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Abstract. Methods for coupling two data sets (species compo-
sition and environmental variables for example) are well known
and often used in ecology. All these methods require that
variables of the two data sets have been recorded at the same
sample stations. But if the two data sets arise from different
sample schemes, sample locations can be different. In this
case, scientists usually transform one data set to conform with
the other one that is chosen as a reference. This inevitably
leads to some loss of information. We propose a new ordina-
tion method, named spatial-RLQ analysis, for coupling two
data sets with different spatial sample techniques. Spatial-
RLQ analysis is an extension of co-inertia analysis and is
based on neighbourhood graph theory and classical RLQ
analysis. This analysis finds linear combinations of variables
of the two data sets which maximize the spatial cross-
covariance. This provides a co-ordination of the two data sets
according to their spatial relationships. A vegetation study
concerning the forest of Chizé (western France) is presented to
illustrate the method.

Keywords: Co-inertia analysis; Neighbourhood relationship;
Ordination; RLQ analysis; Spatial cross-covariance.

Abbreviations: CA = Correspondence analysis; CCA = Ca-
nonical Correspondence Analysis; GIS = Geographic Infor-
mation System; GSVD = Generalized singular value decom-
position; PCA = Principal Component Analysis; RDA = Re-
dundancy analysis.
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Introduction

Ecology often deals with the coupling of two data
sets. In most cases, the two data sets consist of environ-
mental and species data collected in the same sites.
When the sample units are in agreement, a number of
ordination methods can be used to link the two tables (ter
Braak & Verdonschot 1995). Canonical Correspondence
Analysis (CCA; ter Braak 1986, 1987) is probably the most
frequently used method for this purpose in finding linear
combinations of environmental variables that maximize
the separation of species niches (Lebreton et al. 1988).
There are several reasons for the success of CCA, and one
of these is the dissymmetry of the approach, which uses
environmental variables to model species composition by
a step of multivariate regression. Redundancy Analysis
(RDA; Rao 1964) contains also a multivariate regression
step and can be preferable to CCA because the c2 metric
used by CCA overemphasizes the importance of the rare
species in the data set. Note that non-linear relationships
can also be modelled using non-linear RDA and CCA
(Makarenkov & Legendre 2002). The regression step of
CCA or RDA requires that the number of environmental
variables must be much lower than the number of sam-
ples, like in canonical correlation analysis. In this con-
text, co-inertia analysis (Dolédec & Chessel 1994) is a
good alternative because it is more robust than CCA
regarding the number of variables compared to the
number of individuals (ter Braak & Verdonschot 1995).
Furthermore, co-inertia analysis has been extended, un-
der the name of ‘RLQ-method’, to the case of linking
three tables (Dolédec et al. 1996). This method has been
named ‘RLQ’ because it finds linear combination of the
variables of table R (external information about rows)
and linear combinations of the variables of table Q (exter-
nal information about columns) of maximal covariance
weighted by data contained in table L (link table). For
example, RLQ has been used to link species traits to
environmental variables by way of a species by sites table
(Ribera et al. 2001).

For the methods discussed, measurements of species
abundances and environmental variables must have been
done in the same locations. In some cases, the two
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sample schemes are different and so measurements are
not done in the same locations or at the same scale. In
biogeographic studies, for example, environmental data
are available for meteorological stations whereas spe-
cies abundances are measured at the quadrat level and
are available from museum or atlas data. In vegetation
science, people interested in different purposes can sam-
ple the same area at different locations and scales.
Hitherto, there has been no method that reconciles the
two sample schemes, and the simplest way to analyse
data is to estimate (e.g. by weighted averaging) the
values from one table for the sample points of the other
one in order to have the same sample units for the two
tables (Mourelle & Ezcurra 1996; Hill 1991).

In this paper we propose a new ordination approach
based on the RLQ ordination method and neighbour-
hood graph theory in order to link two data sets corre-
sponding to different spatial sample plans.

Neighbourhood matrix

The first step of the analysis is to establish a neigh-
bourhood relationship between the sites of the two sam-
ple schemes. Let us consider the situation where the first
sample involves m1 sites whereas the second involves
m2 sites. A neighbourhood matrix G with m1 rows and
m2 columns must be constructed where:
Gij = 1 if site i and site j are neighbours
Gij = 0 otherwise.

This kind of matrix is currently used in spatial ordi-
nation (Thioulouse et al. 1995). In the case where sites
are two-dimensional objects (i.e. quadrats, polygons...)
we can easily fill this matrix by considering that:
Gij = 1 if polygon i intersects polygon j
Gij = 0 otherwise.

In the case where sites are considered as points, we
propose to use tessellation to create neighbourhood
relationships (Green & Sibson 1978). We consider two
different spatial samples (Fig. 1). Voronoi polygons can
be easily constructed for each system of sample with
tessellation (Fig. 1). With these two tessellations, sites
can be considered as polygons and we can apply the
following decision rule:
Gij = 1 if polygon induced by site i intersects polygon
induced by site j
Gij = 0 otherwise.

Note that the matrix G can also be filled in comput-
ing the area of the intersection between polygons with
GIS. Taking into account the overlapped area will give
more weight to isolated points that produce large Voronoi
polygons. Moreover, we propose to define the neigh-
bourhood relations using two tessellations but simplest
method can be used. For example, methods based on
nearest neighbours criteria or on intervals of Euclidean

distances that are used to define neighbourhood in the
case of one set of points can be extended in the case of
two sets. However, our choice has been guided by the fact
that other methods can produce points with no neighbours
(methods based on distance) or are difficult to apply in the
case of two sets and hence must be devised by the user
(number of nearest neighbours or distance must be speci-
fied by the user). Our method based on tessellation has the
advantage that the whole zone is covered (all the points
have neighbours) and that the method is defined without
parameters entered by the user. However, one must keep
in mind that neighbourhood relation represents the
strength of the potential interaction between two points
and so the choice of the neighbourhood matrix can greatly
influence the results of the analysis.

Measurements of spatial covariance

A major purpose of spatial statistics is to understand
the spatial distribution of the values of an attribute
sampled over the whole study region (Bailey & Gatrell
1995). Is the value observed at a particular location
correlated to those observed at neighbouring points? To
answer this question, spatial covariance and covario-
grams are well known tools (see Cressie 1991 for exam-
ple). We consider a single variable x measured at n
locations (x1, …, xn) defining a n by n neighbourhood
matrix G*. The matrix G* is symmetric and allows to
define a diagonal matrix of neighbouring weights

D* = diag(p*
1+,…,p*
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which is the number of pairs of neighbours. For a single
variable x, the spatial covariance is (Thioulouse et al.
1995):
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which is the mean of the variables x given the weights
D*. The word covariance is rather ambiguous here be-
cause in the spatial context, it concerns the same variable
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and not two variables as in the general statistical con-
text. But we can extend the idea of spatial covariance for
a single variable (x) to the cross-covariance between
two variables (x, y):
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j
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==
ÂÂ1

2 11
  (3)

The use of cross-covariance has been introduced in
kriging methods for spatial interpolation (see Bailey &
Gatrell 1995). Suppose that x has been recorded at n
sites, and additional information on possible covariate y
is recorded at n+a sites. Then, we can apply co-kriging
(based on cross-covariance) by using covariate informa-
tion to improve the prediction of x at a general point in
the whole study region. While co-kriging requires that x
and y be measured at the same n locations, the notion of
cross-covariance is still legitimate when x and y have
been sampled at different locations.

Spatial-RLQ ordination

Let R be an m1 ¥ p matrix containing the measure-
ments of p variables at m1 sites. Let Q be an m2 ¥ q
matrix containing the measurements of q variables at m2
sites. Spatial-RLQ is based exactly on the same princi-
ples as classical RLQ ordination. The only difference
concerns the central table L. The table L derives from a
species by sites abundance table in classical RLQ whereas
it derives from an m1 ¥ m2 neighbourhood matrix in
spatial-RLQ analysis. The first step of the method con-
sists of separate ordinations of R, L and Q. The second
step is the study of the common structure of R and Q
through L with spatial-RLQ analysis.

Correspondence analysis of the central table

Let us consider the m1 ¥ m2 matrix G where Gij  = 1
if sites i and j are neighbours and Gij = 0 otherwise. The
table P of neighbourhood relative frequencies has m  1
rows and m2 columns and contains the relative frequen-
cies Pij  = Gij/g++. Moreover, let
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be the row totals, the column totals and the grand total of

neighbours, respectively. We define Dm1
, the diagonal

matrix of row neighbouring weights:
Dm i mdiag p p p

1 11= + + +( , ..., , ..., )  where p g gi i+ + ++= / . (5a)
In the same way, the diagonal matrix of column neigh-
bouring weights is
Dm j mdiag p p p

2 21= + + +( , ..., , ..., ) (5b)

where p g gj j+ + ++= / . Correspondence Analysis (CA)
of neighbourhood table G is the generalized singular
value decomposition (GSVD) of the statistical triplet
(L, Dm2

, Dm1
) with
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This GSVD finds a Dm2
-normed vector c and a Dm1

-

normed vector d maximizing the quantity (Dolédec et
al. 1996)
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Since c and d are normed vectors, the above quantity is
simply the spatial cross-correlation:

Cov Corr Var Var Corrspat spat spat( , ) ( , ) ( ) ( ) ( , )c d c d c d c d= =

(8)

Fig. 1. Definition of a neighbourhood matrix from two differ-
ent spatial samplings. From the two data sets, two tessellations
are performed. Two voronoi polygons are neighbours if they
intersect. Then, a neighbourhood matrix is constructed with 1
if the two individuals are neighbours and 0 otherwise.
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Lebart (1984) has applied correspondence analysis to
find row and column scores with maximum spatial
correlation for the symmetric matrix G of a simple
graph. In the case of an asymmetric neighbourhood
matrix, correspondence analysis finds row and column
scores maximizing the spatial cross-correlation between
neighbours. Eigenvectors corresponding to highest eigen-
values describe global structures whereas eigenvectors
corresponding to the lowest eigenvalues describe local
structures. These eigenvectors can be used as a good
alternative to polynomial functions in trend surface analy-
ses to describe spatial patterns (Thioulouse et al. 1995).

Analyses of R and Q

Dq and Dp are, respectively, a q ¥ q and a p ¥ p
diagonal matrix of column weights associated to tables
Q (m2 by q) and R (m1 by p). Different ordination
methods can be used to analyse the tables R and Q.
Different table transformations imply different analyses
(see Dolédec et al. 2000). For example, if the variables
in R are centred then the GSVD of (R, Ip, Dm1

), (Ip

being the p ¥ p identity matrix) is a centred PCA
whereas if the variables in R are centred and scaled to
unit variance then the same GSVD is a normed PCA.

Note that in the GSVD of (R, Ip, Dm1
), row weights

(pi+) derive from the correspondence analysis of table L.
Finally, GSVD of (R, Dp, Dm1

) and (Q, Dq, Dm2
) can

result in different types of analyses (normed PCA, cen-
tred PCA, CA, or multiple CA…).

Spatial-RLQ analysis

The purpose of spatial-RLQ analysis is to study the
common structure of tables R and Q through the neigh-
bourhood relationship instead of analysing tables R and
Q separately and trying to find a common spatial struc-
ture. Spatial-RLQ is defined as the GSVD of

 R D LD Q D Dt
m m q p1 2

, ,( ) .

This analysis consists in finding a Dp-normed axis
and a Dq-normed component v1 so that the quantity:
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We can rewrite the previous equation with
a =RDpu1 and b = QDqv1:
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It can be easily demonstrated that:
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m m spatCov

1 2
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So, spatial-RLQ finds linear combinations of variables
of R (a = RDpu1) and linear combinations of variables
of Q (b = QDqv1) that have maximum spatial cross-

covariance. The spatial cross-covariance can be decom-
posed into three terms, like classical covariance:

Cov Corr Var Varspat spat( , ) ( , ) ( ) ( )a b a b a b= (11)

This decomposition shows that spatial-RLQ is a com-
promise between the three separate analyses. The first
part (Corrspat (a,b)) corresponds to the correspondence

analysis of L, the second ( Var( )a ) to the analysis of R
and the third ( Var( )b ) to the analysis of Q. In RLQ,
we maximize a compromise that finds a score induced
by the variables of R and a score induced by the vari-
ables of Q which have a maximum spatial cross-correla-
tion. Maximum values are obtained from separate analy-
ses and so we can compare ordination obtained from
spatial-RLQ analysis to those obtained from separate
analyses. Furthermore, a Monte-Carlo test is available
by permuting rows of tables R and Q in order to test the
legitimacy of the spatial-RLQ analysis.

Application

Data were collected from a 2614-ha managed forest
located at Chizé (western France, Fig. 2a). The first data
set was collected at the subplot scale, which corre-
sponds to the level of forestry management (4 ha on
average). These data were available for the two main
vegetation strata, the timber stands and the coppices.
This data set was collected by foresters of the Office
National des Forêts and is used essentially for forest
management. For each subplot, foresters determine the
three dominant species for the coppices and the four
dominant species for the timber stand, and their cover
(in %). Subspecies and rare species were not determined
and data were pooled resulting in ten categories for
timber stand data and five for coppice data (Table 1).

The second data set concerns the same area but it
contains information about vegetation accessible to
roe deer (height < 1.20 m, Duncan et al. 1998). This
data set was collected at the scale of 1-m2 sample plots.
This sample technique is part of a population dynamic
study aiming to understand relationships between roe
deer population and their available food. For this sec-
ond data set, taxonomic information is recorded at the
genera level. For each quadrat, the presence (or ab-
sence) of genera was recorded. In total, 613 subplots
(data set 1) and 578 points (data set 2) were recorded
(Fig. 2). The first data set results in table R with 613
rows and 15 columns and the second one in table Q
with 578 rows and 58 columns. The purpose of our
study is an examination of the relationships between
canopy (timber stand and coppice) and understorey
(vegetation < 1.20 m height) when the two data sets are
measured on different spatial scales.



- Matching data sets from two different spatial samples - 871

The data have been geo-referenced and introduced
in a Geographic Information System (GIS). Then, a
tessellation on data points has been carried out and we
have used the above decision rules to construct a
neighbourhood matrix L with 613 rows and 578 col-
umns. Separates analyses have been performed: PCAs
for tables R and Q and CA for central table L. We
performed a randomization test to check for the statis-
tical significance of the relationship between R and Q.
This test is based on permutation of rows of tables R and
Q and for each permutation the total inertia of the
analysis is computed. The total inertia increases with the
intensity of the link between R and Q through L. We
used a Monte-Carlo version of the test with 1000 permu-
tations, demonstrating a significant relationship (p <
0.001: all permutations have values smaller than ob-
served total inertia) validating the use of spatial-RLQ
analysis. The first axis of the spatial-RLQ analysis takes
into account 94% (935/990, Table 2) of the total co-
structure and we focus on results for this axis only. As
seen before, spatial-RLQ analysis maximize the spatial

covariance between linear combinations of the variables
of R and linear combinations of the variables of Q. This
covariance can be decomposed as the product of two
standard deviations by their spatial correlation. Hence,
it is possible to measure the proportion of variance
attributed to each table and this can be compared to
those obtained by separate analyses (Table 2). For
table R, the first axis of spatial-RLQ analysis takes
into account 97% (2988/3075) of the maximal poten-
tial inertia obtained by separate analysis and 89%
(0.7419/0.8281) for table Q. Regarding spatial cross-
correlation, the maximum is achieved by CA of table L
and is equal to the square root of the first eigenvalue of
CA ( 0.9944 = 0 9972. ). The spatial cross-correlation
resulting from RLQ analysis shows a decrease (0.6495
in comparison to 0.9972). CA aims to find a couple of
normed vectors of maximal cross-correlation whereas
RLQ is based on the maximisation of the cross-
covariance between linear combinations of R and Q.
The observed decrease results from the tables R and Q
which do not allow to reconstruct the complete original

Name Code

Data set 1
Timber stand
Quercus spec. QueT
Acer spec. AceT
Pinus spec. PinT
Other deciduous DecT
Cedrus spec. CedT
Carpinus betulus CarT
Prunus avium PruT
Fagus sylvatica FagT
Abies douglasi AbiT
Other coniferous ConT

Coppices
Quercus spec. QueC
Acer spec. AceC
Other deciduous DecC
Carpinus betulus CarC
Fagus sylvatica FagC

Data set 2
Vegetation lower than 1.20 m
Acer spec. Ace
Ajuga reptans Ajure
Allium sativum Allsa
Anemone nemorosa Anene
Arum spec. Aru
Calamintha spec. Cal
Carex spec. Car
Carpinus betulus Carbe
Clematis vitalba Clevi
Convolvulus spec. Con
Cornus spec. Cor
Corylus avellana Corav
Crataegus spec. Cra
Epilobium spec. Epi
Eupatorium cannabinum Eupca
Euphorbia spec. Eup
Euonymus europaeus Euoeu
Fagus sylvatica Fagsy

Ficaria ranunculoides Ficra
Fragaria spec. Fra
Fraxinus excelsior Fraex
Galium spec. Gal
Geum spec. Geu
Glechoma spec. Gle
Hedera helix Hedhe
Hieracium spec. Hie
Hyacinthoides spec. Hya
Hypericum spec. Hyp
Ilex aquifolium Ileaq
Lathyrus spec. Lat
Ligustrum vulgare Ligvu
Lithospermum spec. Lit
Lonicera periclymenum Lonpe
Mellitis spec. Mel
other Lamiaceae Othla
other Prunus Othpr
Ornithogalum spec. Orn
Poaceae Poa
Pinus spec. Pin
Potentilla sterilis Potst
Prunus spinosa Prusp
Pulmonaria spec. Pul
Quercus spec. Que
Ranunculus spec. Ran
Rhamnus spec. Rha
Rosa spec. Ros
Rubia peregrina Rubpe
Rubus spec. Rub
Ruscus aculeatus Rusac
Senecio spec. Sen
Sorbus domestica Sordo
Sorbus torminalis Sorto
Stachys spec. Sta
Ulmus spec. Ulm
Veronica spec. Ver
Viburnum lantana Vibla
Vicia spec. Vic
Viola spec. Vio

Name Code

Table 1. Taxonomic names and codes.
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data, i.e. ordination of subplots and points of the sepa-
rate analysis of L.

Taxonomic information has been projected onto the
first axis of spatial-RLQ (Fig. 3). On this axis, genera
are plotted according to the link of their spatial distri-
bution with global spatial patterns. It is apparent that
stands with Fagus sylvatica in the canopy (upper side
of the first axis) tend to have Rubus spec. and Ruscus
aculeatus in the understorey and are mostly distributed
in the south of the forest. The north of the forest is
mainly occupied by stands with oak in the canopy and
Carpinus betulus and Ornithogalum spec. (lower side
of the first axis). So, it seems that the first axis indi-
cates a species turnover from the north to the south of
the forest involving different species communities in
these two parts of the forest. Representation of scores
of subplots and sample points by a smoothing by two-
dimensional weighted local regression (Cleveland &
Devlin 1988) confirms these trends (Fig. 4a, b). Sam-
ple scores, which are defined by species composition,
are structured from the north to the south. However,
there are some differences between these two maps
especially in the southwest of the forest where the two
scores are quite different. This lack of correspondence
between the two scores is probably due to the fact that
in this area trees are young and these subplots do not
contain mature timber stands.

Table 2. Inertia decomposition for spatial-RLQ analysis (three
tables ordination). Inertia: maximal projected variability; Var:
variance of the sets of factorial scores computed for the first
axis; Cov: covariance between the two sets of factorial scores
projected on the first spatial-RLQ axis; Cor: correlation be-
tween the two sets of factorial scores projected on the first
spatial-RLQ axis.

Spatial-RLQ Maximal potential values
analysis (obtained by separate analysis)

Total inertia 990
Inertia projected on F1 935
Cov (F1-R, F1-Q) 30.58
Cor (F1-R, F1-Q) 0.6495 0.9972 (CA of L)
Var (F1-R) 2988 3075 (PCA of R)
Var (F1-Q) 0.7419 0.8281 (PCA of Q)

Conclusion

Spatial-RLQ analysis is a new methodological per-
spective for coupling two data sets. This method is close
to co-inertia analysis, which is used for linking two data
sets with the same samples. In our method, the two data
sets are considered symmetrically but it could be inter-
esting to introduce an asymmetric part in order to ex-
plain one data set by the other. As CCA can be consid-
ered as an asymmetric co-inertia analysis, double-con-
strained CCA (Böckenholt & Böckenholt 1990; Lavorel
et al. 1998, 1999) could be a good starting point for an

Fig. 2. Spatial location (a) and sampling
scheme (b, c) of the Chizé forest (Western
France). Information has been collected for
points (b) and for sub-plots (c). From the
point data, a tessellation is applied in order
to construct a neighbourhood matrix.
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asymmetric form of spatial-RLQ analysis. Moreover,
we define in this paper a way to construct the neighbour-
hood matrix. This matrix represents the strength of the
potential interactions between locations. The use of GIS
permits the definition of a number of procedures to
construct spatial neighbourhood matrices (Anselin &
Getis 1992). Obviously, our choice is very simple but

Fig. 3. Spatial-RLQ analysis of the
Chizé data. Axis 1 of the species
ordination for timber stand and cop-
pice data (a) and for understorey
vegetation (b). Spatial distributions
of some species are represented.

Fig. 4. Spatial-RLQ analysis of Chizé data.
Smoothing by two-dimensional weighted
local regression of (a) point scores of
understory vegetation, (b) sub-plot scores
of timber stand and coppices.

spatial-RLQ is flexible and can admit different kinds of
neighbourhood matrices. The only constraint is due to the
CA of the central table implying that all elements of this
table must be non-negative. For example, taking into ac-
count the area of one sample crossing another one would
probably make the analysis more realistic. Since the
analytical results may be sensitive to the specification
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of the neighbourhood matrix, different spatial neigh-
bourhood matrices may be needed for different pur-
poses of studies. There is no universal type of neigh-
bourhood matrix that can be used in spatial analysis.
The choice of neighbourhood matrix and multiple possi-
bilities of analyses of marginal tables R and Q make
spatial-RLQ analysis appears as a flexible and a general
method for spatial co-ordination of data.
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