visit function via double dispatch. The implementa-

tion of these visit methods provides an extensible mechanism for performing instruction-

specific tensor operations on a specific tensor network graph structure.

Furthermore, this visitor extension mechanism can be leveraged to not only provide new

tensor network structures and operations, but also provide the means to leverage different ten-

sor algebra backend libraries, and therefore introduce a classical parallel execution context.

Different visitor implementations may provide a strictly serial simulation approach, while oth-

ers can enable a massively parallel or heterogeneous simulation approach (incorporating the

Message Passing Interface, OpenMP, and/or GPU acceleration via CUDA or OpenCL).

To date we have implemented two instruction visitor backends for the TNQVM and the

TNAccelerator. We have leveraged the ITensor library [45] to provide a serial matrix product

state simulator, and the ExaTENSOR library from the Oak Ridge Leadership Computing Facil-

ity (OLCF) to provide a matrix product state simulator that leverages MPI, OpenMP and
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CUDA for distributed parallel execution on GPU-accelerated heterogeneous HPC platforms.

However, the ExaTENSOR visitor is not fully available yet since the ExaTENSOR library is

currently undergoing final testing before its public release and the implementation of the

generic tensor optimization procedure is still in progress. Thus, it has not been utilized yet as a

fully functional backend of TNQVM. Nevertheless, we will provide some details on the Exa-

TENSOR backend below in order to highlight its design and our future plans.

4.2.1 ITensor MPS implementation. The ITensor MPS instruction visitor implementa-

tion provides a mechanism for the simulation of an N-qubit wavefunction via a matrix product

state tensor network decomposition. The MPS provides a way to restrict the entanglement

entropy through SVD and associated truncation of Schmidt coefficients to reduce the overall

Schmidt rank. With these MPS states, we need O(nχ2) numbers to represent n qubits, where χ
is the largest Schmidt rank we keep. As long as χ is not too large (grows polynomially with sys-

tem size), the space complexity is feasible for classical simulation. For example, if the quantum

register is used to store the gapped ground states of systems with local interactions, we can

simulate larger number of qubits and still adequately approximate the wavefunction by keep-

ing χ small enough.

Our ITensor MPS visitor implementation begins by initializing a matrix product state ten-

sor network using the serial tensor data structures provided by the ITensor library [45]. Simu-

lation of the compiled IR program is run through a pre-order tree traversal of the instruction

tree. At each leaf of this tree (a concrete instruction), the accept method on the instruction

is invoked (see Fig 7) which dispatches a call to the correct visit method of the instruction

visitor.

At this point, the appropriate gate tensor is contracted into the MPS representation, which

maps onto itself under local quantum gates. Updating the MPS according to two-body entan-

glers involves two-qubit gates which act on two rank-3 tensors, and the full contraction results

in a rank-4 tensor (see Fig 5). We maintain the MPS structure by decomposing the rank-4 ten-

sor into two rank-3 tensors and a diagonal matrix between them. Note that when the two

qubits are not adjacent we apply SWAP gates on intermediary qubits to bring them together

(see Fig 2). The gate is then applied and reverse SWAPs bring the qubits back to the original

positions. Otherwise, applying a gate to non-adjacent qubits would require using the general

tensor network optimization algorithm described in the previous section, which we do not do

yet.

The SVD is used to return the resulting rank-4 tensor to the canonical MPS form (n rank-3

tensors and n − 1 diagonal matrices), with the singular values below a cutoff threshold � (e.g.,

default is � = 10−4) being truncated. The truncation over subspaces supporting exponentially

small components of the wave-function allows our MPS-based TNQVM to simulate large

numbers of qubits, contingent on the level of entanglement in the system. Examples and dis-

cussion may be found in the demonstrations in Sec. 5.

4.2.2 ExaTENSOR MPS implementation. The ExaTENSOR numerical tensor algebra

backend will enable larger-scale TNQVM quantum circuit simulations on distributed, GPU-

enabled and other accelerated as well as conventional multicore HPC platforms. ExaTENSOR

stores tensors in distributed memory (on multiple/many nodes) as a generally sparse collection

of tensor slices in a hierarchical fashion, that is, a tensor is defined recursively as a collection of

constituent tensors (the hierarchical storage is the key when dealing with heterogeneous HPC

architectures). Distributed tensor storage lifts the memory limitations pertinent to a single

node, thus extending the maximal number of simulated qubits. Although we currently target

the (distributed) MPS implementation, ExaTENSOR already provides a generic tensor net-

work builder that can be used for constructing an arbitrary tensor network in future. The Exa-

TENSOR MPS visitor implementation will provide a constructor that creates the MPS
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representation of the simulated multi-qubit wave-function with all constituent MPS tensors

being distributed now. Then the XACC IR tree traversal will invoke the ExaTENSOR MPS

visit method for each traversed node (instruction). The visit method implements lazy

visiting, namely it only caches the corresponding instruction (gate) in the instruction cache of

the ExaTENSOR MPS visitor. At some point, once the instruction cache has enough work to

perform, the evaluate method of the ExaTENSOR visitor will be invoked, implementing

the generic gate action algorithm described in Section II. Specifically, it will allocate the output

MPS tensor network, that is, the result of the action of the cached gates on the input MPS ten-

sor network. Then it will create the closed (inner product) tensor network by joining the gate

tensors to the input MPS tensor network, subsequently closing it with the output tensor net-

work (see Fig 2). This closed tensor network is a scalar whose value needs to be maximized,

subject to normalization condition on the output tensor network. The ExaTENSOR MPS visi-

tor will utilize the standard gradient descent algorithm by evaluating the gradients with respect

to each tensor constituting the output tensor network. Each of these gradients is itself an open

tensor network that needs to be fully contracted into a single tensor. Importantly, the compu-

tational cost of this contraction of many tensors strongly depends on the order in which the

pairwise tensor contractions are performed. Finding the optimal tensor contraction sequence

is an NP-hard problem. Instead, ExaTENSOR implements a heuristic algorithm that delivers a

pseudo-optimal sequence of pairwise tensor contractions in a reasonable amount of time (sub-

seconds). Then this pseudo-optimal sequence of pairwise tensor contractions is cached for a

subsequent reuse, if needed. Given a sequence of pairwise tensor contractions, the ExaTEN-

SOR library numerically evaluates all of them and returns the gradients that will subsequently

be used for updating the output tensor network tensors, until the optimized inner product sca-

lar reaches the desired threshold. In case it does not reach the desired value, the tensors consti-

tuting the output tensor network will be reallocated with increased dimensions of the auxiliary

spaces and the entire procedure is to be repeated. As of now, an early prototype implementa-

tion of the ExaTENSOR MPS visitor in TNQVM is based on the single-node version of the

ExaTENSOR library and we are currently finishing the integration of TNQVM with the fully

distributed, GPU-accelerated version of the ExaTENSOR library as well as performing the

final testing of the ExaTENSOR library itself before its public release later this year. Also, we

plan to have a full support for the generic tensor optimization procedure described in Fig 2

soon.

5 Demonstration

Here we demonstrate the utility of TNQVM by describing the overall memory scaling of our

matrix product state TNQVM based on the ITensor visitor for varying levels of entanglement

and system size. Our demonstrations show how TNQVM can be leveraged for validating

hybrid quantum-classical programming models. Specifically we focus on random circuit simu-

lations and the variational quantum eigensolver (VQE) hybrid algorithm.

5.1 Profiling random circuit simulations with MPS

We demonstrate the improved resource cost of representing quantum states (O(nχ2) vs O(2n))

with TNQVM by using an MPS formulation and by profiling the memory usage of simulating

randomly generated circuits. We vary the entanglement structure of our random circuits by

constructing time slices defined as rounds. The first round begins with a layer of Hadamard

operations on all qubits, followed by a layer of single qubit gates (Pauli gates and other general

rotations), followed by a set of nearest-neighbor CNOT entangling operations. Multiple

rounds constitute multiple iterations of generating these layers (excluding the Hadamards,
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which only appear in the first layer). Clearly, later rounds add layers of entangling CNOT

operations and therefore generate states with a more complicated entanglement structure.

We generate these random circuits for 5 through 85 qubits in increments of 5, and for num-

bers of rounds ranging from 2 through 10 in increments of 2. For each (round, n − qubits)
pair, we generate 10 random circuits, compute the heap memory usage, and compute the

mean and standard deviation of the memory usage. The results are plotted in Fig 8. For

lightly-entangled systems (i.e. those generated by a small number of random rounds) we see

that the MPS structure is able to encode the wavefunction of the system efficiently with a small

cost. For example, for only two rounds the maximum bond dimension is χ = 4, which is inde-

pendent of system size. As we increase the entanglement in our random circuits, the computa-

tional cost of the MPS simulations increases exponentially. This is because the circuits we

have sampled from are designed to exponentially increase the entanglement which saturates at

χmax = 2n/2 for an n-qubit system undergoing m> n random rounds [50].

5.2 Variational quantum eigensolver

Finally, we demonstrate the utility of our tensor network simulation XACC Accelerator back-

end (the TNQVM library) in validating quantum-classical algorithms. It is this rapid feedback

mechanism that is critical to understanding intended algorithmic results, and enables confi-

dence in the programming of larger systems. Here we demonstrate this programmability and

its verification and validation through a simple simulation of diatomic hydrogen via the

variational quantum eigensolver algorithm. The quantum-classical program leveraging the

TNQVM library is shown in the listing in Fig 9. This code listing demonstrates the integration

of XACC and our tensor network accelerator implementation. The code shows how to

Fig 8. Memory usage as a function of the number of rounds (circuit depth) and with increasing number of qubits. Memory

usage is constant for a small number of rounds but rapidly increases as the total circuit depth and number of qubits increases.

https://doi.org/10.1371/journal.pone.0206704.g008
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program, compile, and execute the VQE algorithm to compute expectation values for the sim-

plified (symmetry-reduced), two qubit H2 Hamiltonian (see [51]). We start off by defining the

quantum source code as XACC quantum kernels (note—we have left out a few measurement

kernels for brevity). Each of these kernels is parameterized by a single double representing

the variational parameter for the problem ansatz circuit (the ansatz kernel in the h2_src
string). Integration with the TNQVM simulation library is done through a public XACC API

Fig 9. XACC program compiling and executing the variational quantum eigensolver for the H2 molecule.

https://doi.org/10.1371/journal.pone.0206704.g009
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function (getAccelerator). This accelerator reference is used to compile the program

and get reference to executable kernels that delegate work to the TN Accelerator. We then

loop over all θ and compute the expectation values for each Hamiltonian measurement term.

Notice that this execution mechanism is agnostic to the accelerator sub-type. This provides a

way to quickly swap between validation and verification with TNQVM, and physical hardware

execution on quantum computers from IBM, Rigetti, etc.

6 Conclusion

In this work we have discussed the concept of a general quantum virtual machine and intro-

duced a concrete implementation of the QVM that enables quantum-classical programming

with validation through an extensible tensor network quantum circuit simulator (TNQVM).

We have discussed the applicability and scalability of a matrix product state backend imple-

mentation for TNQVM and discussed the role of TNQVM in benchmarking quantum algo-

rithms and hybrid quantum-classical applications including random circuit sequences used in

quantum supremacy [50] and the variational quantum eigensolver [7]. We have chosen a ten-

sor network based quantum virtual machine due to the complexity reduction such a formalism

provides for a broad range of problems. In general TNQVM enables large-scale simulation of

quantum circuits which generate states characterized by short-range entanglement. Studying

systems with long-range entanglement interactions will require further developments in

implementing more advanced tensor network decomposition types. We plan to investigate the

applicability of the tree tensor network and the multiscale entanglement renormalization

ansatz in future work, in an effort to scale simulation capabilities to a larger number of qubits.

We will also finish the deployment of the massively parallel ExaTENSOR visitor backend in

order to exploit large-scale HPC platforms in the future.
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