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lowing: ‘‘On page 18419, right column, first full paragraph, line
8, the statement that the spin–spin correlators T1

xx and T1
xy along

a z-link cannot be zero simultaneously is incorrect. They are, in
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Topological quantum states of matter, both Abelian and non-
Abelian, are characterized by excitations whose wavefunctions
undergo nontrivial statistical transformations as one excitation is
moved (braided) around another. Topological quantum computa-
tion proposes to use the topological protection and the braiding
statistics of a non-Abelian topological state to perform quantum
computation. The enormous technological prospect of topological
quantum computation provides new motivation for experimen-
tally observing a topological state. Here, we explicitly work out a
realistic experimental scheme to create and braid the Abelian
topological excitations in the Kitaev model built on a tunable
robust system, a cold atom optical lattice. We also demonstrate
how to detect the key feature of these excitations: their braiding
statistics. Observation of this statistics would directly establish the
existence of anyons, quantum particles that are neither fermions
nor bosons. In addition to establishing topological matter, the
experimental scheme we develop here can also be adapted to a
non-Abelian topological state, supported by the same Kitaev
model but in a different parameter regime, to eventually build
topologically protected quantum gates.

Quantum computers utilize intrinsically quantum mechanical
properties of matter to perform some difficult computa-

tional tasks, such as prime factorization, exponentially faster
than classical computers (1). However, quantum computation,
although being possible in principle, is turning out to be difficult
because quantum error corrections are very hard to carry out,
and without error correction, no substantial computation pro-
cess, quantum or classical, is feasible. Unfortunately, the toler-
ance for errors in a quantum error correction scheme (2), is very
small, which leads to the necessity for a very large number of
additional ‘‘physical’’ qubits (quantum bits) for each ‘‘logical’’
qubit in a complex quantum computer architecture. In this
context, a revolutionary recent development is the concept of
topological quantum computation (3–8). A topological quantum
computer is robustly protected from local errors by the physical
hardware and one does not, in principle, need any software-level
quantum error correction protocols that are required for a
regular qubit-based quantum computer (9–14). The topological
state of matter has enhanced ground state symmetries that do
not exist in the bare Hamiltonian of the system. This enhanced
topological symmetry protects the ground state from quantum
errors associated with external f luctuations, providing the ro-
bustness needed for fault-tolerant quantum computation.

The early proposal (3, 4) for topological quantum computa-
tion was studied mostly as a deep mathematical curiosity because
no physical implementation was thought to be possible. This all
changed recently when serious specific suggestions (15) were
made to study non-Abelian topological order through manipu-
lating delicate fractional Quantum Hall (FQH) states in low-
temperature two-dimensional electron layers as an initial step to
building a topological quantum computer in the laboratory.
These suggestions have generated a great deal of interest in a
broad spectrum of disciplines including physics, mathematics,
computer science, and of course, quantum computation. Several
groups are currently working on carrying out experiments to see
whether FQH topological quantum computation is feasible even
as a matter of principle.

The main problem in carrying out topological quantum com-
putation using FQH states is that there is essentially no exper-
imental evidence determining whether the actual experimentally
observed 5/2 and 12/5 FQH states are, in fact, non-Abelian
states, allowing quantum computation. Therefore, initial exper-
imental work will be directed entirely toward an experimental
demonstration of the topological nature of these states. Such an
experimental demonstration by itself will be important because
topological quantum states have never been directly observed
experimentally.

In this article, we discuss a different situation, where the
topological nature of the quantum state is assured by design; i.e.,
the quantum state is constructed as a topological state. These are
model systems controlled by Hamiltonians whose properties
guarantee topological protection. The most famous example of
this is the magnetic Kitaev lattice, described in the pioneering
papers (2, 3) on topological quantum computation. The Kitaev
model is an exactly soluble lattice model that carries excitations
with both Abelian and non-Abelian anyonic braiding statistics,
which are the hallmarks of topological quantum matter; i.e.,
excitations that do not obey ordinary bosonic and fermionic
statistics, but are anyons with more complex statistical behavior
(5) arising from braiding. The usual definition of permutation
statistics for fermions and bosons can be thought of as a half
braid of one particle around another of the same species
followed by a translation to effectively exchange the positions of
the two particles. The net result is an overall gain in a plus or
minus sign in the wavefunction for bosons or fermions, respec-
tively. Note that a full braid (a closed loop) does not result in a
sign change. The Abelian anyon wavefunction, by contrast,
acquires a phase factor upon a full braid of one anyon around
another, whereas a braid of non-Abelian anyons unitarily trans-
forms the wavefunction as a vector in a finite-dimensional
Hilbert space (5), making the successive braiding operations
noncommutative.

Precise proposals to construct an artificial Kitaev lattice using
atomic optical lattices have recently been made in the literature
(16, 17). Therefore, we know how to make a Kitaev lattice, and
we also know that such a lattice supports both Abelian and
non-Abelian topological phases, and, in both phases, the topo-
logical robustness is guaranteed. In addition, recent numerical
results (18) show that weak, local perturbations (e.g., a stray
Zeeman field or unwanted interaction terms) do not destroy
topological order. However, the problem that has remained
unclear, and what we discuss here, is a way to carry out the
topological gating operations, called ‘‘braiding’’ in the technical
literature, on such an optical-lattice-based topological system
and subsequently detect the results. Our suggested braiding
technique, which requires successive manipulations of adjacent
lattice sites that we work out in detail, can not only be imple-
mented on the proposed Kitaev optical lattice, but can also be
used in other proposals for doing topological quantum compu-
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tation in optical lattices; a bosonic model involving the extended
Hubbard model (19) is one example.

We note that a proposal (20) for observing the Abelian
anyonic phase in a rotating Bose–Einstein condensate (BEC)
consisting of a small number of atoms has recently been made in
the literature. The proposed system is essentially a small con-
tinuous quantum Hall liquid and completely different from the
large discrete Kitaev lattice system discussed here. As we will
see, the origin and creation of anyonic excitations, the braiding
operation, the detection of statistics, and even the large size
(�105 atoms) of the lattice system are completely different in
ways that make optical lattices, and specifically the Kitaev model,
a more attractive candidate for realizing and detecting topolog-
ical matter.

We stress that the techniques for braiding and read-out
proposed here provide a necessary first step in eventually
performing topological quantum computation in optical lattices.
Here, we should make a clear distinction between quantum
computation using Abelian and non-Abelian systems. An Abe-
lian anyonic system has two degenerate ground states that
cannot mix by a weak local external perturbation in the sense that
the errors induced by local perturbations are exponentially
suppressed �exp(�L/�), where L is the linear size of the system
and � is a characteristic length inversely proportional to the
excitation gap (3, 4). In the ground state sector, one thus has a
topologically protected two-state system that, on multiply con-
nected surfaces, can be duplicated to produce an array of qubits
and used for topological quantum memory (3, 4). Quantum
computation can then be accomplished by devising the conven-
tional non-topologically protected single- and two-qubit gates. In
a non-Abelian topological phase (qubits are topologically pro-
tected here as well), on the other hand, the quantum gates can
be constructed simply by braiding one quasiparticle around
another, thereby exploiting the statistical effects of these braids.
Therefore, implementation of these gates is immune to local
deformations of the braiding trajectory since the effects of the
braid transformations are statistical and hence only depend on
the braid topologies. In this sense, the putative quantum gates
are noiseless.

Recently, Ioffe et al. (21) proposed building Josephson-
junction arrays to simulate the quantum dimer model on some
frustrated lattices which in turn supports topological phases and
quantum computation in the Abelian setting. However, the
corresponding Josephson-junction architecture for a non-
Abelian phase is extremely complex (22). The beauty of the
Kitaev model is that, in contrast to the quantum dimer model,
it can support both the Abelian and the non-Abelian phases just
by varying the optical lattice parameters. Optical lattices offer a
much more coherent and tunable quantum system than the
Josephson-junction system necessary for the implementation of
the topological phases. Therefore, with a view to an eventual
topological quantum computer built with the non-Abelian phase,
we focus our attention here on the Kitaev optical lattice model.
Our work here clarifies the nature of the elementary excitations,
the origin of the topological phase change acquired by the
wavefunction upon braiding, and how one can experimentally
carry out the braiding operation and detect the braiding statistics
in the Abelian phase of the Kitaev lattice, all of which are directly
applicable to the more complex non-Abelian phase. In the
non-Abelian phase, although the precise mathematical construc-
tion of the braiding operator remains, as of now, unknown (A.
Kitaev, personal communication) and work in this direction is
required, it is clear that on the operational level it involves the
same successive single-site spin manipulations as we discuss
here, and so the underlying experimental techniques remain the
same. Thus, we take an important first step towards topological
quantum computation in optical lattices. Furthermore, even the
simple observation of Abelian topological (‘‘anyonic’’) proper-

ties in an optical lattice along the lines of our proposed braiding
procedure and the subsequent read-out scheme will be a break-
through achievement in itself, because anyonic statistics have
never been directly demonstrated in any experimental system.

The Kitaev model describes a set of individual spins placed at
the vertices of a two-dimensional honeycomb lattice with a
spatially anisotropic interaction between neighboring spins. The
Hamiltonian is given by (4):

H � �Jx �
x-link

� j
x� k

x � Jy �
y-link

� j
y� k

y � Jz �
z-link

� j
z� k

z , [1]

where J� are interaction parameters and � j
� are the Pauli

matrices at the site j, for � � x, y, z. Normally, neighboring spins
in Heisenberg models interact isotropically so that the spin–spin
interaction does not depend on the spatial direction between
neighbors. In the above model, however, neighboring spins along
links pointing in different directions (see Fig. 1a) interact
differently. This model contains conserved quantities allowing
an exact solution for both the ground and excited states. Two
distinct regimes, defined solely by the interaction parameters,
carry excitations with either Abelian or non-Abelian braiding
statistics.

Ultra-cold atoms in optical lattices offer the possibility of
designing such anisotropic lattice models (16, 17). Without loss
of generality, we focus on the proposal in ref. 16 and present a
modified implementation scheme for 87Rb atoms with a slightly
different laser configuration. Consider a 87Rb Bose–Einstein
condensate prepared in the hyperfine ground state �2���F � 1,
mF � �1� and confined to a honeycomb optical lattice in a single
two-dimensional (XY) plane, where F and mF denote the total
angular momentum and the magnetic quantum number of the
hyperfine state. The atomic dynamics along the Z� axis are frozen
out by optical traps with a high trapping frequency (23). Two
hyperfine ground states �1� � � F � 2, mF � �2� and �2� � �F �
1, mF � �1� are defined as the effective atomic spin. We apply
three pairs of far red-detuned interfering traveling laser beams
(wavelength �0 � 850 nm) above the XY plane with an angle � �

2arcsin(�0/�s�3), where �s � 787.6 nm is the wavelength of the
spin-dependent laser beams described below. The projections on
the XY plane of the three pairs of lasers are along the angles
��/6 and �/2, respectively. These interfering laser beams form
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Fig. 1. Creating and moving anyons in Kitaev lattices. (a) Links x, y, and z on
a honeycomb plaquette, p, with sites depicted by open and filled circles. (b and
c) A horizontal (b) and vertical (c) pair of e vortices created by the application
of the spin operator, �� 1

z � � 1
z I2 (b) and �� 1

y � � 1
y � 2

x to two sites along a z link,
where I is the unit operator. (d and e) Horizontal (d) and vertical (e) move of
an e vortex by repeated applications of �� z (d) and �� y (e) operators.
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a traveling wave along the Z� direction, but a spin-independent
honeycomb optical lattice structure with the lattice spacing
a ��s/�3 in the XY plane. The potential barrier between
neighboring atoms in the honeycomb lattice is adiabatically
ramped up to approximately V0 � 14ER to obtain a Mott
insulator state with one atom per lattice site (24, 25), where ER �
h2/2m�0

2 is the recoil energy for Rb atoms.
In this honeycomb lattice, we can engineer the anisotropic

spin-spin interactions Jv� i
v� j

v in Eq. 1 using additional spin-
dependent standing wave laser beams in the XY plane. With
properly chosen laser configurations (16), a spin-dependent
potential V �

v � V �
v ���v����V �

v ���v��� (the spatially varying
parts are omitted here) along different tunneling directions v �
x, y, z can be generated, where ���v are the eigenstates of the
corresponding Pauli operator � v. We adjust V �

v and V �
v so that

atoms can tunnel with a rate t�v only when it is in the eigenstate
���v, which yield the effective spin–spin exchange interaction
Jv�i

v�j
v with the interaction strength Jv � �t�v

2 /U. Here, U is the
on-site interaction energy of atoms.

For simplicity, in the following we show how to generate the
spin–spin interaction Jz� i

z� j
z in the Hamiltonian (Eq. 1) as an

example, although other spin–spin interaction terms can be
created using a similar procedure (16). The standing wave laser
beam used for generating spin-dependent tunneling is along the
z-link direction and has a detuning 	0 
 �2� � 3600 GHz to the
52 P3/2 state (corresponding to a wavelength �s � 787.6nm). This
laser beam forms a blue-detuning potential for atoms with spin
�1�, but a red-detuning potential for �2� atoms. For instance,
with a properly chosen laser intensity, the spin-dependent po-
tential barrier may be set as V�2 � 8ER and V�1 � �4ER, which,
combined with the spin-independent lattice potential barrier
V0 � 14ER, yield the total effective spin-dependent lattice
potential barrier Ṽ2 � 22ER and Ṽ1 � 10ER for neighboring
atoms in the honeycomb lattice. Therefore, the tunneling rates
for two spin states satisfy t1/t2 �� 1, which, as shown in ref. 16,
leads to the spin–spin interaction Jz� i

z� j
z with Jz 
 t1

2 /U. For 87Rb
atoms, we estimate the time scale for the spin-spin interaction
h/Jz 
10 ms. The spin-dependent lattice is adiabatically ramped
up and atoms in the optical lattices follow the time-varying
Hamiltonian and reach the final ground state �	g� of the Kitaev
model, which provides the starting point to our analysis. By
carefully tuning the spin-dependent lattice depth in different
directions, one can in principle access all phases of the Kitaev
model.

We briefly discuss two technical issues with this scheme:
spontaneous emission and finite temperatures. Because of the
large detuning of the spin-dependent lasers, the spontaneous
emission rate for atoms is suppressed and may be estimated
2�V�1�/–h�	0� 
 0.3 s�1, where  
 2� � 6 MHz is the decay rate
of the excited hyperfine state. This decay rate is sufficient to
allow the preparation of the initial ground states as well as many
spin operations. In addition, the temperature of the system needs
to be much lower than the spin–spin interaction strength T ��
Jz/kB 
 1 nK, which sets a strict requirement for experiments.
Larger temperatures will populate the system with an excess of
unwanted excitations.

Given the ability to engineer the ground state of the above
model, how do we create excitations? In what follows we
consider the limit defining the Abelian phase, Jz �� Jx, Jy, as a
conceptual first step toward realizing nontrivial braiding statis-
tics. In the case Jx � Jy � 0, the low energy Hilbert space is
spanned by aligned pairs of z links (11 or22) on neighboring
sites. The direction of alignment (up or down), however, is not
fixed energetically. The ground state, therefore, is highly degen-
erate. Doing degenerate perturbation theory in Jx and Jy, while
preserving the ground state subspace, the original Hamiltonian
reduces to (3): Heff � �Jeff �p Wp, where Jeff � Jx

2 Jy
2/16� Jz

3� and the

sum is over all plaquettes (hexagons). Heff is unitarily equivalent
to the toric code (3), in the terminology of topological quantum
computation. It is written in terms of the operator associated
with lattice plaquettes, Wp � � 1

x� 2
y� 3

z� 4
x� 5

y� 6, (see Fig. 1a), which
can have eigenvalues �1 or �1. Wp tests the spin orientation
around hexagons. The ground state is defined as a superposition
of all spin configurations preserving Wp � �1 for all plaquettes.
Any spin configuration on a plaquette that violates this condition
defines an excitation and is called a vortex, borrowing nomen-
clature from Z2 gauge theory to which the model, in this limit,
can be mapped. By simultaneously applying a pair of spin
operators (Fig. 1 b and c), one for each neighboring site,
separated by a z-link and labeled as 1 and 2, we force Wp � �13
�1 on two neighboring plaquettes, thereby creating a pair of
vortex excitations (vortices are always created in pairs). Here,
two spin operators are needed to preserve the alignment of the
spins along the z links, that is, the ground state subspace {�11�,
�22�}. By definition, different types of vortices live on different
sublattices of the honeycomb lattice and are called e and m
vortices (3). Here, sublattice means alternate rows of the lattice,
and the choice of sublattice is irrelevant. These vortices (and
combinations thereof) define the entire set of low energy
excitations of the system.

We create vortices by applying the spin pair operation to site
pairs, which, in effect, rotates pairs of spins on z links:
exp(�i�� �
), where an external field applied for a time 
 reorients
both spins. Such operators require control over single atoms at
specific sites. However, it is not clear how one can apply a well
controlled external potential to a single lattice site because the
lattice spacing is on the order of the laser wavelength. Accord-
ingly, systems at the diffraction limit will incorporate several sites
at the same time and therefore prevent manipulation of spins of
single atoms. A recent proposal (26) establishes a simple and
efficient technique for selectively manipulating spin states of
single atoms using a combination of focused lasers and micro-
wave pulses, which, as we will show, enables the creation and
manipulation of vortices through individual spin operations.

As a precursor to applying single-spin operations, we first
adiabatically ramp up the lattice. Adiabatic ramping of the lattice
depth imposes a key simplification used prior to (and after) a set
of single particle operations. Consider an adiabatic ramping up
of the spin-independent optical lattice from an initial barrier
14ER to 
25ER, while adjusting the spin-dependent lattice
potential simultaneously so that the relation Jz � 3 Jx � 3 Jy
remains unchanged during the process. In the new lattice
potential, the ground state wavefunction �	g� does not change,
whereas the time scale for spin–spin interactions is lengthened
(–hJ eff

�1 �� 10 s), which means that changes in spin–spin interac-
tions during local, fast operations (�1 ms) can be neglected. As
a consequence, a series of single-atom operations defining our
braiding procedure act instantaneously (relative to –hJ eff

�1) on the
highly correlated ground state. After spin operations on the
ground state are completed we adiabatically lower the optical
lattice potential depth. Note that we adiabatically ramp up (or
down) the lattices in such a way that it merely decreases (or
increases) the overall interaction energy scale, and does not
perturb the structure of the spin Hamiltonian. Therefore, such
processes keep the state as the eigenstate of the Hamiltonian and
the adiabatic time scale is limited by excitations to higher bands
of lattices, instead of the spin–spin interaction strength.

We now discuss a scheme designed to implement a set of single
spin operations after the adiabatic ramp up. In Fig. 2, we plot the
atomic potential in a two-dimensional, color-scale plot in the
presence of a focused laser extending perpendicular to the honey-
comb plane with an intensity maximum at a specific lattice site. The
spatial distribution of the focused laser intensity induces position-
dependent splittings between spin states �1� and �2�. For the target
atom, the focused laser (�� polarized) induces a red-detuned trap
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for the spin state �2� with a depth chosen to be V2 � �35ER, but
a blue-detuned trap for spin state �1� with depth V1 � 18ER
(corresponding to a power of 8.5�W with beam waist �0.5 �m).
The wavelength of the laser is chosen to be � � 421 nm, which
corresponds to a detuning 	1 � �2� � 1209 GHz from the
transition 52S1/23 62P3/2 to obtain the maximum ratio between the
hyperfine splittings of two spin states and the spontaneous scatter-
ing rate (26).

A microwave pulse applied to the whole system will rotate the
spin state of the target atom. The microwave frequency is chosen
to be resonant with the hyperfine splitting of the target atom
where the focused laser is applied, but has a detuning estimated
to be –h� 
 52ER for nontarget atoms. Different spin rotations
� x and � y (note that � z � i� x� y is a combination of � x and � y),
may be implemented using different phases � � � / 2 and � �
0 of the microwave pulse, where � is defined through the
magnetic field of the microwave B � cos(k� � r� � t � �) with r� �
0 as the position of the target atom. A Gaussian shaped pulse
�(t) � �0 exp(�0

2t2) (�tf � t �tf) with parameters 0 � � / 4
and 0 tf � 7 (the pulse period 2tf � 55 �s) is used to perform
single spin operations. The variations of probabilities of nontar-
get atoms in hyperfine states �1� and �2� caused by the
microwave pulse are found from the Rabi equation to be �10�2.
In addition, refocusing microwave pulses can be used to elimi-
nate the phase variations of neighboring atoms due to the Rabi
pulses (26). By combining estimates from the adiabaticity criteria
and the Rabi equation, we find that the single-spin operations
may be accomplished in �200 �s (including ramping up and
down of the focused laser, the microwave pulse period) and the
probability to spontaneously scatter an unwanted photon is
estimated to be small, 1.5 � 10�4. The total probability for
scattering a photon due to the focused laser is �1 � 10�2 in the
whole braiding process, which consists of �60 single-spin oper-
ations for the detection of anyonic statistics. In addition, the
spontaneous emission probability due to the spin-dependent
lattices is �2 � 10�2. The focused lasers need to be spatially
stabilized because a displacement of the laser center from the
minimum of the optical lattice potential induces a detuning of
the microwave from the hyperfine splitting between two spin
states of the target atom, and thus reduces the fidelity of the
single-spin rotation. For a small displacement, 10 nm, we esti-
mate the detuning to be �2� � 350 Hz and find through
integrating the Rabi equation that the fidelity of the rotation is
degraded by 3 � 10�3.

During the single-spin operations (but after the adiabatic
ramp up), we keep the lattice depth high, which aids in defining
multisite operations. The single-spin operations can be accom-
plished very fast (�0.2 ms) compared to –hJ eff

�1, and the double-
spin operation �� y may be taken to be two consecutive single-spin

operations. Although each single operation � y or � x does not
preserve the spin subspace {�11�, �22�}, the spin–spin inter-
actions along the z link that preserve the spin alignment are weak
(almost zero) and can be neglected; therefore, two consecutive
spin operations are equivalent to a double-spin operation. This
procedure allows for the creation and braiding of vortices at
specifically chosen locations. Note that errors in braiding
operations originating from imperfect single- or double-spin
operations as well as the impact on nontarget atoms can be
automatically corrected by the topological properties of the
Hamiltonian. When the optical lattice depth is lowered, the
Kitaev Hamiltonian energetically penalizes unwanted local ex-
citations. The result is a decay to the prepared topologically
protected sector in the presence of a bath. However, the leakage
errors caused by spontaneously scattered photons are not auto-
matically corrected because atoms are scattered to other hyper-
fine states, and thus are out of topological protected subspace of
states.

After creating excitations, we need a braiding procedure that
contains a series of spin operations in order to observe the
topological phase. The e and m vortices discussed here are anyons
because the wavefunction acquires a minus sign upon a full braid of
one flavor of vortex around the other flavor (braiding around a
vortex of the same flavor does not produce a sign change). A braid
along a path C is defined through a contiguous string of spin
rotations traversing the lattice (3): RC � �k�C exp(�i
�� k

�k), where
the direction of the spin operator, �k, is determined by the direction
of the move. Note that each move progresses by creating two new
vortex excitations on neighboring plaquettes, which annihilates the
original vortex on one plaquette and subsequently creates a vortex
on the neighboring plaquette. Such processes must be much faster
than the time scale –hJeff

�1 � 10 s set by the excitation energy gap,
which is clearly satisfied in our scheme. Fig. 1 d and e shows two
types of moves, horizontal and vertical, and the associated spin
operators, which can be accomplished by applying suitable proce-
dures for single spin manipulation described above.

Fig. 3 shows two examples of braiding procedures: one e vortex

Focused
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Microwave

↓

↑

Fig. 2. The two-dimensional plane plots the color scaled potential seen by
atoms sitting in the honeycomb lattice but in the presence of a focused laser.
Dark blue indicates the potential minimum for the spin down hyperfine state,
whereas dark red indicates the maximum. A schematic of the focused laser
extends out of the plane. Microwave pulses drive the transitions between two
spin states (Inset), but only for an atom at the center of the focused beam.
Atoms at sites away from the center experience a weak potential which keeps
the hyperfine levels off resonance.
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e vortex that started from the point B and moved along a path CB (red dotted
line). The top e vortex forms a closed loop through a series of elementary
moves generated from spin operators. When the e vortices return to their
starting positions, the resulting state is the same as the starting ground state,
	g. (b) The same as a, but for an e vortex braided around an m vortex. Here,
spin commutation relations at the point D yield a final state �	g, indicating
anyonic statistics between e and m vortices.
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looping around another (Fig. 3a), which produces no sign
change, and one e vortex taken around an m vortex (Fig. 3b),
which does produce a sign change. This minus sign arises from
the anticommutation relation of spin � D

y (from path CT) and � D
z

(from path CB) at the site labeled D in Fig. 3b. Initially, two pairs
of e vortices are created by applying spin operations �� z (Fig. 3a)
at lattice sites A and B, respectively. The left vortex of the pair
at B is moved to the center of the lattice along a path CB by a
series of spin operations RCB

. The left vortex of the pair at A is
then braided around the central vortex along a path CT. The
central vortex can be moved back to the original site by applying
RCB

�1. Now, both pairs of vortices are back to original pair location,
where they are fused to vacuum by �� z at sites A and B. Because
the paths CB and CT do not intersect at any lattice site, RCB

and
RCT

commute and the final wavefunction is �	f� �
�� A

z �� B
z RCB

�1RCT
R CB

�� B
z �� A

z �	g���	g�. Therefore, there is no net gain
in an overall minus sign in a braid of an e vortex around another
e vortex. The situation is different when an e vortex is braided
around an m vortex as shown in Fig. 3b, where the same
procedure as that in Fig. 3a has been applied. Here, however, the
paths CB and CT, defined through a series of spin operators,
intersect at lattice site D, where spin operators � D

y from RCT
and

� D
z from RCB

are both applied. Because of the anticommutation
relation of � D

y and � D
z , a minus sign is obtained when we

exchange RCT
and RCB

, that is RCT
RCB

� �RCB
RCT

. Therefore,
the final wavefunction is �	f� � ��	g�. We find a net gain of
an overall minus sign in a braid of an e vortex around an m vortex.

We arrive at an important aspect of quasiparticle braiding and
related statistics. The defining moment in braiding occurs at the
braid crossing point. The notion of braiding statistics is topo-
logically robust because the closed loop may acquire small
f luctuations in shape due to external localnoise, but, as long as
it is a closed loop about one m vortex, the special point D remains
somewhere on the lattice. The spin states at the point D provide
an observable quantity useful in detecting anyonic braiding
statistics.

We propose an interference experiment to observe the change in
sign brought about by the braiding procedure. Consider two cases:
an e vortex braided around nothing, i.e., the vacuum state, which,
after a full braid, leads to the original ground state, �	g�, and an e
vortex braided around an m vortex, which leads to ��	g�. Taken
separately, the overall sign in each case is not directly observable.
We create a superposition of both scenarios by simultaneously
braiding the e vortex around both the vacuum and an m vortex (Fig.
4a). We generate this superposition by separating two m vortices
along the horizontal path CH with a sequence of �/2 pulses using the

operations RCH
� �k�CH

exp(�i��� k
z/2), which creates a superpo-

sition of both the m vortex state and the vacuum by virtue of the
relation: exp(�i��� �j/2) � (I � i��� �j)/�2. We emphasize here that
a sequence of �/2 pulses along the path CH is necessary. If initially
we create a superposition of vacuum and an m vortex pair by one
�/2 pulse and then try to braid one vortex through a series of �
pulses, one m vortex, instead of the superposition of vacuum and
one m vortex, will be moved to the center. That is because the
braiding operator creates a new m vortex pair from vacuum, which
is then braided by the � pulses. Braiding an e vortex along the closed
loop CL via RCL

� �k�CL
exp� � i��� k

�k) closes our interference
braid. To eliminate auxiliary vortices produced by the �/2 pulses,
we, as a final step, apply a series of �� / 2 pulses along CH. In Fig.
4b, with no m vortex inside CL, the final wavefunction �	l� �
�� zRCL

�� z�	g� � �	g�, is the same as the initial state. In Fig. 4a, an m
vortex (in a superposition with the vacuum) is created with � /2
pulses, the final wavefunction is �	2� � �� zRCH

�1RCL
RCH

�� z�	g� and is
quite different from the initial ground state. At the intersection site
D�, the path CH contains the operation e�i��� z/2 � (I � i�� z)/�2,
whereas CL contains the operation �i�� D

y , and the commutation of
them yields �	2� � 1/2(ID� � i�� D�

z )2 RCH

�1RCH
�� z RCL

�� z�	g� � i�� D�
z �	 g�,

showing a pair of m vortices at the site D� (Fig. 4c). Had the m vortex
never been placed at the center of the loop CL, the interference
experiment would produce no signature at the point D� and the
system would return to its ground state, �	g�, upon a full braid (see
Fig. 4b). Therefore, detecting a pair of m vortices at the location D�
in the interference experiment would provide concrete evidence for
anyonic statistics.

Detecting the presence of two adjacent vortices (Fig. 4c) is
tantamount to observing the local spin–spin correlators,
Ti

�� � �	i��D�
� �F

��	i� of two atoms at D� and its z-link neighbor, F,
where �, � � x, y, z, i � 1,2. Note that, given different final states
�	1� � �	g� and �	2� � i�� D�

z �	g�, we find T2
xx � �T1

xx and T2
yx � �T1

yx,
that is, the spin correlators have different signs contingent upon the
existence of a pair of vortices at two neighboring plaquettes around
D� (Fig. 4c). In addition, T1

xx and T1
yx cannot be zero simultaneously

for the highly entangled topologically ordered ground state, which
can be written as �	g� � �1�11�D�F��1� � �2�22�D�F��2�. Here
�1 and �2 are superposition coefficients, and �1 and �2 are
wavefunctions of atoms at all other sites and satisfy the normaliza-
tion conditions ��1��1� � ��2��2� � 1. In the topologically
ordered ground state, the spins at sites D� and F are highly
entangled with other spins, therefore �1 and �2 are both nonzero.
For Jx � Jy � 0, sites D� and F are decoupled from other sites and
��1� � ��2�. As Jx and Jy become nonzero, the overlap ��1��2�
starts to decrease from 1, but is not zero for small Jx, Jy. Substituting
�	g� into the two spin correlators, we find T1

xx � �	g��D�
x �F

x �	g� �
��1��2� Re(�*1�2) and T 1

yx � �	g�� D�
y � F

x �	g� � ��1��2�
Im (�*1�2), respectively. Clearly, T1

xx � T1
yx � 0 means that

either �1 or �2 must be zero, which is impossible for the
topologically ordered ground state.

We see that a measurement of the sign change in T i
�� can

distinguish the two states �	g� and i�� D�
z �	g�. Unfortunately, local

spin correlations can only be measured by local operations which
distinguish themselves from conventional time of flight imaging
methods that measure collective effects of the whole system (27).
Here we propose a scheme to detect local spin correlations using
local operations, which essentially establishes a probe to detect
the presence of individual vortex pairs. We first note that the spin
correlator between atoms at two sites D� and F can be written as
T i

�� � TrD�F(�D�
� � F

��D�F), where �D�F � Tr�	i��	i� is the local
reduced density matrix of sites D� and F obtained by tracing out
all other sites. This means that the spin correlation functions can
be measured by detecting atoms in different measurement bases.
For example, we find the spin correlator T i

xx can be obtained by
measuring the probabilities of observing atoms D� and F in the

e e

e e

m m

a

b c

mm

D'

D'
LC HC

F

Fig. 4. An interference experiment for detecting anyonic braiding statistics.
(a) Schematic showing a closed loop braid of an e vortex, CL, denoted by a red
dotted line. The e vortex is taken around a superposition state of an m vortex
and the vacuum placed at the center of the loop by a series of half-spin
rotations (�/2 pulses) along the horizontal, blue dotted line, CH. The crossing
point, D�, carries an observable signature of anyonic statistics, a pair of m
vortices. (b) The same as a but with no central m vortex. (c) The pair of m
vortices created at the crossing point D�.
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basis {����,����,����,����} using the relation T i
xx � P���� �

P���� � (P���� � P����), where ��� � (�2� � �1�)/�2.
The experimental scheme is plotted and described using four

steps as shown in Fig. 5. (i) Using single spin operations with
focused lasers and microwave pulses, we apply �/2 pulses se-
quentially to both atoms D� and F along the �y spin axis to
transfer atoms to the new basis (Fig. 5a) (ii) To prevent
fluorescence signal from non-target atoms during further de-
tection processing we transfer all atoms in the state �2� � �F �
1, mF � �1� to the state �F � 1, mF � 1� by two � microwave
pulses, then all atoms at the state �1� � �F � 2, mF � �2� are
transferred to the state �2� by another � microwave pulse (Fig.
5b). (iii) With the assistance of focused lasers, we select only
atoms at sites D� and F and transfer them from state �2� back
to �1� (Fig. 5c). (iv) A detection laser that is resonant with �1�
3 �3 � �52 P3/2 : F � 3, mF � �3� is applied to detect the
probability of finding the atoms at �1� (corresponding to the
basis state ���) (Fig. 5d). The fluorescence signal (the number

of scattered photons) has three quantized levels, which corre-
spond to states ����,�� ��,����(or ����), respectively. Re-
peating the entire experiment many times yields the probabilities
P����, P���� and P���� � P����, and thus determines the spin
correlator Ti

xx. Similarly, we can measure the spin correlation
function Ti

yx with different basis states {�����, �����, �����,
�����}, where ���� � (�2� �i�1�)/�2 define a basis for atom D�.
The only difference for above processes in measuring T 1

xx and T 1
yx

is that the �/2 pulse on atom D� in step i is along the �x spin axis.
In discussing these steps, we have applied a very general
technique, a measure of the two-spin correlation function to
reveal the presence of excitations of a braided state at the specific
location, D�, and therefore anyonic statistics through the fluo-
rescence of selected atoms.

We have shown how to create, braid, and detect Abelian
anyons in a spin model defined on a honeycomb optical lattice.
Our proposed observation of anyonic statistics utilizes two
important precursors necessary for topological quantum com-
putation: (i) establishing the existence of a topological phase of
matter, and (ii) defining a braiding and readout procedure for
executing suitably defined elementary gate operations with the
goal of using topological excitations for quantum computation.
Our braiding and detection techniques can also be used to
generate different types of excitations useful in creating a set of
topologically protected quantum gates using non-Abelian
anyons, which may be found in the model discussed here but in
a different parameter regime or in different models imple-
mented with optical lattices.

We thank Alexei Kitaev, Chetan Nayak, and Ian B. Spielman for helpful
discussions. This work was supported by Army Research Office Disrup-
tive Technology Office and Laboratory for Physical Sciences and the
National Science Foundation.

1. Bennett CH, DiVincenzo DP (2000) Nature 404:247–255.
2. Preskill J (1999) Phys Today 52:24–30.
3. Kitaev A (2003) Ann Phys 303:2–30.
4. Kitaev A (2006) Ann Phys 321:2–111.
5. Das Sarma S, Freedman M, Nayak C (2006) Phys Today 59:32–38.
6. Day C (2005) Phys Today 58:21–24.
7. Wilczek F (2006) Phys World 19:22–23.
8. Collins GP (2006) Sci Am 294:57–63.
9. Leibfried D, Knill E, Seidelin S, Britton J, Blakestad RB, Chiaverini J, Hume

DB, Itano WM, Jost JD, Langer C, et al. (2005) Nature 438:639–642.
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Fig. 5. Series of experimental steps used to measure the spin–spin correlation
function of two spins. A indicates either one of the two spins, whereas C
indicates all other spins in the lattice.
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