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Two-particle correlation functions in cluster perturbation theory: Hubbard spin susceptibilities
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Cluster perturbation theory (CPT) is a computationally economic method commonly used to estimate
the momentum- and energy-resolved single-particle Green’s function. It has been used extensively in direct
comparisons with experiments that effectively measure the single-particle Green’s function, e.g., angle-resolved
photoemission spectroscopy. However, many experimental observables are given by two-particle correlation
functions. CPT can be extended to compute two-particle correlation functions by approximately solving the
Bethe-Salpeter equation. We implement this method and focus on the transverse spin susceptibility, measurable
via inelastic neutron scattering or with optical probes of atomic gases in optical lattices. We benchmark the
method with the one-dimensional Fermi-Hubbard model by comparing with known results.
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I. INTRODUCTION

Cluster methods offer viable approximations to otherwise
intractable quantum many-body problems [1]. Strongly in-
teracting models pose challenging problems at first glance
because the Hilbert space scales exponentially. Yet certain
problems are tractable because small subsystems offer good
approximations to the thermodynamic limit. Such problems
present an opportunity to approximate eigenstates as factor-
ized subsystems. In lattice models, the subsystems can be
real-space clusters.

Cluster methods are often applied to Hubbard models with
local (on-site) Hubbard interactions,

HH = H0 + U
∑

i

ni,↑ni,↓, (1)

where H0 is a single-particle term that includes intersite
hopping. U is the Hubbard interaction parameter and ni,σ =
c†

i,σ ci,σ , where c†
i,σ creates a fermion at site i and spin state

σ ∈ (↑,↓). This model is written in a single band but cluster
methods can be adapted to include multiband models as well.
In the following, we focus on a single band and nearest-
neighbor hopping of energy t .

Cluster perturbation theory (CPT) [2–6] is one of the
simplest cluster methods applicable to HH. It uses exact
diagonalization results from small clusters and perturbatively
couples them together using intercluster perturbation theory,
thus offering approximations to the thermodynamic limit. The
CPT formalism allows a straightforward estimate of impor-
tant single-particle correlation functions, e.g., the spectral
function. The spectral function can be measured in angle-
resolved photo emission spectroscopy, thus offering a useful
connection between Eq. (1) and experiments on, for example,
transition metal oxides [7].

Two-particle correlation functions, by contrast, offer im-
portant insight into certain ordered phases of HH. Density-

density and spin-spin correlations signal charge density and
spin ordering, respectively. Spin susceptibilities in particular
are observable using neutron scattering in materials [8,9].
Interestingly, ultracold atoms in the Hubbard regime have
been probed using optical analogues of neutron scattering to
reveal spin-spin correlation functions in a Hubbard system as
well [10]. It is therefore important that we have a straight-
forward method to approximate two-particle correlation
functions.

Previous work examined promotion of CPT to two-particle
correlation functions. Kung et al. [11] calculated the spin-
susceptibility for the translational symmetry broken cluster
and periodized the result but neglected intercluster terms.
Brehm et al. [12] used the variational cluster approximation,
an improvement over CPT, to approximately solve the Bethe-
Salpeter equation for a two-dimensional (2D) Hubbard model
at large interaction strength, U = 8t . The variational cluster
approximation includes a self-consistent loop that improves
accuracy but comes with the added cost of computational
complexity. Here we follow their approach but for CPT to
construct a method that can be used with low computational
cost so it can be applied to more complex models, e.g.,
multiband models.

Following Ref. [12], we extend the CPT formalism to
two-particle correlation functions by using the Bethe-Salpeter
equations to couple cluster solutions to the full lattice in direct
analogy to the CPT method used for one-particle correlation
functions. This generalization allows us to compute spin
susceptibilities on small clusters that can in turn be used
to compare with experiments done in the thermodynamic
limit. Our central aim is to address issues in solving the
Bethe-Salpeter equation by benchmarking the two-particle
CPT method against known results in the single-band 1D
Hubbard model. The 1D Hubbard model has strong quantum
fluctuations yet many exact (or nearly exact) results are known
from Bethe Ansatz [13,14], density matrix renormalization
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group (DMRG) [15,16], and perturbative limits [17,18]. At
half filling, we find that the spin susceptibilities computed
using CPT offer excellent approximations to known results for
weak and strongly interacting limits. We also find reasonable
agreement at intermediate interaction strengths. Away from
half filling, we find more disagreement between CPT and
DMRG as expected from strong charge fluctuations. We note
that care must be taken to apply the method to models in
perturbative limits where CPT itself is accurate. Our results
set the stage for use of CPT to efficiently approximate two-
particle correlation functions in perturbative limits of higher
dimensional Hubbard models and models with band degrees
of freedom where CPT is accurate.

The paper is organized as follows: In Sec. II, we re-
view one-particle CPT to establish notation and prepare for
the generalization to two-particle correlation functions. In
Sec. III, we use the one-particle CPT formalism to define the
protocol for two-particle CPT [11,12]. In Sec. IV, we test the
accuracy and viability of the formalism with the 1D Hubbard
model in a single band at half filling by comparison with the
random phase approximation (RPA), DMRG calculations, and
the Müller estimate [17]. In Sec. V, we compare CPT with
DMRG away from half filling in the 1D Hubbard model. We
summarize in Sec. VI.

II. ONE-PARTICLE CLUSTER PERTURBATION THEORY

We first review the basics of one-particle CPT to establish
notation and provide a framework for a direct application to
two-particle correlation functions. One-particle CPT focuses
on approximating the single particle Green’s function,

Gαβ (iν) =
∫ 1/kBT

0
dτeiντ 〈Tτ cα (τ )c†

β (0)〉,

where c†
β (τ ) (cα (τ )) creates (annihilates) fermions in states

indexed by β (α) at imaginary time τ . These composite
indices specify both position, ri, and spin, σ , e.g., α ≡ (i, σ ).
Tτ indicates time ordering. Here we choose to present the
formalism in the Matsubara representation at nonzero tem-
perature T for simplicity but when we apply the method
numerically in Sec. IV, we will pass to zero temperature.

The CPT scheme approximates the single-particle Green’s
function by breaking up the original lattice and calculating a
Green’s function in a mixed representation. The mixed repre-
sentation is given by tiling the lattice into clusters connected
perturbatively by intercluster single-particle coupling in H0.
The scheme results in a single-particle Green’s function with a
continuously valued momentum derived from a small system.
This is achieved formally by rewriting original lattice position
(momentum) vectors as the sum of the cluster and superlattice
position (momentum) vectors as: ri = R + ra (k = k̃ + K),
where a indexes cluster sites and k̃ superlattice momentum.
This procedure breaks translational symmetry on the cluster
but keeps it among clusters.

CPT couples clusters perturbatively in the intercluster hop-
ping to form the full lattice. Another way of deriving the CPT
equations for the full lattice Green’s function is through the
Dyson equation:

G(k̃, iν) = G0(k̃, iν) + G0(k̃, iν)�(k̃, iν)G(k̃, iν) .

FIG. 1. Diagrams used in cluster perturbation theory: (a) the
Dyson equation, (b) the Bethe-Salpeter equation for the generalized
four-point susceptibility, (c) the Bethe-Salpeter equation for the two-
point susceptibility, and (d) the analog of the Dyson equation for
the two-point susceptibility. The four-point vertex, �(iν, iν ′, iω), is
approximated by the two-point vertex, �(iω). Dashed lines represent
the noninteracting Green’s function G0, while double lines represent
the interacting Green’s function G.

Here G is the connected Green’s function, G0 is the
noninteracting Green’s function, and � is the sum of all
one-particle-irreducible diagrams. All quantities are matrices
in the cluster sites. Figure 1(a) depicts the Dyson equation
diagrammatically for later comparison. A similar relation
holds for the corresponding quantities on a cluster:

Gc(iν) = G0,c(iν) + G0,c(iν)�c(iν)Gc(iν).

These relations allow for an approximate solution for the CPT
Green’s function.

To derive the CPT approximation to the Green’s function,
we assume

�(k̃, iν) ≈ �c(iν).

This is the central approximation to one-particle CPT that
allows us to solve for the lattice connected Green’s Function,
yielding

G−1
CPT(k̃, iν) = G−1

0 (k̃, iν) + G−1
c (iν) − G−1

0,c(iν). (2)

This CPT approximation to the Green’s function can be
computed numerically in a straightforward fashion because
the mixed representation allows us to insert an approximation
for the self-energy derived from numerically solving the small
sized cluster. Appendices A and B detail how Eq. (2) is
computed numerically with exact diagonalization.

We can use GCPT to compute one-particle correlation func-
tions in momentum space to bridge small cluster results (with
a momentum space mesh) and large systems (with a con-
tinuous momentum space). To express the Green’s function
in momentum space, we take a Fourier transform and ig-
nore the off-diagonal cluster momenta to restore translational
invariance,

G(k, iν) ≈ 1

Vd

∑
a,b

e−ik·(ra−rb)[GCPT(k, iν)]ab, (3)
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where Vd = Ld is the volume of the d-dimensional cluster
and we have set k̃ = k since K is periodic. It is important
to note that this approximation for G(k, iν) is equivalent to
exact results at U = 0 and t = 0. For U = 0 there is no self-
energy and we recover the noninteracting Green’s function.
In the atomic limit, t = 0, we retrieve the Green’s function
for just a single site, where G0,CPT = G0,c, so then G = Gc.
Additionally, in the limit L → ∞, CPT is equivalent to the full
lattice. CPT systematically approaches the thermodynamic
limit with increasing cluster size Vd . Using this structure,
we can construct an analogous procedure for two-particle
correlation functions.

III. TWO-PARTICLE CLUSTER PERTURBATION THEORY

We now apply the logic of the one-particle CPT formalism
reviewed in Sec. II to two-particle correlation functions. A
general two-particle correlation function in the particle-hole
channel is given by

χαα′ββ ′ (iω, iν, iν ′) =
∫ β

0
dτe−iωτ1 e(iν+iω)τ2 e−(iν ′+iω)τ3

×〈Tτc†
α (τ1)cα′ (τ2)c†

β (τ3)cβ ′ (0)〉,
where τ = (τ1, τ2, τ3). In general, there are four independent
frequencies, but due to energy conservation, they can be
reduced to only three: iω, iν, and iν ′. Where iω is the bosonic
transfer Matsubara frequency and iν and iν ′ are fermionic
Matsubara frequencies. To approximate a two-particle corre-
lation function using CPT, we start with the Bethe-Salpeter
equation [represented diagramatically in Fig. 1(b):

χ(iω, iν, iν ′) = χ0(iω, iν, iν ′)δiν,iν ′

+
∑

iν ′′,iν ′′′
χ0(iω, iν, iν ′′)�(iω, iν ′′, iν ′′′)

×χ(iω, iν ′′′, iν ′), (4)

where

χ0(iω, iν, iν ′) = G(iν + iω)G(iν),

and all quantities are matrices in the site indices. The four-
point vertex � is the sum of all scattering diagrams that are ir-
reducible in the particle-hole channel. The full Bethe-Salpeter
equation is expensive to evaluate for any arbitrary two-particle
correlation function because it is a rank-four tensor and has
three independent frequencies. To connect with inelastic neu-
tron scattering experiments and keep the discussion tangible,
we focus on the spin susceptibility defined as

χi j (iω) =
∫ 1/kBT

0
dτeiωτ 〈Tτ S+

i (τ )S−
j (0)〉

=
∫ 1/kBT

0
dτeiωτ 〈Tτ c†

i,↑(τ )ci,↓(τ )c†
j,↓(0)c j,↑(0)〉,

(5)

where the spin raising and lowering operators are given by
S+

i (τ ) = c†
i,↑(τ )ci,↓(τ ) and S−

j (τ ) = c†
j,↓(τ )c j,↑(τ ), respec-

tively. Note that here τ1 = τ2 = τ and τ3 = 0. In other words,
we join the outer legs in Fig. 1(b), making iω the external

frequency and iν and iν ′ internal frequencies to produce
Fig. 1(c).

As stated previously, evaluating the full two-particle cor-
relation function, and hence the full four-point vertex �, is
expensive. To reduce the computational cost, we neglect the
dependence of � on the internal frequencies (and momentum),
i.e.,

�(iω, iν, iν ′) ≈ �(iω). (6)

This simplification was argued in Ref. [12] to provide a
good approximation for the magnetic particle-hole channel,
for which the dominant correlations have very little internal
frequency (and momentum) dependence. This approximation
then gives a Dyson-like two-leg Bethe-Salpeter equation de-
picted diagramatically in Fig. 1(d) and given by

χ(q̃, iω) = χ0(q̃, iω) + χ0(q̃, iω)�(q̃, iω)χ(q̃, iω), (7a)

χc(iω) = χ0,c(iω) + χ0,c(iω)�c(iω)χc(iω) (7b)

for the lattice and cluster, respectively.
We can now apply the CPT procedure outlined in Sec. II to

the spin susceptibility. Using the above two equations for the
lattice and cluster spin susceptibilities along with the central
assumption of our work,

�(iν, iν ′, iω) ≈ �(iω) ≈ �c(iω), (8)

we can derive a CPT approximate spin susceptibility for
the lattice,

χ−1
CPT(q̃, iω) = χ−1

0,CPT(q̃, iω) + χ−1
c (iω) − χ−1

0,c(iω), (9)

where χ0,CPT is the dressed bubble diagram using the CPT
Green’s function, Eq. (2). Appendix C details how to compute
the bubble diagram. As a final step, we make contact with the
momentum space spin susceptibility in the full lattice:

χ (q, iω) ≈ 1

Vd

∑
a,b

e−iq·(ra−rb )[χCPT(q, iω)]ab. (10)

This approximation for χ can now be compared with experi-
mental data continuous in q. In principle, this procedure can
be used similarly for other two-particle correlation functions.
However, depending on the channel and the structure of the
dominant correlations in that channel, one may have to dress
the irreducible four-point vertex with appropriate form factors
in Eq. (6) that describe the structure of the leading correlations
in that channel. This generalization will be discussed in future
work.

The above scheme leads to an approximation for the spin
susceptibility which is exact in certain limits. As with CPT
for the single-particle Green’s function, we retrieve the exact
results in the two limits for the Hubbard model, U = 0 and
t = 0. For U = 0, there is no self-energy, the irreducible
vertex is zero, and we recover the noninteracting χ . In the
t = 0 limit, we are once again restricted to the single site
and χ0,CPT = χ0,c giving χ = χcluster. Additionally, the CPT
approximation for the spin susceptibility is systematically
improved with increasing cluster size L, approaching the exact
result as L → ∞. The applicability of the method away from
these points depends on the model. In the next section, we
benchmark the approximation on a model where essentially
exact results are accessible.
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IV. APPLICATION TO THE ONE-DIMENSIONAL
HUBBARD MODEL AT HALF-FILLING

We now test the accuracy and viability of the CPT approx-
imation to the spin susceptibility on a specific model. The
method applies generally to H in any dimension but here we
focus on a model where exact results are known. We consider
the single-band d = 1 Hubbard model:

H1D = −t
∑

〈i, j〉,σ∈↑,↓
c†

i,σ c j,σ + U
∑

i

ni↑ni↓ − μ
∑
i,σ

niσ .

The 1D Hubbard model has been studied extensively [14].
Exact results are known for single-particle correlation func-
tions in the ground state. The only known exact results for the
spin susceptibility involve scaling near poles or extreme limits
(weak and strong interaction). DMRG offers an accurate
method for comparison of the spectral function at intermediate
interaction strengths [19–21]. In this section, we focus on
half filling (density n = 1, where n ≡ ∑

i,σ 〈ni,σ 〉) obtained by
setting μ = U/2 (Appendix H discusses how to estimate μ

away from half filling). We also work at zero temperature,
and use units with t = h̄ = 1. We also set the lattice spacing
constant to unity, a0 ≡ 1.

First, we test our numerical implementation for the single-
particle CPT. By computing the spectral function we repro-
duce work in Ref. [2], which has been benchmarked against
exact results. We find that the CPT results for the Green’s
function in Fig. 2 also agree with the time-dependent DMRG
results for the Green’s function in Ref. [21].

We now move beyond single particle correlation functions
to compare CPT results for the spin susceptibility χ with
known results. In the low U limit, we can accurately use per-
turbation theory on H1D. Here the RPA should be reasonably
accurate, and leads to

χRPA-CPT(q, iω) = χ0,CPT(q, iω)

1 − Uχ0,CPT(q, iω)
;U � t . (11)

Here, χ0,CPT is the bare susceptibility (bubble diagram) com-
puted with the dressed CPT Green’s function GCPT in Eq. (2).
We call this approximation RPA-CPT because it amounts to
replacing the full vertex � in Eq. (7a) by its leading order
(RPA) approximation U .

Figures 3 and 4 compare the CPT to the RPA approxima-
tion. Here we see that both methods agree at low U . But the
CPT results also show oscillations which are numerical arti-
facts. The 1D Hubbard model is SU(2)-symmetric; therefore,
the cluster spin susceptibility, χc(ω + iη) is noninvertible for
all ω’s [22]. Appendices D and E explicitly detail how we
evaluate Eq. (9), and how we alleviate finite-size numerical
issues. These effects arise for a small broadening parameter
η. For comparison with experiments, the small η limit may
not be needed due to intrinsic experimental broadening in
measures of the spin susceptibility. Appendix F shows the
frequency dependence of the CPT vertex function �(ω). We
find that for small U and for ω below ≈4, �(ω) ≈ U , i.e.,
the RPA approximation in Eq. (11) and CPT agree reasonably
well.

FIG. 2. CPT approximation [Eq. (3) to the Green’s function,
− Im G(k, ν + iη), for the one-dimensional Hubbard model at half
filling plotted as a function of wave vector k. We choose a cluster
size L = 16, small broadening parameter η = 0.2, and plot Np = 144
points for k and ν. From top to bottom, we have Hubbard interaction
strengths: U = 0, 2, 4, and 8.

075122-4



TWO-PARTICLE CORRELATION FUNCTIONS IN CLUSTER … PHYSICAL REVIEW B 101, 075122 (2020)

FIG. 3. Left: CPT approximation [Eq. (10) to the spin susceptibility, Im χ (q, ω + iη) for the one-dimensional Hubbard model at half filling
plotted as a function of wave vector. We choose L = 16, η = 0.5, and Np = 96. Right: The same but for the RPA-CPT approximation, Eq. (11).
The interaction is chosen to be weak, U = 0.1 and U = 0.5, (top and bottom, respectively) so the RPA-CPT is accurate. The oscillating lines
are a numerical artifact discussed in Appendix E.

We now turn to comparisons at larger U . The top panels
in Fig. 5 compare our CPT results for χ , Eq. (10), with
DMRG [19–21]. Here the DMRG system size, 64 sites, is
converged enough to approximate the thermodynamic limit.
We see that DMRG produces a narrower/taller peak for ω <

0.05 and q = π , otherwise all of the other qualitative features
appear to be the same. The limited CPT cluster size (16 sites
chosen here) broadens the peak near q = π for the left plot
because there are fewer q points to sample.

In the very large U limit the 1D Hubbard model maps to
the isotropic Heisenberg spin chain with spin-spin interaction
J  4t2/U . For U = 4 and U = 8, DMRG calculations [20]
of χ (q, ω) on the Hubbard model show close agreement with
the Heisenberg model. In the Heisenberg limit, a wel- known
phenomenological estimate for the spin susceptibility can be
used for comparison to CPT [17],

χMüller(q, ω) ≈ [ω − ωL(q)][ωU (q) − ω]√
ω2 − ω2

L(q)
;U � t, (12)

where  is the step function. The lower energy branch is given
by ωL(q) = (π/2)J| sin(qa0)| and the upper energy branch
is given by ωU (q) = πJ| sin(qa0/2)|, thus reproducing the
Cloiseaux-Pearson relations. Equation (12) yields accurate
results in comparison to the exact results for the Heisenberg

model [18] for the large interaction limit because it was
chosen to match small system size Bethe-Ansatz results while
respecting sum rules and the Cloiseaux-Pearson relations.
Equation (12) deviates from exact results on the upper bound-
ary of the Cloiseaux-Pearson relation because it incorrectly
predicts a step in the upper boundary.

Figure 5 compares our CPT results for χ with the Müller
estimate. We find that CPT better approximates the Müller
estimate at larger U . This is reasonable because the Müller
estimate was derived in the Heisenberg limit. But we do see
notable differences even at U = 8t . For example, there is less
weighting in χ at large ω, near ω ∼ 1 − 1.5t . The shifting
of spectral weight from the upper spinon branch to the lower
spinon branch is as expected [23]. The larger U enhances the
peak at q = π and is evidence for strong antiferromagnetic
correlations.

The CPT graphs in Fig. 5 show a small gap at q = π . This
is due to the finite size of the cluster. The gap here should
vanish in the thermodynamic limit [24]. Appendix G discusses
extrapolations of the gap as a function of cluster size. We find
that the gap tends to diminish as L → ∞. But we find that
finite size effects do not allow a precise extrapolation to zero.

So far, we have found that CPT for two-particle correlation
functions offers a good approximation for the 1D Hubbard
model at half filling. CPT reduces to exact results for the
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FIG. 4. Same as Fig. 3 but for an intermediate interaction strength, U = 1 (top) and U = 2 (bottom). The CPT (left) and RPA-CPT (right)
agree well up to U = 2 where deviations between the methods start to appear.

spin susceptibility in weak and strong interaction limits.
From Figs. 3–5, we see that for a wide range of interaction
strengths, CPT for the spin-susceptibility agrees reasonably
well with benchmark methods. These are nontrivial tests be-
cause quantum fluctuations in the spin sector are strong at half
filling in 1D.

V. APPLICATION TO THE ONE-DIMENSIONAL
HUBBARD MODEL AWAY FROM HALF-FILLING

The results in the previous sections show that, at half
filling, CPT estimates of the spin susceptibility compare rea-
sonably well against benchmarks even with strong quantum
fluctuations in the spin sector. We now turn our attention to
results away from half filling where we also expect strong
charge fluctuations. At fillings below one-half, we have a
gapless state where both charge and spin fluctuations are
strong. We compare the CPT results to the DMRG results
for two different fillings (1/4 and 1/8) and two different
interaction strengths (U = 2 and U = 8). Since CPT is an
approximation we expect to find disagreement at intermediate
U , and indeed, we do find quantitative disagreement with
DMRG at these lower fillings, as expected. But we also find
regimes where CPT gives a good qualitative comparison with
DMRG for the spin susceptibility.

To use CPT away from half filling, we must estimate the
chemical potential. Appendix H describes the procedure by
which we determine μ at fixed density. The results presented
here use the chemical potentials computed in Appendix H.

Figures 6 and 7 compare the spin susceptibilities for
one-quarter and one-eighth filling, respectively. Results are
presented for both CPT and DMRG. As in previous sections,
we choose a relatively small cluster size for CPT (L = 16)
and 64 sites for DMRG. For comparison purposes, we assume
that the DMRG results are a good approximation to the exact
results in the thermodynamic limit.

Figures 6 and 7 show significant differences in the spectral
weight when comparing CPT and DMRG. For U = 2 (top
row, Fig. 6), we see at low ω that CPT correctly predicts
low-energy excitations near q = 0 and π/2. However, the
CPT results show stronger weight near q = π/2, whereas
DMRG indicates enhanced weight near q = 0. The U = 8
results (bottom rows of Fig. 6 and 7) also show discrepancy
in the spectral weight. The CPT results show strong weight
near ω ∼ 3. DMRG, by contrast, shows the largest weight
near ω ∼ 0.

VI. SUMMARY

CPT is a simple and economic method to compute the
momentum-resolved Green’s function for Hubbard models
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FIG. 5. Left: The same as Fig. 3 but for larger interaction strengths, U = 4 and U = 8, and with η = 0.2. Right (top): DMRG result for
a 64 site chain and U = 4. Here we see that the CPT method broadens the peak at q = π in comparison to DMRG. Right (bottom): Müller
estimate, Eq. (12), for U = 8 with a cutoff intensity such that max[χMüller(q, ω)] = max[Im χCPT(q, ω + iη)].

with local interactions. CPT with exact diagonalization is
useful for exploring parameter space because it is less com-
plex than competing methods such as quantum Monte Carlo,
DMRG, or dynamical mean-field theory. We find that the
CPT extension to a higher order correlation function, the
transverse spin-susceptibility, allows a relatively economic
and accurate implementation in the 1D Hubbard model. Our
results also suggest that the method can be applied to other
more sophisticated Hubbard models where clusters offer rea-
sonable approximations to bulk physics. We note, however,
that CPT itself is limited to regimes with low entanglement.
CPT estimates of one- and two-particle correlation functions
will probably offer rather poor approximations in models with
higher degrees of entanglement, e.g., the 2D Hubbard model
at intermediate interaction strengths.

In our benchmarking against exact results for the 1D
Hubbard model, we have found that the CPT method shows
deviations from expected behavior due to two primary issues.
The first issue is the finite size of the cluster, which leads
to a finite gap at q = π . Finite-size scaling is needed to
extrapolate to a zero gap and make more accurate predictions
for the thermodynamic limit. The second issue arose from
pole mismatches in approximations to χ that led to numerical
artifacts (Appendices D and E), particularly when our broad-
ening parameter was small. A general solution could be to
construct a Lehman representation of χCPT. This would be

useful for a more numerically controlled CPT-based method
when small broadening parameters are needed.
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APPENDIX A: Q-MATRIX REPRESENTATION
FOR TWO-POINT CORRELATION FUNCTIONS

Here we discuss approximation of two-point dynamical
imaginary time correlation functions 〈TτOα (τ )O†

β (0)〉 on a
single cluster. Ordinarily, the use of the Lanczos method leads
to a large number of poles. In this Appendix, we show how we
reduce calculation of such correlators for a single cluster to a
representation in terms of “Q matrices.” The representation
allows use of band Lanczos [25], where only a single set of
poles arises for each element.

To be specific, we focus on the Green’s function G =
−〈Tτ ca(τ )c†

b(0)〉 although the same procedure works for

075122-7



RAUM, ALVAREZ, MAIER, AND SCAROLA PHYSICAL REVIEW B 101, 075122 (2020)

FIG. 6. Left: CPT approximation [Eq. (10) to the spin susceptibility, Im χ (q, ω + iη) for the one-dimensional Hubbard model at one-
quarter filling (density n = 1/2) plotted as a function of wavevector. We choose L = 16, η = 0.2, and Np = 96. The chemical potentials used
are listed in Appendix H. Numerical artifacts in CPT are due to pole mismatches discussed in Appendices D and E. Right: DMRG result for a
64-site chain at the same filling with η = .05.

χ = −〈Tτ S+
a (τ )S−

b (0)〉. We first pass to the Lehman rep-
resentation. After constructing the thermal average of the
Green’s function, we can insert an eigenstate basis and
rewrite the imaginary time operators only considering τ > 0.
After a Fourier transform into frequency space, using the
(anti)periodicity eiνkBT = ∓1 for fermions and bosons, respec-
tively, and simplifying terms, we have

Gαβ (iν) = 1

Z

∑
n,m

〈n| cα |m〉 〈m| c†
β |n〉

× e−En/kBT ± e−Em/kBT

iν + En − Em
,

where the plus (minus) sign is for fermionic (bosonic) fre-
quencies and Z is the canonical partition function. We avoid
evaluating at iω = 0 for the bosonic correlation functions to
avoid the singularity.

A useful representation of the above Green’s function is
given using Q matricies [26],

Qαnm = 〈n| ca |m〉
√

e−En/kBT + e−Em/kBT

Z
,

which have dimension (Ld × Nstates). We can combine the
sum over eigenstates and eigenvalues n, m into a single sum
over s,

Gαβ (iν) =
∑

s

Qαs
1

iν − λs
SssQ

†
sβ,

where λs = En − Em and the diagonal matrix S handles the
statistical sign. We order the Green’s function such that hole
excitations are first followed by the particle excitations and
then S = diag(1, . . . 1,−ξ, . . . − ξ ), where ξ = ∓1 is the sta-
tistical sign for fermions and bosons, respectively. This allows
a more compact representation:

G(iν) = Q
1

iν1 − �
SQ†. (A1)

We can now represent the Green’s function explicitly in
terms of elements of the Q matrices. Using a Kronecker
product, we get

Gαβ (iν) =
∑

s

[
(SQ†)T ⊗ Qvec

(
1

iν − �

)]
s

=
∑

s

Cαβ,s
1

iν − λs
, (A2)
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FIG. 7. Same as Fig. 6 except for one-eighth filling (density n = 1/4).

where vec indicates transformation of a matrix into a column
vector by stacking the zeroth column on top of the first
column, first column on top of the second, and so on. Here
we also introduce the rank-three tensor:

Cαβ,s ≡ [(SQ†)T ⊗ Q]αβ,s.

This expression shows that we can rewrite the Green’s func-
tion in terms of Q matrices.

We can also apply the above procedure to the spin suscep-
tibility. In the Lehman representation, we have

χab(iω) = 1

Z

∑
n,m

〈n| S+
a |m〉 〈m| S−

b |n〉

× e−En/kBT ± e−Em/kBT

iω + En − Em
,

which is analogous to the Lehman representation for the
Green’s function. We can therefore obtain an expression for
the spin susceptibility in terms of Q matrices by replacing
fermion operators with spin operators in Cαβ,s.

The expressions for G and χ in terms of Q matrices are
useful for efficient evaluation. For small enough systems, we
can diagonalize the entire matrix and get all of the wave
functions, |ψn〉 and En. For larger systems, we use Lanczos to
estimate the Green’s function. Using band Lanczos, we obtain
the Q matrices and the energies En. At zero temperature,
running Lanczos once produces the ground-state eigenpairs

|ψ0〉 and E0. We then run a banded Lanczos with the set of
starting vectors. The algorithm produces the Q matrix and the
energies Em, allowing approximations of the Green’s function
and spin susceptibilities. The advantage of this algorithm over
normal Lanczos is that there is only a single set of poles for
each matrix element.

APPENDIX B: LEHMANN REPRESENTATION FOR CPT
GREEN’S FUNCTION

We can define the intercluster hopping matrix in the mixed
representation as

V (k̃) = G−1
0,c(iω) − G−1

0 (k̃, iω).

We can see this by splitting up the lattice hopping matrix t
into an intra and intercluster hopping matrix,

t (k̃) = tc + V (k̃),

and expressing the noninteracting Green’s function for the
lattice and the cluster, respectively, as

G−1
0 (k̃, iν) = iν − t (k̃)

and

G−1
0,c(iν) = iν − tc.
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This allows us to write the Green’s function from the CPT
Dyson equation as

G−1
CPT(k̃, iν) = G−1

c (iν) − V (k̃).

This is the usual CPT equation as derived in Ref. [2].
If we have the cluster Green’s function written in the Q-

matrix formalism in Appendix A, we can derive a Lehmann’s
representation of the CPT Green’s function. Following Knap
et al. [26] but ignoring the spin-statistic matrix S, since we are
only interested in fermions for the Green’s function, we get
the Lehman representation for the CPT Green’s function,

G(k̃, iν) = Q̃(k̃)
1

iν − �̃(k̃)
Q̃

†
(k̃), (B1)

where the new CPT poles and weights are, respectively,

�̃(k̃) = U (k̃)[� + Q†V (k̃)Q(k̃)]U†(k̃),

Q̃(k̃) = QU (k̃).

Equations (B1) are our Lehmann representations for the CPT
Green’s function.

APPENDIX C: EVALUATING THE CPT BUBBLE
DIAGRAM IN THE MIXED REPRESENTATION

In this Appendix, we rewrite the bubble diagram for the
transverse spin susceptibility, χ0, in terms of Q matrices. We
do this by re-expressing χ0 as a convolution of two Green’s
functions and analytically computing the frequency integrals.
This provides a more accurate χ0.

In the mixed representation Gab(k, iν), we can write the
spin susceptibility as

χ0,ab(q, iω) = −kBT
∑
p,iν

Gab(p, iν)Gba(p + q, iν + iω).

After substituting in the spectral representation,

Gab(k, iν) =
∫ ∞

−∞
dν ′ − Im Gab(k, ν ′)

iν − ν ′ ,

and doing the Matsubara summation,

kBT
∑

iν

1

(iν − ν1)(iν − ν2)
= −ξ

fξ (ν1) − fξ (ν2)

ν1 − ν2
,

where ξ = ∓1 is the statistical sign for fermions and bosons,
respectively, and fξ (ν) = (eν/kBT − ξ )−1 is either the Fermi-
Dirac or Bose-Einstein distribution, we obtain

χ0,ab(q, iω) = −
∑

p

∫∫ ∞

−∞
dν1dν2 Im Gab(p, ν2)

× Im Gba(p + q, ν2)
fξ (ν1) − fξ (ν2)

iω + ν1 − ν2
.

Passing to the Lehman representation for the Green’s function,

− Im Gab(k, ν) =
∑

s

Cab,s(k)δ(ν − λs(k)),

we insert the Dirac-delta function and do the integral analyti-
cally to get

χ0,ab(q, iω) = −
∑
p,s,s′

Cab,s(p)Cba,s′ (p + q)

× fξ (λs(p)) − fξ (λ′
s′ (p + q))

iω + λs(p) − λ′
s′ (p + q)

. (C1)

This is the bubble diagram in mixed representation. Here Cba,s

is defined in terms of Q matrices in Appendix A.

APPENDIX D: CALCULATION OF THE CPT
SUSCEPTIBILITY

The momentum resolved spin susceptibility, Eq. (10), is
constructed with imaginary Matsubara frequencies; to com-
pare with experiment, we analytically continue the imaginary
frequencies to real frequencies. In general, this analytic con-
tinuation is numerically ill-posed. We could apply one of the
many analytic continuation algorithms, e.g., Padé approxi-
mation [27], to Eq. (10); instead, we chose to analytically
continue each of the terms in the CPT spin susceptibility,
Eq. (9), separately. Before the inversion, each term is the
sum of simple poles. Therefore, the analytic continuation is
straightforward and given by replacing iω → ω + iη, where
η > 0 is some small parameter.

In general, none of the terms in Eq. (9) have to be invert-
ible. In particular, we find that χc has a zero eigenvalue for
all ω’s and U ’s due to being in the paramagnetic phase and
not breaking the SU(2) symmetry [22]. One way to proceed is
to regularize the ill-conditioned matrix inversion by adding a
small parameter along the diagonal. Another way is to twice
apply the matrix identity,

(A−1 + B−1)−1 = A(A + B)−1B,

where A, B, and C are matrices and (A + B) is assumed to
be invertible. These two methods agree, provided that the
regularization parameter is sufficiently small. This avoids the
explicit calculation of the vertex �c and instead calculates
�−1

c .
Unfortunately, this method did not produce the correct

behavior at low U when compared with RPA-CPT. We instead
attempt to find the best �c such that Eq. (7b) is satisfied. This
is accomplished via pseudoinverses and is given by

�c = χ+
0,c(χc − χ0,c)χ+

c . (D1)

Using the pseudoinverse matrices is equivalent to finding the
least-squares solution. The pseudoinverse can be found with a
singular value decomposition,

A = U�V †,

for any (Arows × Acols ) matrix A, where U and V are uni-
tary matrices with sizes (Arows × Arows) and (Acols × Acols ),
respectively. � is a diagonal (Arows × Acols ) matrix with non-
negative real numbers. The pseudoinverse is given by

A+ = V�+U†,

where �+ is found by replacing the nonzero elements with
their reciprocals and transposing the resultant matrix. This
effectively ignores the problematic zero eigenvalue that occurs
in χc.

APPENDIX E: CAUSALITY AND BOUNDS ON η

The CPT applied to the spin susceptibility as written
in Eq. (9) does not strictly respect causality [χ (q, ω) > 0
for ω > 0 and χ (q, ω) < 0 for ω < 0]. This is due to the
minus sign on χ0,c(ω)−1. While we can derive a Lehman
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FIG. 8. Top: CPT susceptibility for L = 16, U = 0.5 with η =
0.2 to highlight the numerical instabilities arising from a low broad-
ening parameter. The white dots appear where ω < 0. The badly
behaved points follow along an oscillating structure with peaks pro-
portional to cluster size L. Bottom: The same but for U = 1.0. The
oscillating structure shrinks as the misbehaving poles lose weight at
lower energy scales.

representation for each term in Eq. (9), the poles are derived
independently and therefore differ in finite-sized systems (the
poles match in the thermodynamic limit). Slight differences in
the poles lead to unphysical divergences, causality violations,
and periodic numerical artifacts in the CPT susceptibility, as
shown in Fig. 8.

By picking a large enough broadening parameter η we can
minimize these issues. The value of η needed depends on
the interaction strength U . For U < 2, this numerical issue
is the most severe except for at U = 0, where χ0,c(ω) =
χc(ω) exactly. For larger interaction strength U > 4, χCPT
is dominated by χ0,c(ω) and the other terms are pushed
off to higher energies. We understand this by noting that
around U ∼ 0, we have χc ∼ χ0,c ∼ χ0, and therefore, the
slight differences between the many poles cause numerical
artifacts. A larger η smooths out the spectra and alleviates the
unphysical divergences and signs but still retains some of the
numerical artifacts.

Numerical artifacts in CPT applied to two-particle correla-
tion functions can be removed entirely with methods that are

beyond the scope of the present paper. One approach would be
to derive a Lehmann representation of χCPT, like the one for
the Green’s function [Eq. (B1), then to combine poles until
causality is respected [28].

APPENDIX F: VERTEX FUNCTION COMPARISON

This Appendix compares the two-point vertex function
�(q, iω) computed with CPT against the RPA approximation
for a few values of q. We first note that only frequencies below
a certain threshold are relevant, i.e., only ω < 4 is important
in Figs. 3–5, since the susceptibility vanishes for ω > 4. We
are therefore interested in comparing vertex functions only for
ω < 4.

We calculate �(q, iω) by first computing χ (q, iω) via
Eq. (10) and χ0(q, iω) with the Green’s function from Eq. (3).
By inverting the two-point Bethe-Salpeter equation in mo-
mentum space,

χ (q, iω) = χ0(q, iω) + χ0(q, iω)�(q, iω)χ (q, iω),

we can construct a momentum resolved vertex �(q, iω).
The solid lines in Fig. 9 plot the imaginary and real parts of

the vertex function versus frequency for several values of U .
The dashed lines plot the RPA approximation which should
compare well with CPT at low U . The RPA approximation to
the vertex function is real and independent of q and ω.

From Fig. 9, we see that for U = 1 and U = 2 the CPT
approximation shows reasonable agreement with RPA for the
relevant frequency ranges, ω < 3 and ω < 4, respectively.
The U = 4 panel shows that CPT and RPA start to deviate
significantly as expected since RPA is valid in the low U limit.
Figure 9 also shows that for U = 0.5 we have a peak in the
vertex function. This peak is entirely numerical in origin and
derives from the pole mismatch discussed in Appendices D
and E.

APPENDIX G: FINITE-SIZE SCALING
OF THE χ(π,ω) GAP

We define the gap in spin susceptibility � to be the
frequency at which χ (π,ω) attains a nonzero value. � cor-
responds to the energy of the lowest excitation. It should
scale to zero in the thermodynamic limit since the spectrum
of the 1D Hubbard model is gapless in the thermodynamic
limit [13]. Specifically, the χ (π,ω → 0) gap in Fig. 5 should
go to zero as we increase L. The precise scaling of the energy
gap depends on U and the boundary conditions [13]. We focus
on larger values of U since the Heisenberg limit is known
from analytic arguments to scale as one over the system
size [24], which motivates an expected 1/L scaling in our CPT
study.

Figure 10 plots the energy gap � as a function of 1/L to
show a clear diminishing trend. But we find that a linear fit to
the four data points at the largest L yields a small but nonzero
gap: �∞ = 0.0255(8) for U = 4 and �∞ = 0.020(1) for
U = 8. The nonzero extrapolations may be due to the small
system size used, L � 16. We note that in other studies of
related two-spin correlation functions, DMRG [29,30] was
needed to extract the correct finite size scaling from larger
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FIG. 9. Frequency dependence of the CPT two-point vertex function �(q, ω) used in the Bethe-Salpeter equations [see Fig. 1(d) for H1D.
The horizontal dashed lines show the RPA approximation �(q, ω) = U . The solid lines show the CPT approximation obtained from inverting
Eqs. (7a) with η = 0.5 and Np = 48. Here we see that at low U , the real part of the CPT approximation at low frequencies is very close to the
RPA. The imaginary part of the CPT vertex function is also shown for comparison.

system sizes (more than 70 sites) in the Heisenberg model.
We conclude that while the χ (π, 0) gap diminishes, our

FIG. 10. Finite-size trend of the gap �. � is obtained as the
frequency for which χ (π,ω) is first nonzero, using CPT for U = 4
(top) and U = 8 (bottom) in H1D. Here we see a trend toward zero.
Linear fits of the last four data points show y intercepts of 0.0255(8)
and 0.020(1) for U = 4 and U = 8, respectively.

system sizes are too small to extract a zero gap in finite-size
scaling.

APPENDIX H: ESTIMATING THE CHEMICAL
POTENTIAL AWAY FROM HALF FILLING

We estimate the chemical potential in the 1D Hubbard
model by varying μ until the density n reaches the desired
value. Specifically, we start with the CPT Green’s function,

TABLE I. Computed chemical potentials, μ, and densities, n,
for each interaction strength U for one-eighth, one-quarter, and half
filling, respectively, using Np = 500. The top row indicates the filling
fixed on the cluster.

nc/2 1/8 1/4 1/2

U μ n/2 μ n/2 μ n/2

0 −1.850 0.128 −1.421 0.248 0.019 0.500
1 −1.730 0.127 −1.205 0.251 0.461 0.499
2 −1.680 0.128 −1.025 0.251 0.828 0.499
4 −1.589 0.127 −0.739 0.249 1.257 0.500
8 −1.531 0.128 −0.491 0.251 2.744 0.500
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Eq. (3), and use this to get the density of states:

ρ(ν) = −1

Np

∑
k

[Im G(k, ν)]. (H1)

By noting that we must have
∫ ∞
−∞ dνρ(ν) = 1, we are able to

find the correct chemical potential, μ, for the desired density
via

n =
∫ ∞

−∞
dν f (ν)ρ(ν), (H2)

where f (ν) is the usual Fermi-Dirac distribution function.
We approximate the chemical potential, μ, by setting n = nc,
the fixed density on the cluster, then using a root finder on
Eq. (H2) with f (ν) = 1 − (ν − μ) at T = 0.

After following the above steps to approximate the chem-
ical potential, we use the obtained value of μ in H1D such
that the correct particle density occurs at ν = 0 in our
Green’s function. Example chemical potentials are listed in
Table I.
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